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Abstract

The Sun’s magnetic field is the engine and energy source driving all phenom-
ena collectively defining solar activity, which in turn structures the whole
heliosphere and significantly impacts Earth’s atmosphere down at least to
the stratosphere. The solar magnetic field is believed to originate through
the action of a hydromagnetic dynamo process operating in the Sun’s inte-
rior, where the strongly turbulent environment of the convection zone leads
to flow-field interactions taking place on an extremely wide range of spatial
and temporal scales. Following a necessarily brief observational overview of
the solar magnetic field and its cycle, this review on solar dynamo theory is
structured around three areas in which significant advances have been made
in recent years: (a) global magnetohydrodynamical simulations of convection
and magnetic cycles, (b) the turbulent electromotive force and the dynamo
saturation problem, and (c) flux transport dynamos, and their application to
model cycle fluctuations and grand minima and to carry out cycle prediction.
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1. SOLAR MAGNETISM

Forget your old astronomy textbook; the Sun is a variable star, its variability is strongly imprinted
across interplanetary space, there is no such thing as the solar constant, and the Sun’s magnetic
field is behind it all. It structures the solar atmosphere from the photosphere across the corona
and into the solar wind and heliosphere, modulates the Sun’s corpuscular and radiative output,
and drives all geoeffective solar eruptive phenomena collectively defining solar activity. Nor is
the Sun anomalous in this respect; every solar-type star observed with sufficient sensitivity shows
similar signs of magnetically driven activity.

Numerous good reviews are available on the observational side of solar magnetism (e.g., Solanki
et al. 2006, de Wijn et al. 2009); consequently, the following overview focuses on aspects most
pertinent to solar dynamo theory. The solar magnetic field is structured and evolves over an
astoundingly wide range of spatial and temporal scales (see Figure 1). Sunspots (Figure 1a) are
now understood to be the surface manifestations of emerging magnetic fields produced in the solar
interior. Restricted to low heliocentric latitudes but seldom seen very near the equator, sunspots
are the seats of strong magnetic fields (∼0.1–0.5 T), and the larger sunspots usually appear in pairs
of opposite magnetic polarities (black versus white on Figure 1b). The favored physical picture is
that of magnetic flux ropes rising from below and piercing the photosphere in the form of so-called
�-loops (Parker 1955a, Caligari et al. 1995, Fan 2009 and references therein). The leading spots
(with respect to the direction of solar rotation, from left to right in Figure 1a,b) show the same
magnetic polarity in each hemisphere, with this leading polarity reversing across hemispheres.
These striking hemispheric regularities, known as Hale’s Polarity law (Hale et al. 1919), reflect
the presence of an internal magnetic field that is spatially well organized on the scale of the Sun
as a whole and is antisymmetric about the solar equator.

Temporally extended observations (Figure 1c,d) also reveal some remarkable large-scale order.
The number of sunspots on the solar disk waxes and wanes on a timescale of about 11 years, with
sunspot emergences occurring at midlatitudes in the beginning of this cycle and progressively
closer to the equator as the cycle proceeds. The reversal of the relative magnetic polarities of
sunspot pairs from one cycle to the next indicates that the underlying magnetic cycle has a period
of twice that of the sunspot cycle. A well-defined dipole moment is also present, with the average
polar cap magnetic field reaching a few 10−3 T at times of sunspot minimum and reversing its
polarity at times of maximum sunspot counts, i.e., it lags the deep-seated sunspot-producing
magnetic field by about half a sunspot cycle.

The sunspot record extends back to the beginning of the telescopic era in the early seventeenth
century and, taken as a proxy of solar magnetism, makes it possible to trace the solar magnetic cycle
over that time span (red curve on Figure 1d; see also Hathaway 2010). The sunspot cycle shows
significant variability in both its amplitude and duration, including an extended “quiet” epoch
spanning the years 1645 to 1715, now known as the Maunder Minimum, during which very few
sunspots were observed (Eddy 1976). Other indirect proxies, notably cosmogenic radioisotopes
(e.g., Beer 2000, Usoskin 2013), make it possible to go much further back in time, although
with some loss of temporal resolution. These data nonetheless show that episodes similar to the
Maunder Minimum have occurred intermittently in the more distant past ( gray bands in Figure 1d;
see also Usoskin et al. 2007, McCracken et al. 2013).

Although the strongest magnetic fields observed at the solar surface are found in sunspots,
magnetographic observations also reveal their presence away from sunspots and active regions,
in the form of small magnetic elements of sizes going down to the smallest spatial scale currently
resolved by solar observing instruments (de Wijn et al. 2009). These small magnetic elements
collectively define the magnetic network, and have sizes distributed as a power-law (Parnell et al.
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Figure 1
The solar magnetic field and its cycle. (a) A continuum image and (b) a line-of-sight magnetogram, both taken on March 30, 2001, by
the MDI instrument onboard SOHO (ESA/NASA). (c) A synoptic magnetogram (courtesy of D. Hathaway, NASA/MSFC),
constructed by zonally averaging full-disk magnetograms over successive solar rotations and stacking such averages into a time-latitude
diagram. (d ) The time series of the group sunspot number (SSN; in red; Hoyt & Schatten 1998) together with pseudoSSN time series
constructed from two cosmogenic radioisotopes (data courtesy of I. Usoskin, Sodankylä Obs.). These provide measures of the overall
activity levels at lower temporal resolution but over a much longer timespan than the sunspot record.
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2009) spanning at least five orders of magnitude in size, which is indicative of scale invariance.
Their lifetimes are much smaller than sunspots and associated magnetic structures, as they con-
tinuously emerge, submerge, merge or cancel with other elements of same/opposite magnetic
polarity (Schrijver et al. 1997). These surface processes may actually account for the observed
scale invariance (Thibault et al. 2012 and references therein). The magnetic network shows little,
if any, dependence on the phase of the magnetic cycle and contributes little to the net (signed)
hemispheric flux. It does, however, play an important role in driving the nonthermal photospheric
radiative output, especially at wavelengths shorter than the visible.

The challenge facing dynamo theory is thus to explain the existence and observed evolution
of the solar magnetic field. This is an immense topic, which has already been the subject of
numerous monographs (e.g., Moffatt 1978, Parker 1979, Krause & Rädler 1980, Rüdiger &
Hollerbach 2004, Charbonneau 2013). The present review focuses on a few areas where significant
advances have been made in the past two decades in a manner such as to complement, rather
than duplicate, other recent reviews on the topic, notably Ossendrijver (2003), Brandenburg &
Subramanian (2005), Miesch & Toomre (2009), and Charbonneau (2010). General aspects of
magnetohydrodynamics most pertinent to magnetic field amplification in electrically conducting
fluid are first briefly reviewed in Section 2. This is followed in Section 3 by a survey of recent
global magnetohydrodynamical simulations of solar convection having achieved the production
of large-scale magnetic fields undergoing polarity reversals. Section 4 introduces mean-field
electrodynamics, both as a tool to analyze and interpret numerical simulations as well as a means
of building simplified evolutionary models of the solar magnetic cycle. Section 5 focuses on a class
of mean-field-like simplified dynamo models, the so-called flux transport dynamos, which have
received considerable attention in recent years as they provide an attractive framework within
which to understand the origin of fluctuations in solar cycle amplitude and duration and perhaps
even reliably predict these characteristics for future cycles. The review closes in Section 6 with a
survey of promising future research directions and outstanding challenges in solar dynamo theory.

2. FUNDAMENTALS OF MAGNETOHYDRODYNAMICS

Physical conditions in the solar interior up to the photosphere are such that the interaction of fluid
flow and magnetic field is well-described by the magnetohydrodynamical approximation (hereafter
MHD; see, e.g., Davidson 2001). In its classical formulation, MHD describes the behavior of an
electrically neutral mixture of electrically charged microscopic constituents in which the collision
frequency largely exceeds any relevant plasma frequencies. In such a (moving) collisionally domi-
nated plasma, Ohm’s law holds in a reference frame comoving with the fluid at the macroscopic
scale. For a nonrelativistic fluid flow u, the rest frame electric field E is then simply

E = J/σ − u × B, (1)

where J and B are, respectively, the current density and magnetic field, and σ is the electrical
conductivity (SI units are used throughout). Excluding externally imposed rapid variations of E
(e.g., turning batteries on or off ), Ampère’s law holds in its pre-Maxwellian form,

∇ × B = μ0J, (2)

where μ0 is the magnetic permeability. Using this expression to substitute for J in Equation 1 and
inserting the resulting expression for E into Faraday’s law leads to the MHD induction equation,

∂B
∂t

= ∇ × (u × B − η∇ × B), (3)

254 Charbonneau



AA52CH06-Charbonneau ARI 30 July 2014 7:18

where η = (μ0σ )−1 is the magnetic diffusivity. The first term on the right-hand side expresses
induction by the flow of electrically charged constituents across the magnetic field and the second
Ohmic dissipation of the current systems supporting that same magnetic field, as per Equation 2.
The relative importance of induction versus dissipation is measured by the magnetic Reynolds
number,

Rm = u0 L
η

, (4)

where u0 and L are characteristic values for the flow speed and length scale, respectively, the latter
assumed here to adequately characterize the spatial variations of both the flow and magnetic field.
For most astrophysically relevant circumstances, and all aspects of dynamo action considered in
what follows, one finds Rm � 1 if L is set equal to the scale of the system (e.g., the solar radius,
R�), indicating that Ohmic dissipation is very inefficient on this global scale.

In the infinite conductivity ideal MHD case (η = 0), Equation 3 becomes identical to the
evolution equation for a line element advected by a flow u, implying that the magnetic field lines
move with the fluid (see, e.g., Davidson 2001, his section 2.7.4), a result known as Alfvén’s theorem
and dubbed flux freezing. The consequent ability of the fluid flow to displace, bend, and stretch
magnetic field lines is crucial to all dynamo mechanisms considered in all that follows.

Dimensional analysis of Equation 3 yields two natural timescales for magnetic field evolution:
the advective timescale τu = L/u0 and diffusive timescale τη = L2/η. Using again L ∼ R�
and η ∼ 1 m2 s−1 for the bulk of the convection zone, one obtains τη � 1010 year, twice the
age of the Sun. From this point of view, the very existence of the solar magnetic field is not an
issue; any fossil magnetic field remaining from the Sun’s gravitational collapse from a (weakly
magnetized) molecular cloud would still be present in the solar interior at a strength hardly
differing from its zero-age main-sequence value. It also implies that we must look to the flow u to
explain the much shorter evolutionary timescales observed, from the decadal cycle period, down
to minutes for the evolution of small photospheric magnetic flux concentrations. The lower end
of this range is actually commensurate with the advective time of surface convection, for which
L ∼ 106 m and u0 ∼ 103 m s−1, yielding τu ∼ 15 min. The oddity lies therefore with the large-
scale magnetic field and its decadal polarity reversals. Moreover, this problem with the disparity
of timescales carries over to length scales. A turbulent flow can generate strong magnetic fields
on its own small spatial scale provided Rm is large enough (see, e.g., Cattaneo 1999, Cattaneo
et al. 2003, Stein & Nordlund 2006, Vögler & Schüssler 2007). However, it is also quite apt at
enhancing the dissipation of magnetic fields having larger spatial scales. How, then, can turbulent
convection, with typical scales on the order of 105–107 m and 103–105 s, induce and sustain
against dissipation a spatiotemporally coherent magnetic component with scales on the order of
109 m and 108 s? This quandary is often referred to as the magnetic self-organization problem
(Tobias et al. 2011).

From the MHD induction (Equation 3) one can obtain an evolution equation for the magnetic
energy (EB) integrated over the volume V of the system (here the Sun):

∂ EB

∂t
= −

∮
∂V

S · n̂dA − 1
σ

∫
V

J2dV −
∫

V
(u · F)dV, (5)

where S = μ−1
0 E × B is the Poynting flux at the domain boundary ∂V, and F = J × B is the

Lorentz (magnetic) force per unit volume acting on the plasma. The first term on the right-hand
side thus measures the flux of electromagnetic energy in or out of the domain; for a star-like system
embedded in vacuum, this is typically set to zero. The second term reflects the action of Ohmic
dissipation, inexorably turning magnetic energy into heat. The third term is where the action is; it
corresponds to the work done by the flow against the magnetic force. This is the channel through
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Figure 2
Plasma flows in the solar interior: (a) vertical flow velocities in subsurface layers, as produced by a
high-resolution EULAG simulation, courtesy of Guerrero et al. (2013); (b) helioseismic inversion of the
solar internal differential rotation, taken from Howe (2009); and differential rotation in (c) a purely
hydrodynamical (HD) EULAG numerical simulation and (d ) a EULAG numerical simulation obtained in
the magnetohydrodynamic (MHD) regime. The dashed line indicates the base of the convection zone.

which the kinetic energy of the flow can be converted to electromagnetic energy, a process that
must take place in a manner sufficiently efficient to offset losses due to Ohmic dissipation. This
requirement is the very essence of any dynamo process.

In its simplest form, the dynamo problem consists of finding a flow u that, when inserted into
Equation 3, leads to amplification of B. In principle, we are off to a good start, because vigorous
flows abound in the Sun (see Figure 2). In the outer 30% of the Sun’s radius, the luminosity is
transported by thermally driven turbulent fluid motions known as convection. Inhomogeneous
due to stratification, and lacking reflection symmetry due to the influence of rotation, convection
at small spatial scales drives large-scale flows, notably differential rotation. These two flow com-
ponents, energetically, are the primary contributors to u in Equations 3 and 5. Yet the magnetic
force acting on the charged constituents of the fluid also resist the flow, potentially quenching it
and, in doing so, turning off induction. The dynamo problem is inherently nonlinear, and therein
lie the physical, mathematical, and computational challenges.

3. GLOBAL MAGNETOHYDRODYNAMICAL SIMULATIONS
OF SOLAR CONVECTION

Global (i.e., full-sphere) numerical simulation of the MHD induction (Equation 3), together
with the usual fluid equations augmented by the Lorentz force, is an obvious brute force way to
tackle the solar dynamo problem. In practice, this is an extremely challenging task, in view of the
aforementioned wide separation of spatial and temporal scale characterizing solar convection and
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magnetic field evolution. However, unlike some of the simpler modeling approaches considered
in Sections 4 and 5 below, such simulations do properly incorporate the magnetic backreaction
on the inductive flow at all resolved spatial and temporal scales.

The underlying physics is not at all exotic, as the full set of MHD equations simply expresses
conservation of mass, momentum, energy, and magnetic induction as expressed by Equation 3;
the latter is duplicated here for completeness:

∂ρ

∂t
+ ∇ · (ρu) = 0, (6)

∂u
∂t

+ (u · ∇)u = − 1
ρ

∇ p − 2� × u + g + 1
μ0ρ

(∇ × B) × B + 1
ρ

∇ · τ , (7)

∂e
∂t

+ (γ − 1)e ∇ · u = 1
ρ

{∇ · [(χ + χr )∇T ] + φu + φB
}
, (8)

∂B
∂t

= ∇ × (u × B − η∇ × B). (9)

Here ρ is the fluid density; e is internal energy; p is gas pressure; τ is the viscous stress tensor;
χ and χr are the kinetic and radiative thermal conductivities, respectively; φu and φB are the vis-
cous and Ohmic dissipation functions, respectively; and other symbols have their usual meaning.
In the solar dynamo context it is customary to write the MHD equation in a rotating reference
frame; the centrifugal force is absorbed in the gravitational term so that only the Coriolis force
appears on the right-hand side of Equation 7. Equations 6–9 need to be augmented by an equa-
tion of state (typically the perfect gas law), and the magnetic field needs to be subjected to the
solenoidal constraint ∇ · B = 0. The specification of appropriate boundary conditions completes
the mathematical specification of the problem.

The anelastic approximation, in common usage in the present context, consists of introducing
a time-invariant background density profile, thus replacing Equation 6 by ∇ · (ρu) = 0, and only
retaining density variations about this reference profile induced by thermal dilation; in this way
sound waves are filtered out of the system, allowing larger time steps, but the crucial buoyancy
force is retained.

Equations 6–9 represent a set of strongly nonlinear partial differential equations that are to
be solved in a thick rotating stratified shell of electrically conducting fluid subjected to thermal
forcing driving convection. The first such simulations carried out by Gilman (1983) and Glatzmaier
(1984, 1985) used strongly enhanced dissipative coefficients to maintain numerical stability, but
nonetheless exhibited many encouraging features, including a rapidly rotating equatorial region,
the buildup of large-scale magnetic fields (but showing strong hemispheric asymmetries), magnetic
field migration (but poleward rather than equatorward), and polarity reversals (although quite
irregular). As ever more powerful computing platforms became available in later years, simulations
could be carried out at higher resolution and using lower diffusivities, thus reaching more strongly
turbulent regimes (see, e.g., Brun et al. 2004). These simulations proved to be potent dynamos,
in the sense that strong magnetic fields could be generated on the spatial scale of convection, but
without generating any significant large-scale magnetic component. The presence of a convectively
stable, mechanically forced underlying fluid layer proved efficient at producing an axisymmetric
large-scale component (Browning et al. 2006), which, however, remained resolutely steady over
the time span of these simulations. By contrast, the simulations of Brown et al. (2010) achieved
the buildup of large-scale magnetic fields concentrated within the low-latitudes portions of the
convecting layers, but again without reversals of magnetic polarity.
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Achieving solar-like cyclic polarity reversals of a large-scale magnetic component in such sim-
ulations is a very recent, exciting development, on which the remainder of this section is focused.
Before reviewing the design and characteristics of these simulations, a brief detour is first required
through the dynamics of rotating, stratified convection and its associated large-scale flows.

3.1. Convection and Large-Scale Flows

The dynamics of solar/stellar convection is discussed in depth in the recent review articles by
Miesch (2005) and Miesch & Toomre (2009), and by Howe (2009) on the observational (helio-
seismic) front. The key dynamical factors are rotation and stratification, which break the homo-
geneity and reflection symmetry of the turbulent fluid motions, leading to latitudinal temperature
differences and Reynolds stresses that power large-scale flows. The key dimensionless parameter
measuring the influence of rotation is the Rossby number (Ro), defined as the ratio of inertial to
Coriolis forces on the right-hand side of Equation 7, or equivalently, of the rotation period Prot

to the convective turnover (coherence) time τc:

Ro ≡ u′
rms

2��
≡ Prot

τc
, (10)

where u′
rms and � are the typical velocity and length scale of the convective eddies, respectively.

With Ro ∼ 0.1 in the deep convection zone, from the point of view of turbulent convection
the Sun is actually a fast rotator. This leads to characteristic convective patterns, with equatorial
regions organized in a longitudinal stack of latitudinally elongated banana cells, extending across
equatorial latitudes up to ± 35◦ in the Sun, at least according to global hydrodynamical simulations
(see Figure 2; also Busse 2002).

Rotational influences also lead to a differential rotation pattern characterized by equatorial
regions rotating some 30% faster than the poles, with the underlying radiative core rotating at an
intermediate rate corresponding to surface midlatitudes. This is relatively well-reproduced by nu-
merical simulations, except for rotational isocontours being too cylindrical at low to midlatitudes,
and the radial shear at low latitudes too concentrated within the convection zone, as compared
with helioseismic measurements (cf. Figure 2b,d). In the Sun, this deviation from cylindrical iso-
contours is now understood to be caused by a latitudinal entropy gradient present throughout
the convection zone, which results in a thermal wind balance that breaks the Taylor-Proudman
theorem (Kitchatinov & Rudiger 1995, Miesch et al. 2006, Balbus et al. 2009). This has been re-
produced in purely hydrodynamical numerical simulations including a stably stratified fluid layer
underlying the convecting layers, as in Figure 2c (see also Brun et al. 2011). A thin radial shear
layer is also present beneath the photosphere, and another, known as the tachocline, straddles
the base of the convection zone and ensures a smooth match between the latitudinal differential
rotation of the convection zone and the rigid rotation of the outer radiative core.

Meridional circulation refers to the large-scale axisymmetric flow component confined to
meridional planes. It is weaker and shows more temporal variability than differential rotation.
Directed poleward with speeds of ∼10 m s−1 at the surface low to midlatitudes, it is also ulti-
mately powered by convection. Observational attempts to detect the expected equatorward return
flow, carried out through helioseismology or the tracking of deeply anchored magnetic tracers,
have yielded conflicting results, some inferring a return flow located deep in the convective en-
velope, whereas others infer a shallow return flow (cf. Braun & Fan 1998, Schou & Bogart 1998,
Hathaway 2012, Zhao et al. 2013). Theory (Kitchatinov & Rüdiger 1995) and numerical simula-
tions (Miesch & Toomre 2009, see their section 3.5) indicate that multiple flow cells stacked in
radius and/or latitude are indeed likely. Both differential rotation and meridional circulation show
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SUBGRID MODELS

In the numerical solution of high Reynolds number, multiscale turbulent flows, finite computing resources usually
make it impossible to capture the turbulent cascade all the way down to the nominal dissipation scale. Subgrid models
bypass this difficulty by displacing dissipation at the smallest scales that can be stably resolved on the computational
grid. This can be carried either explicitly via modifications to the dissipative terms in the governing equations
(as in the ASH simulation of Figure 3) or implicitly via the numerical algorithm used to solve the governing
equations (as in the EULAG simulation of Video 1). Either way, artificially enhanced dissipation of the small scales
is introduced, and the challenge is to ensure that larger scales remain unaffected. In some classes of problems,
e.g., decaying turbulence, the role of the subgrid model is simply to dissipate energy at the end of the turbulent
cascade; in many such cases robust subgrid models have been designed and/or validated against measurements. In
the context of solar/stellar MHD convection, however, the procedure is more delicate because inverse cascades
also operate, e.g., the driving of differential rotation and meridional flows by turbulent Reynolds stresses, and dual
forward/inverse cascades of magnetic helicity.

low-amplitude cyclic variability phase locked to the magnetic cycle (see Howe 2009, see her
section 9; Ulrich 2010).

3.2. Cycles and Polarity Reversals: A Survey

It is instructive to compare the flows and magnetic fields produced by three independent global
simulations all working on, in principle, the same calculation: thermally driven MHD convection
and dynamo action in a thick, stratified, thermally forced rotating shell of electrically conducting
fluid. The virtue of this comparison lies with the fact that each of these simulations uses distinct
physical approximations, treatment of subgrid dissipation, and computational methodologies. This
allows, to some extent at least, identification of which patterns and behaviors are physically robust
and which are not.

The PENCIL code (www.nordita.org/pencil-code) is a parallel high-order finite difference
code operating as a direct numerical simulation (DNS), using fixed values for dissipative coef-
ficients such as viscosity and thermal and magnetic diffusivity. The pseudoglobal compressible
simulations in a spherical wedge discussed below are taken from Käpylä et al. (2010, 2012, 2013).
The ASH (anelastic spherical harmonics; Clune et al. 1999) code is a massively parallel spectral
code formulated in spherical geometry. It uses a large-eddy simulation (LES) approach, whereby
stability is maintained through the use of an explicit subgrid model (see the sidebar, Subgrid
Models). The simulation chosen here is taken from Brown et al. (2011) and makes use of a static
eddy diffusivities formulation, as in earlier ASH MHD simulations (e.g., Brun et al. 2004, Brown-
ing et al. 2006, Brown et al. 2010). EULAG-MHD (Smolarkiewicz & Charbonneau 2013) is an
MHD version of the EULAG code (EUlerian-LAGrangian, www.mmm.ucar.edu/eulag/; see
also Prusa et al. 2008), a robust, parallel multiscale flow solver formulated in generalized curvilin-
ear coordinates. It can operate an implicit large-eddy simulation (ILES; see Grinstein et al. 2007),
in which dissipation is delegated to the numerical advection scheme, rather than being formulated
explicitly. The simulations discussed below are of this type and are essentially identical to those
discussed by Ghizaru et al. (2010) and Racine et al. (2011).

All three simulations generate convective patterns and large-scale flows that turn out remark-
ably similar. As expected, convection is organized in cells of hot, ascending fluid delineated by
a network of narrow downflow lanes, as in purely hydrodynamical simulations. In equatorial
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Video 1
Magnetic cycles in a global EULAG-MHD anelastic simulation, essentially identical to those by Ghizaru
et al. (2010) and Racine et al. (2011). To view the video, access this article on the Annual Reviews website at
http://www.annualreviews.org. This simulation includes a convectively stable fluid layer underlying the
convecting layers. (a) A snapshot in Mollweide projection of the toroidal (zonal) magnetic component at
depth r/R� = 0.718; (b) a snapshot of the zonally averaged toroidal field in a meridional plane taken at the
same time as panel a. (c) Time-latitude and (d) radius-latitude diagrams of the zonally averaged toroidal field,
the former at depth r/R� = 0.718 and the latter at latitude +25◦. The dashed lines in panels b and d indicate
the bottom of the convectively unstable layers. This is a moderate-resolution simulation, rotating at the solar
rate but subluminous with respect to the Sun.

regions, convection again organizes itself in a longitudinal stack of elongated rolls with their axes
parallel to the rotation axis (see Figure 2a) (cf. Käpylä et al. 2010, their figure 2; Brown et al.
2011, their figure 3a,b; Ghizaru et al. 2010, their figure 1; and Miesch & Toomre 2009, their sec-
tion 2.2.3). The mean differential rotation in all cases is characterized by equatorial acceleration
with angular velocity isocontours approximately aligned with the rotational axis, but now it is a
pole-to-equator angular velocity difference markedly smaller than solar (cf. Käpylä et al. 2010,
their figure 1; Brown et al. 2011, their figure 3c; and Racine et al. 2011, their figure 4). Again in all
three cases the mean (axisymmetric) meridional circulation is weak and highly time variable, and it
shows little spatial structuring on large scales. With the axisymmetric mean subtracted, the zonally
averaged flow kinetic helicity is also quite similar in all three simulations, being negative (positive)
in the Northern (Southern) Hemisphere, peaking at high latitude with a secondary maximum at
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Figure 3
Identical in format to Video 1, but showing magnetic cycles in a global anelastic spherical harmonics
simulation, specifically simulation D5 by Brown et al. (2011). This high-resolution anelastic simulation is
close to the solar luminosity, rotates at five times the solar rate, and does not include a convectively stable
fluid layer beneath the convecting layers. Figure provided by M. Miesch (HAO/NCAR).

low latitudes, and changing sign at the base of the convecting fluid layer (cf. Käpylä et al. 2012,
their figure 2; Brown et al. 2010, their figure 8a; and Racine et al. 2011, their figure 15C).

With the flows so similar at small and large scales, one might expect that dynamo action
will show comparable levels of similarity. Interestingly, this expectation is only partly borne out.
Video 1 and Figures 3 and 4 offer different representations of the spatiotemporal evolution of a
toroidal magnetic field in the three simulations considered. Video 1 and Figures 3a and 4a show
snapshots in Mollweide projection of the toroidal magnetic field component at mid-depth in the
convecting layers, panels b a zonal average in the meridional plane, and panels c and d time-latitude
and radius-latitude cuts of that same zonally averaged toroidal magnetic component.

In all three simulations the magnetic field is highly turbulent, but also shows prominent banded
structures fairly well aligned in the zonal direction and reaching strengths in the 0.1–1 T range.
These axisymmetric toroidal field bands undergo polarity reversals that can be more or less regular
and synchronized across hemispheres, depending on the specific simulation considered. All three
simulations show significant accumulation of magnetic field at the base of the convecting layers,
as expected of turbulent convection in a stratified environment (e.g., Tobias et al. 2001). In the
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Figure 4
Identical in format to Video 1 and Figure 3, but showing magnetic cycles in a PENCIL compressible
simulation (case E4 in Käpylä et al. 2013). This is a high-resolution simulation in a spherical wedge
excluding latitudes higher than ±15◦. This simulation rotates at 4.4 times the solar rate, is superluminous as
compared with the Sun, and does not include a convectively stable fluid layer beneath the convecting layers.
Produced from numerical data provided by P. Käpylä (Univ. Helsinki).

EULAG-MHD simulation, the magnetic field actually peaks in the outer reaches of the stably
stratified fluid layer underlying the convection zone, whereas in the ASH and PENCIL simulations
strong magnetic field concentrations also build up at low latitudes within the convecting layers. The
ASH and PENCIL simulations show poleward propagation at mid- to high latitudes, and the latter
also exhibits solar-like equatorward propagation at low latitudes (Figure 4c). The axisymmetric
toroidal field in the EULAG-MHD simulation of Video 1, by contrast, peaks at midlatitudes
and only shows a hint of equatorward propagation at its high-latitude edge. The PENCIL and
EULAG-MHD simulations also show upward propagation in the outer half of the convecting
layers, a feature absent in the ASH simulation. The magnetic cycle periods also differ significantly:
3–6 years in ASH, ∼35 years in PENCIL, and up to �80 years in EULAG-MHD.

All three simulations also generate cyclic modulations of large-scale flows (see Brown et al.
2010, 2011; Passos et al. 2012). Beaudoin et al. (2013) carried out a detailed analysis of the
EULAG-MHD simulation of Video 1, where the amplitude and phase of the torsional os-
cillations are found to be remarkably close to those detected in the Sun via helioseismology
(cf. Howe 2009, her figures 5 and 25). They could also show that torsional oscillations developing
in their simulation do not simply result from the action of the Lorentz force associated with the
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cyclic large-scale magnetic component, but involve magnetically mediated alteration of all other
contributions to the angular momentum flux: small-scale Reynolds and Maxwell stresses, and
advection of angular momentum by meridional flows.

3.3. Self-Organization of Large-Scale Magnetic Fields

All three simulations considered above are strongly turbulent, yet clearly achieve varying levels
of self-organization of magnetic components characterized by spatial and temporal scales much
larger/longer than those of convection. How exactly this self-organization takes place is still not
understood, but various contributing factors have already been identified:

1. Rotation. Rotation is a powerful large-scale organizing mechanism via the action of the asso-
ciated Coriolis force on convective turbulence. The Coriolis force can impart hemispheric
cyclonicity on turbulence, generate latitudinal temperature gradients, and even structure
convection on large scales, as in Figure 2. In the Sun, photospheric convection operates
on timescales much shorter than the rotation period (i.e., the Rossby number Ro � 1)
and so is expected to be unaffected by rotation, whereas in the bulk of the convection zone
one expects Ro ≤ 1, implying significant rotational influence. Indeed, otherwise identical
global MHD simulations computed at varying rotation rates can exhibit very different types
of magnetic self-organization; operating close to the solar luminosity, when run with the
rotation lowered to three times solar, the ASH simulation of Figure 3 develops low-latitude
toroidal field bands that remain steady in time; with rotation further lowered to the solar
rate, no significant large-scale field is generated. By contrast, a cousin of the EULAG-MHD
simulation of Video 1 running at close to solar luminosity requires the rotation rate to be
increased to three times solar to recover reasonably regular cycles. These converging bits
of empirical evidence all point to the Rossby number as a key parameter.

2. Differential rotation. Differential rotation powered by turbulent Reynolds stresses is a
potentially powerful mechanism for spatial organization, as this flow is structured on global
scales and, at least in the Sun, remains close to stationary on cycle timescales. Differential
rotation is also efficient at dissipating nonaxisymmetric large-scale magnetic fields, thus also
favoring the buildup of solar-like axisymmetric large-scale magnetic fields.

3. Subgrid models. The choice of a subgrid model to maintain nonlinear stability of the
numerical solutions can have a strong impact on global characteristics of the large-scale
dynamo solutions, either directly on magnetic field generation or indirectly via changes
it may produce in large-scale flow contributing to magnetic field induction. For example,
recent ASH simulations computed using different types of subgrid models, though otherwise
identical or closely similar, achieve markedly distinct types of magnetic self-organization
(cf. Brown et al. 2010, 2011; Nelson et al. 2013; K. Augustson, M.S. Miesch, & J. Toomre,
manuscript in preparation).

4. The magnetic Prandtl number. This is the (dimensionless) ratio of viscosity to magnetic
diffusivity Pm = ν/η and thus measures the ratio of length scales at which the flow and mag-
netic field transit from turbulent to laminar and dissipate. In the parameter regime Pm > 1,
there exist a range of length scales in which the destructive folding of the magnetic field by the
flow ceases while Ohmic dissipation is still small, which should favor dynamo action. Empir-
ical evidence from MHD numerical simulations running in the Pm > 1 range indicates that
this is indeed the case and that the numerical value of Pm has a significant impact on magnetic
self-organization. Note, however, that Pm < 1 in the bulk of the solar convection zone.

5. The tachocline. Stably stratified and home to significant shear that is both radial and
latitudinal (e.g., Figure 2b ), the tachocline is the ideal environment to amplify and store
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the strong magnetic field that later will buoyantly rise through the convection zone and
form sunspots upon emergence at the photosphere. Moreover, a wide variety of flow-field
dynamical interactions can develop therein. Some may contribute to the self-organization
of the large-scale magnetic field, and perhaps feed back, directly or indirectly, onto dynamo
processes operating in the bulk of the overlying convection zone.

Mechanisms of self-organization notwithstanding, the simulations discussed in the preceding
section are all dynamically consistent at all resolved spatial and temporal scales and therefore repre-
sent outstanding virtual laboratories allowing investigation of many key questions in solar dynamo
theory. The remainder of this section focuses on three such questions, in which breakthroughs
have been made in recent years.

3.4. Instabilities and Waves in the Tachocline

Large-scale magnetic fields imbedded in stably stratified stellar interiors are known to be sensitive
to an astoundingly wide range of instabilities (see, e.g., Pitts & Tayler 1985, Spruit 1999,
Braithwaite & Nordlund 2006). The tachocline is clearly a potential candidate, as it combines
significant rotational shear, a strong magnetic field, weakly subadiabatic stratification, and
possibly coupling to a fossil magnetic field in the deeper radiative interior (see Strugarek et al.
2011 and references therein). Perhaps most pertinent in this context is the class of magnetoshear
instabilities investigated by Gilman & Fox (1997; see also Cally et al. 2003, Dikpati et al.
2003, and Miesch et al. 2007 and references therein). This joint MHD instability is inherently
two-dimensional and nonaxisymmetric and operates in stably stratified environments, developing
on spherical shells in the joint presence of a latitudinal angular velocity shear and a strong
toroidal magnetic field. The instability has been found to operate for a wide range of toroidal
field profiles, including latitudinally broad profiles similar to those produced in the stable fluid
layers in the EULAG-MHD simulation of Video 1.

Miesch (2007) has presented thin-shell MHD numerical simulations demonstrating that in
the presence of steady mechanical forcing of differential rotation and forced replenishment of a
latitudinal magnetic field component, cyclic waxing and waning of this instability can take place;
the toroidal field and differential rotation are first destroyed by the growth of the instability, then
rebuilt through the forcing terms following nonlinear saturation. This leads to a characteristic
pattern where the magnetic energies associated with the axisymmetric background toroidal field
and nonaxisymmetric components resulting from the growth of the instability both oscillate
with a well-defined period, the latter lagging the former by ∼π/2 in phase (see Miesch 2007, his
figure 2). Figure 5 shows equivalent time series for axisymmetric (black) and nonaxisymmetric
(blue) magnetic field energies in the stable layers of the EULAG-MHD simulation of Video 1.
The periodic behavior and ∼π/2 phase offset are both clearly apparent, even though here the
mechanical and magnetic forcing occurs “naturally” through the action of turbulent Reynolds
stresses and the operation of the dynamo in the overlying convecting layers. Ongoing analyses of
this simulation (N. Lawson & P. Charbonneau, submitted) indicates that the preferred mode of
instability has an azimuthal wavenumber m = 3 or sometimes m = 4, unlike in the simulation
analyzed by Miesch (2007), where the m = 1 “clamshell” mode dominates, in agreement with
linear theory (see Gilman et al. 2007).

The striking similarities between Figure 5 and Miesch’s (2007) figure 2 do not strictly prove
that the same physical instability is at play in both cases, but nonetheless they strongly suggest
that some kind of related magnetoshear instability operates in the stably stratified deep layers
of the simulation. This raises a number of interesting questions: Is this instability the primary
mechanism saturating the amplitude of the deep-seated dynamo-generated large-scale magnetic
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Figure 5
Magnetic energy evolution in the tachocline in the EULAG-MHD simulation of Video 1. The magnetic
energy associated with the zonally averaged (axisymmetric) toroidal magnetic field is plotted in black and
labeled TFME (toroidal field magnetic energy), and that comprising all other nonaxisymmetric
contributions is plotted in blue, labeled NAME (nonaxisymmetric magnetic energy). Here the magnetic
energies are volume-integrated in the Southern Hemisphere over the depth range 0.602 ≤ r/R ≤ 0.693,
which excludes the strongly turbulent, thin convective overshoot layer developing immediately beneath the
base of the convecting layers (r/R = 0.718 in this simulation). Both energies oscillate with a well-defined
period identical to that of the magnetic cycle and maintain a well-defined phase lag of about π/2 for most
cycles. Compare with Miesch (2007, his figure 2).

field? Is it a mere by-product of a dynamo operating autonomously in the convecting layers or does
it feed back into the dynamo process? Is the timescale for the growth and decay of the instability
entirely set by the dynamo period imposed from above or is the growth of the instability playing a
role in the global polarity reversals? Moreover, and to be discussed further below in Section 4.6,
the development of some of these instabilities can drive an electromotive force, which could then
power a dynamo contained entirely within the tachocline.

Another potentially important aspect of tachocline dynamics involves the excitation of internal
gravity waves by convective overshoot as well as the contribution such waves might make on the
dynamics of the tachocline and radiative core (e.g., Talon et al. 2002, Kim & MacGregor 2003,
Rogers & Glatzmaier 2006, Rogers et al. 2008, Brun et al. 2011) and, indirectly, on dynamo action
via their impact on the rotational shear. Already difficult to model in the purely hydrodynamical
regime because of the extreme disparity of spatial and temporal scales between the waves and
the large-scale flows, gravity wave dynamics is further complicated by the presence of magnetic
fields. Geometrically simplified models (Barnes et al. 1998) and numerical simulations (Rogers &
MacGregor 2011) both indicate that gravity wave propagation, absorption, and attendant angular
momentum transport are all strongly altered by the presence of strong magnetic fields within the
tachocline.

3.5. Coherent Structures and Sunspot Formation

A recent exciting development in global MHD numerical simulations of solar convection is the
spontaneous production of strongly magnetized flux strands in the ASH simulations by Nelson
et al. (2011, 2013). This process is favored by the strong turbulent intermittency characterizing
these simulations, which make use of a dynamical subgrid-scale model for dissipation, as opposed
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Formation and rise of rope-like magnetic flux systems in the toroidal wreaths produced by the ASH simulations by Nelson et al. (2013).
The superequipartition-strength magnetic flux strands form as substructures within the toroidal wreaths and expand as they rise
through the convecting layers. Reproduced from Nelson et al. (2013, their figure 18) with permission.

to the static eddy-diffusivity formulation characterizing most earlier ASH simulations (e.g.,
Figure 3). Figure 6 shows an example, taken from Nelson et al. (2013, their figure 18). Many
of these flux strands, forming within existing low-latitude toroidal wreaths, are pulled away
by strong convective updraft but have developed enough of a density deficit in their cores for
magnetic buoyancy to contribute to their rise through the convecting layers.

Further analyses of many such buoyant loop events by Nelson et al. (2014) have shown that most
manage to maintain their approximately east-west orientation as they rise through the turbulent
environment of the modeled convection zone, and therefore upon emergence would comply with
Hale’s Polarity law. This reopens the possibility that the sunspot-forming magnetic fields could
be generated and stored entirely within the convection zone, challenging the currently prevalent
view that the magnetic flux ropes giving rise to sunspots are stored, and perhaps even formed, in
the overshoot layer beneath the base of the convection zone.

3.6. Magnetic Modulation of Convective Energy Transport

Another recent exciting development is the detection of a magnetically mediated modulation
of convective energy transport in a set of EULAG-MHD simulations, including that shown in
Video 1 (Cossette et al. 2013). In the anelastic approximation the convective luminosity (enthalpy)
crossing a spherical surface takes the form

Lc =
∫∫

ρc p ur T̃ dS, (11)

where T̃ is the temperature fluctuation about the mean value on the shell. One might rightfully
expect that the Lorentz force will resist the convective flow, thus reducing ur , and therefore that
the convective energy flux should be smaller at the peak of magnetic cycles than at times of polarity
reversals. In fact, precisely the opposite behavior is observed in the simulation; energy transport
varies in phase with the magnetic cycle, as shown in Figure 7. This in-phase positive correlation
(r = +0.63 over the 1,300-year span of this simulation) can be traced to an enhancement of
the stronger convective plumes, accompanied by a reduction of negative convective flux contri-
butions by turbulent entrainment, i.e., cold fluid pushed upward, warm fluid pushed downward.
Interestingly, the probability density function of vertical turbulent velocities remains essentially
invariant across the cycles, indicating that the magnetic field is somehow altering the correlation

266 Charbonneau

https://vimeo.com/96148322


AA52CH06-Charbonneau ARI 30 July 2014 7:18

Em

t (years)

dLcv

1.0 0.2

0.1

0.0

–0.1

–0.2

0.9

0.8

0.7

0.6

0.5

0.4
200 400 600 800 1,000 1,200

Figure 7
Time series of total magnetic energy (black) and convective luminosity (red ) in the EULAG-MHD simulation of Video 1. The two time
series vary in phase, with a linear correlation coefficient r = +0.63. Temporally extended version of Cossette et al. (2013, their figure 4).

between vertical velocities and temperature perturbations. How exactly this takes place is still
being investigated, but the important point is that a variation of the total irradiance in phase with
the magnetic cycle is also observed on the Sun (see, e.g., Fröhlich & Lean 2004 and references
therein). The simulation from which the time series of Figure 7 is extracted is actually sublu-
minous as compared with the Sun, yet here the peak-to-peak convective luminosity variation, if
scaled to the solar luminosity, amounts to ∼0.3%, which compares favorably with the observed
decadal variation in total solar irradiance.

Although the varying coverage of magnetic structures clearly dominates irradiance variations
on timescales going from minutes to weeks, the possibility that part (or even all) of the variations
over timescales decadal and up could be owing to internal structural/convective changes has been
a topic of great debate for over three decades now (e.g., Li & Sofia 2001, Foukal et al. 2006,
Fröhlich 2009). Global MHD simulations have reached the point where the underlying physical
mechanism can perhaps be pinned down, and a “smoking gun” observational signature identified.

4. MEAN-FIELD ELECTRODYNAMICS

The same wide disparity of spatial and temporal scales making direct numerical simulations so chal-
lenging can also be capitalized upon via a mathematical approach known as mean-field electrody-
namics in order to design much simpler dynamo models capturing only the “slow” spatiotemporal
evolution of the large-scale magnetic component. For nearly half a century, mean-field electro-
dynamics has served as the workhorse of solar dynamo modeling, and is consequently very well-
covered in a number of recent and not-so-recent monographs and review articles (Moffatt 1978,
Parker 1979, Krause & Rädler 1980, Hoyng 2003, Ossendrijver 2003, Rempel 2006a). After an
overview of its theoretical underpinnings and associated mathematical formulation, the following
focuses primarily on recent developments, including the use of the mean-field approach as an inter-
pretive framework to investigate the nature of dynamo action observed in numerical simulations.

4.1. The Turbulent Electromotive Force

At the core of mean-field electrodynamics is the hypothesis of scale separation between the small-
scale flow and field (here convection and the turbulent magnetic field it generates) and the large-
scale flow and field (here differential rotation, meridional circulation, and the magnetic component
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associated with the solar cycle). The total flow and field are thus each separated into these two
components:

B = 〈B〉 + b′, U = 〈U〉 + u′, (12)

where the angular brackets denote averaging over an intermediate length scale, sufficiently larger
than the scales characterizing u′ and b′ so that 〈u′〉 = 0 and 〈b′〉 = 0. This is not a linearization,
as no assumptions are being made regarding the magnitude of u′ versus 〈U〉, or b′ versus 〈B〉.
Inserting Equation 12 into the MHD induction (Equation 3) and applying this generic averaging
operator leads to the mean-field induction equation:

∂〈B〉
∂t

= ∇ × (〈U〉 × 〈B〉 + ξ − η∇ × 〈B〉), (13)

where ξ = 〈u′ × b′〉 is the mean electromotive force (hereafter emf) produced by correlated
fluctuations of the flow and field at small scales. As we shall see presently, the key point is that this
emf can act as a source term for 〈B〉. If Equation 12 is inserted into the MHD induction equation,
without averaging but now subtracting Equation 13, one obtains an evolutionary equation for the
small-scale field:

∂b′

∂t
= ∇ × (〈U〉 × b′ + u′ × 〈B〉 + u′ × b′ − ξ − η∇ × b′). (14)

Now, the whole point of the mean-field approach is not to have to deal explicitly with small scales,
so formally solving Equations 13 and 14 as a coupled system is out of the question. Observe,
however, that if u′ is considered to be given, Equation 14 is linear in b′, with a source term
(u′ × 〈B〉) linear in 〈B〉; similarly, with 〈U〉 and u′ given, Equation 13 is linear in 〈B〉, with ξ

providing a source term linear in b′. It follows that the mean emf can be expressed as a linear
(tensorial) development in terms of the large-scale magnetic field:

Ei = αi j 〈B〉 j + βi j k
∂〈B〉 j

∂xk
+ · · · , (15)

where the tensors αi j , βi j k, etc., depend on the properties of the flow, but cannot depend on 〈B〉.
With closure achieved in this manner, specifying the form of these tensors becomes the crux of the
matter. For homogeneous, isotropic turbulence, αi j = αδi j and βi j k = βεi j k; truncating Equation
15 after the second term and substituting in the mean-field induction (Equation 13) then yields

∂〈B〉
∂t

= ∇ × (〈U〉 × 〈B〉 + α〈B〉 − (η + β)∇ × 〈B〉). (16)

The α term now emerges as a (mean) turbulent electromotive force aligned with the mean-
magnetic field, in contrast to the usual motional emf 〈U〉×〈B〉, which is perpendicular to 〈B〉. This
contribution to the total turbulent emf, crucial in many dynamo models discussed below, is known
as the α-effect, and is nonzero for flows lacking reflection symmetry. The β term reduces to an
additive contribution to the magnetic diffusivity η and can thus be interpreted as turbulent diffusion
of 〈B〉. The α- and β-effects in Equation 16 embody, respectively, constructive and destructive
folding of the mean-magnetic field by the small-scale flow. There is no free lunch here; turbulence
may, under certain circumstances to be elucidated presently, yield a mean-electromotive force
acting as a source for the mean-magnetic field, but it also inevitably provides enhanced dissipation
of that same mean-magnetic field.

Because they relate to the intrinsic topological properties of the flow, α and β are in princi-
ple computable if the small-scale flow—or at least its statistical properties—are known. Even in
such a case, when all is said and done, the calculation is tractable only in a few specific physical
regimes (see, e.g., Ossendrijver 2003, Rempel 2006a): The first is for turbulent flows in which
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the correlation time τc is smaller than their turnover time �/u′
rms, where � and u′

rms are typical
values for the turbulent eddies. The ratio of these two quantities is known as the Strouhal number
St = τc u′

rms/�, so the requirement is St < 1. The second tractable regime is that of low magnetic
Reynolds number turbulent flows, i.e., Rm � 1. The third applies to situations in which the mag-
netic field is dominated by its large-scale component, i.e., |b′| � |〈B〉|. For near-homogeneous,
near-isotropic turbulence satisfying at least one of these criteria, the α and β coefficients in Equa-
tion 16 take these forms:

α = − τc

3
〈u′ · ∇ × u′〉, (17)

β = τc

3
〈(u′)2〉. (18)

The β-effect is here proportional to the turbulent intensity. Within the convection zone, with
|u′| ∼ 10 m s−1, the magnitude of β is expected to exceed that of η by many orders of magnitude.
The α-effect, by contrast, is proportional to the mean kinetic helicity. Cyclonic flows are thus prime
candidates for driving an α-effect (Parker 1955b). In the solar/stellar context, this cyclonicity is
imparted on horizontally expanding convective updrafts and converging downdrafts by the Coriolis
force, thus creating a strong correlation between vertical flow speed and helicity.

The right-hand sides of Equations 17 and 18 have the benefit of being relatively straightforward
to extract from numerical simulations. However, for solar interior conditions one expects Rm � 1,
St ∼ 1, and |b′|/|〈B〉| > 1, which violates the conditions under which these expressions are
physically valid. Nonetheless, empirical evidence discussed further below (Section 4.3) indicates
that Equations 17 and 18 hold rather well at moderately high Rm, St ∼ 1, and |b′|/|〈B〉| ∼ 1.

Returning to the general tensorial formulation of the emf, it is possible to separate the α-tensor
in symmetric and antisymmetric contributions:

αi j = αS
i j − εi j kγk, (19)

so that the mean emf becomes

Ei = αS
i j 〈B〉 j + [γ × 〈B〉]i + βi j k

∂〈B〉 j

∂xk
+ · · · . (20)

Substitution into the mean-field induction (Equation 13) reveals that γ emerges therein as an
additive contribution to 〈U〉, i.e., it acts on 〈B〉 as would a large-scale flow. Under the same physical
conditions under which Equations 17 and 18 can be expected to hold, it can be expressed as

γ = − τc

3
∇〈(u′)2〉, (21)

i.e., it is proportional to the negative gradient of turbulent intensity. This pseudoflow is known as
general turbulent pumping and is increasingly recognized as a potentially important contributor
to the evolution of the solar large-scale magnetic field. In particular, with u′

rms decreasing with
increasing depth in the solar convection zone, downward pumping is expected all the way through
the bottom of the convecting layers. This has indeed been observed in a variety of numerical
simulations (e.g., Tobias et al. 2001, Ossendrijver et al. 2002, Ziegler & Rüdiger 2003, Racine
et al. 2011). The off-diagonal elements of the symmetric part αS

i j also represent turbulent
pumping, but they are specific to individual field components and therefore cannot be subsumed
into an advective pseudoflow (see discussion by Ossendrijver et al. 2002).

Whichever forms are assumed for the α and β-tensors, their specifications achieve closure, in
the sense that with 〈U〉 also specified, the mean-field induction (Equation 13) can be solved for
〈B〉. This forms the basis of mean-field dynamo models, which offer a modeling approach much
simpler than the numerical simulations reviewed in the preceding section. They allow, among
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other things, efficient exploration of parameter space and the tackling of questions and issues
related to long-timescale behavior (e.g., Figure 1d ), otherwise inaccessible in practice to bona
fide MHD numerical simulations.

4.2. Axisymmetric Mean-Field Dynamo Models

The large-scale magnetic field associated with the solar cycle being axisymmetric to a reasonable
degree, the averaging operator of the mean-field approach can then be associated naturally with a
zonal average. Working in spherical polar coordinates (r, θ, φ) and for the time being considering
only differential rotation, the large-scale flow and field can be written as

〈U〉(r, θ, t) = r sin θ�(r, θ, t)êφ, (22)

〈B〉(r, θ, t) = B(r, θ, t)êφ + ∇ × [A(r, θ, t)êφ], (23)

where � is the angular velocity of rotation, Bêφ is the toroidal magnetic field (zonally oriented),
and the toroidal vector potential Aêφ defines the poloidal magnetic field (component in merid-
ional planes). We first restrict ourselves to the kinematic approximation, in which the magnetic
backreaction of 〈B〉 on 〈U〉 is neglected, so that � is considered to be given. Substituting these
expressions into Equation 13 allows the separation of the mean-field induction equation into two
coupled evolution equations for A and B:

∂ A
∂t

= η

(
∇2 − 1

� 2

)
A + αB, (24)

∂ B
∂t

= η

(
∇2 − 1

� 2

)
B + � (∇ × Aêφ) · (∇�) + êφ · ∇ × (α∇ × Aêφ), (25)

with � = r sin θ , and for constant η and an isotropic (diagonal) α-effect. These expressions high-
light the crucial role of the α-effect. The associated turbulent emf is the sole source term appearing
on the right-hand side of Equation 24, unlike in Equation 25 where shearing by differential ro-
tation also acts as a source for B. Indeed, without the αB source term in Equation 24, Cowling’s
theorem ensures that an axisymmetric flow cannot sustain an axisymmetric magnetic field against
Ohmic dissipation (see Moffatt 1978, his section 6.4).

Dimensional analysis allows us to measure the relative importance of the various source terms
in Equations 24 and 25 through the dynamo numbers:

Cα = α0R�
η0

, C� = �0R2
�

η0
, (26)

where α0, �0, and η0 are characteristic measures of the magnitude of the α-effect, large-scale
rotational shear, and net (turbulent) magnetic diffusivity, respectively. In the solar case, with
α0 ∼ 1 m s−1, one finds Cα � C�, implying that rotational shearing of the large-scale poloidal
magnetic component by differential rotation dominates the induction of the toroidal component.
On this basis, the turbulent emf contribution is often omitted from Equation 25, resulting in
the α� dynamo model, whereas retaining all components of ξ yields the α2� dynamo model.
Dynamo action is also possible in the absence of rotational shear (i.e., C� = 0), which results in
the α2 dynamo model.

As shown analytically by Parker (1955b) for semi-infinite Cartesian geometry, the α� dynamo
model supports traveling-wave-like solutions and offers a simple and elegant explanation for the
observed equatorward migration of sunspot belts in the course of the solar cycle (e.g., Figure 1).
This behavior is robust, in that it carries over to spherical geometry (e.g., Yoshimura 1975, Stix
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1976) and to the α2� regime provided shear remains significant (Choudhuri 1990, Charbonneau
& MacGregor 2001). In the α� regime, dynamo waves propagate along isocontours of angular
velocity �, in a direction s given by

s = α∇� × êφ. (27)

In the solar context, equatorward propagation at low latitude arises if the αφφ tensor component
is negative in the Northern Hemisphere, and the dynamo is restricted to the equatorial portion
of the tachocline, where ∇� � d�/dr > 0 (see Figure 2b).

4.3. Measuring the α-Effect

The α-effect is a kinematic property of turbulent flows and as such can in principle be calcu-
lated under specific physical, geometrical, and statistical assumptions; for example, an important
and influential early result owing to Steenbeck & Krause (1969) concerns the crucial αφφ tensor
component, which can be expressed as

αφφ � −16
15

τ 2
c (u′

rms)
2� · ∇ ln(ρu′

rms). (28)

With u′
rms increasing more slowly outward than ρ is decreasing across the convection zone (ac-

cording to mixing length estimates) and � pointing north, αφφ turns out positive (negative) in the
Northern (Southern) Hemisphere. For u′

rms depending only on depth, Equation 28 also predicts
that the magnitude of αφφ should peak at the poles and vary with polar angle as cos θ . It also
predicts a sign change near the base of the convecting layers, as u′

rms is expected to vanish rapidly
as one moves downward into the convectively stable radiative core, leading to ∇(ρu′

rms) > 0.
Alternately, the α-effect can be directly measured in numerical simulations of turbulent con-

vection. This is not as straightforward as one may imagine. In principle, applying a uniform
large-scale field on a statistically stationary numerical simulation of turbulent convection—or any
turbulent flow for that matter—allows the measurements of the emf so generated; the original
flow provides the u′, and its inductive action on the imposed large-scale field generates the b′, from
which the mean emf ξ = 〈u′ ×b′〉 is computed by suitable spatiotemporal averaging. The individ-
ual components of the α-tensor are then readily computed by projecting the emf on the applied
mean-field. This imposed field method has been used on a variety of local and global simulations
of thermally-driven convection in stratified, rotating environments (see, e.g., Brandenburg et al.
1990; Ossendrijver et al. 2001, 2002; Ziegler & Rüdiger 2003; Cattaneo & Hughes 2006). Such
calculations have allowed exploration of the dependence of the α-effect on rotation rate, stratifica-
tion, etc. Particularly pertinent in the solar context are simulations of thermally-driven convection
in local Cartesian boxes positioned at various latitudes set by the imposed inclination of the rotation
vector � (see, e.g., Brummell et al. 1996), allowing easier access to more strongly turbulent regimes
than would global simulations. Surprisingly, many of these numerical experiments have corrob-
orated at least qualitatively some key predictions of mean-field theory, including Equation 28,
even though the simulations are typically run in parameter regimes under which closure expres-
sions such as Equations 17, 18, or 21 are not expected to hold. In particular, at moderately low
rotation rates, in the sense that the inverse Rossby number Ro−1 ≡ �τc < 1, the critical (from
the point of view of axisymmetric mean-field dynamos) αφφ component is positive (negative)
in the Northern (Southern) Hemisphere, peaks in polar regions, decreases monotonically toward
the equator, and exhibits a sign change near the base of the convecting layers (Ossendrijver et al.
2001), all of which is in general agreement with Equation 28. However, even a modest increase in
rotation rate is found to shift the peak of the α-effect to low latitudes (Käpylä et al. 2006a). At most
rotation rates explored, the α-tensor is full, in that its off-diagonal components have magnitudes
comparable to their diagonal counterparts, which is indicative of the break in homogeneity caused

www.annualreviews.org • Solar Dynamo Theory 271



AA52CH06-Charbonneau ARI 30 July 2014 7:18

by stratification and rotation. As a consequence, significant turbulent pumping is also present,
downward-directed in the bulk of the convecting layers but showing in addition a significant
equatorward latitudinal component at mid- to low latitudes, in the meter-per-second range for
the toroidal component (Ossendrijver et al. 2002). Such calculations have also shown that the
components of the α-tensor are strongly fluctuating quantities, with standard deviations about the
mean comparable to the magnitude of the mean (see, e.g., Ossendrijver et al. 2001, their figure 3).

To reliably measure the α-effect of the original turbulent flow in this manner, it is essential
for the applied magnetic field not to alter the flow and for the flow itself not to act as a small-
scale dynamo autonomously producing its own b′ independently of the applied large-scale field.
The second of these constraints can be satisfied by restricting the analysis to magnetic Reynolds
numbers smaller than those at which small-scale dynamo action is sustained. Working with very
weak imposed fields can bypass the first constraint, provided the averaging is carried out on time
segments over which the induced b′ also remains sufficiently weak. Producing a time series long
enough to yield stable averages may then require periodic resetting of the field to low values or
the combination of statistically independent shorter simulation segments. The test-field method
(Schrinner et al. 2007; see also Käpylä et al. 2009) aims at bypassing both constraints simultaneously
by solving a set of evolution equations for b′, which is essentially Equation 14 herein but with a set
of imposed weak test fields replacing 〈B〉 on the right-hand side with the small-scale flow u′ taken
directly from the simulation being analyzed. Even then, the results turn out to be sensitive to what
one would normally have hoped to be “details,” such as the size and aspect ratio of the simulation
box, boundary conditions, and convective parameter regime [see the discussion by Hughes &
Cattaneo (2008) and Hughes et al. (2011)].

A somewhat distinct situation arises in MHD numerical simulations that autonomously produce
a large-scale magnetic field in their statistically stationary saturated state; in such cases, one can
choose an averaging operator, directly measure 〈B〉 (rather than impose it), define u′ ≡ u − 〈U〉
and b′ ≡ B − 〈B〉, compute ξ = 〈u′ × b′〉, and then reconstruct the individual components of
the α-tensor. The tensor measured in this manner is no longer a kinematic property of the flow
per se, but rather a measure of the net turbulent induction in the nonlinearly saturated dynamo
simulation (on this point see also Hubbard et al. 2009).

Assuming a scalar α-effect (i.e., ξ = α〈B〉), Brown et al. (2010, 2011) failed to find a satisfactory
relationship between the turbulent emf and the large-scale magnetic field measured in their simu-
lations. Working with a EULAG-MHD simulation essentially identical to that shown in Video 1,
Racine et al. (2011) introduced a method for calculating the components of the full α-tensor based
on a least-squares fit of the tensorial relation:

ξi (t) = αi j 〈B〉 j (t), i, j = r, θ, φ, (29)

on the time series of ξ and 〈B〉 at each grid point of the meridional plane in their simulation
(the zonal direction being the averaging direction). The fit itself is carried out separately for each
vector component of ξ and 〈B〉 using singular value decomposition (SVD). Sample results of this
procedure are shown in Figure 8a for the αφφ component, and the associated standard deviation
of the fit is plotted in Figure 8b. In this specific instance, the fit spans 16 full magnetic cycles.
Breaking the time series into segments and carrying out the fitting procedure on each segment
confirms the temporal steadiness of the α-tensor, implying that the measured cyclicity of the emf
is directly associated with the cyclicity of the mean-magnetic field.

Examination of Figure 8 indicates that the αφφ component is positive in the Northern Hemi-
sphere, peaks at the pole, and shows a sign change near the base of the convecting layer, in
agreement with Equation 28 as well as with the Cartesian box calculations discussed above. A
secondary peak at low latitudes is also present. Except in the equatorial region, where both ξ and
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Figure 8
The α-tensor in the EULAG-MHD simulation of Video 1. (a) The αφφ component as extracted by linear least-squares fit on
Equation 29, and (b) the associated standard deviation. (c) α as reconstructed via Equation 17, using the kinetic helicity profile in panel
d, as extracted from the simulation. (e) The extracted current helicity profile (see Section 4.5). ( f ) The vertical turbulent pumping
velocity, constructed from the full α-tensor via Equation 19.

〈B〉 are quite weak, and in the stable layer, where 〈B〉 can be large but ξ is very weak, the magnitude
of αφφ significantly exceeds the standard deviation returned by the SVD fit.

Figure 8c shows the α-coefficient computed via Equation 17; the kinetic helicity has been
extracted from the same simulation (Figure 8d ), and the correlation time estimated as H ρ/u′

rms,
where H ρ is the density scale height. The match with the true αφφ in Figure 8a is remarkable,
although the latter has a magnitude that is smaller by a factor of about five. Interestingly, if
this mismatch is attributed to an overestimate of the correlation time τc , then a peculiar internal
consistency is recovered; writing τc = H ρ/u′

rms amounts to setting the Strouhal number St = 1,
but reducing it to St = 0.2 to match the magnitudes of Figure 8a,c brings us back to the regime
St < 1, where Equation 17 is now expected to hold.

Figure 8f shows the radial component of the turbulent pumping velocity (e.g., Equation 19),
as reconstructed from the antisymmetric component of the full α-tensor. Here again, pumping is
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predominantly downward in the bulk of the convecting layers and into the upper portion of the
underlying stably stratified fluid layer. The upper boundary condition causes a rapid reduction of
the turbulent intensity moving up across the subsurface layers, which leads to upward turbulent
pumping, in agreement with Equation 21. Except in subsurface layers, equatorward latitudinal
pumping is also observed at most latitudes, peaking at 2–3 m s−1 at ± 25◦ latitude.

It is quite noteworthy that very distinct numerical simulations and equally distinct means of
measuring the α-tensor in rotating, stratified thermally-driven convective turbulence simulations
yield α-tensors that often show a surprising degree of agreement with each other, as well as with
closed-form expressions used outside of their nominal range of validity. This is not always the case
with mechanically forced helical flows (see Courvoisier et al. 2006 and references therein). The
distinction hinges on the varying degrees of spatial coherence characterizing each class of flows
(Courvoisier et al. 2009).

4.4. Magnetic Helicity and Its Constraint on Dynamo Action

Magnetic helicity is a topological measure of linkage between magnetic flux systems (Berger &
Field 1984). In a closed system, i.e., without helicity flux through its boundaries, the total helicity
evolves according to

d
dt

∫
A · B dV = −2μ0η

∫
J · BdV , (30)

where the vector potential A is such that B = ∇ × A. In the ideal limit η → 0, which is the
relevant limit for dynamo action in the interior of the Sun and stars, the right-hand side vanishes.
Equation 30 then indicates that total helicity must be conserved or at best vary on the “long”
diffusive timescale τη. This puts a strong constraint on the amplification of any magnetic field that
has a net helicity, which is certainly the case with the large-scale solar magnetic field, comprised
as it is of well-defined axisymmetric poloidal and toroidal components; indeed, any nontrivial
axisymmetric field defined through Equation 23 is clearly helical, as the vector potential defining
the poloidal component is colinear with the toroidal magnetic component. How, then, can any
field amplification be achieved?

One obvious way to bypass the constraints posed by Equation 30 is to allow helicity fluxes
through the outer boundary of the dynamo region, here the solar photosphere. This idea is sup-
ported by simulations (e.g., Brandenburg & Dobler 2001) as well as photospheric measurements
(e.g., Kusano et al. 2002, Démoulin & Berger 2003). In particular, coronal mass ejections are
suggested to be a primary contributor to the net outward helicity flux (Low 2001). Recent numer-
ical simulations of helically-forced turbulence akin to the spherical wedge PENCIL simulations
described in Section 3 and including a simplified outer “corona” do eject helicity in intermittent
bursts (Warnecke et al. 2011), and this process is found to enhance dynamo action (Warnecke et al.
2012). However, it remains unclear whether the photospheric outward helicity flux makes a sig-
nificant contribution to the global internal magnetic helicity budget (Berger & Ruzmaikin 2000).

It is also possible to bypass the helicity conservation constraints by having the dynamo produce
helicity of opposite signs at large and small spatial scales (Brandenburg 2001). Following the scale
separation logic already introduced in Section 4.1, and because J and A are linearly related to
B, the total vector potential and electric current density can be written as A = 〈A〉 + a′ and
J = 〈 J〉 + j′. Substituting into Equation 30 and averaging leads to an evolution equation for the
helicity associated with the large-scale field:

d
dt

∫
〈A〉 · 〈B〉dV = +2

∫
ξ · 〈B〉dV − 2μ0η

∫
〈 J〉 · 〈B〉dV , (31)
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where ξ = 〈u′ × b′〉 is the usual turbulent emf. Subtracting Equation 31 from the unaveraged
form of Equation 30 then yields an evolution equation for the helicity of the small-scale magnetic
component:

d
dt

∫
〈a′ · b′〉dV = −2

∫
ξ · 〈B〉dV − 2μ0η

∫
〈j′ · b′〉dV . (32)

Observe that in the ideal limit, the total helicity—now the sum of Equations 31 and 32—is still
conserved, as the first term on the right-hand side of Equations 31 and 32 are identical but for
their sign. This also indicates that the turbulent emf leads to the buildup of helicity of opposite
signs at large and small spatial scales, corresponding to a dual cascade away from the generation
scale (Brandenburg 2001). The cascade to small scales is attractive because, in principle, Ohmic
dissipation can operate efficiently there, whereas it is expected to be insignificant at larger scales.
Under this view the buildup of the large-scale magnetic field is controlled by the rate at which
helicity can be transported and dissipated at small scales. However, this accumulation of magnetic
helicity—and magnetic energy—at small scales has profound consequences for the operation of
the α-effect.

4.5. The Nonlinear α-Effect

Constructive folding of the large-scale magnetic field 〈B〉, as embodied in the α-effect, requires
work exerted against the magnetic tension force. If 〈B〉 is amplified exponentially by dynamo action,
there will inevitably come a point when the flow will no longer be able to deform the magnetic
field; this turning point defines the equipartition field strength (Beq), at which the magnetic energy
density becomes equal to the kinetic energy density of the flow, i.e., μ−1

0 B2
eq = ρ(u′

rms)
2. Near the

base of the solar convection zone, where ρ � 102 kg m−3 and u′
rms ∼ 10 m s−1, one has Beq ∼ 0.1

T, which is comparable with sunspot field strengths. This idea forms the basis of the α-quenching
formalism, which consists of introducing an explicit 〈B〉-dependence to the α-tensor components
via an ad hoc algebraic relation of the form

αi j (〈B〉) → αi j

1 + (〈B〉2/B2
eq)

. (33)

From a purely practical point of view, when inserted into the mean-field dynamo equations, this
expression “does the right thing,” in that αi j → 0 when 〈B〉 grows beyond equipartition; it remains
of common usage in mean-field dynamo modeling. The situation turns out to be nowhere near
as simple, however. Working with a mechanically forced “toy” flow, Cattaneo & Hughes (1996)
carried out a series of numerical experiments at varying magnetic Reynolds number Rm and found
that their results did not fit Equation 33, but rather the closely related form

αi j (〈B〉) → αi j

1 + Rm(〈B〉2/B2
eq)

(34)

(see also Blackman & Brandenburg 2002). This result, which came to be known as catastrophic
quenching, has profound implications for astrophysical dynamos in general, because in most
astrophysically relevant situations Rm � 1, implying saturation of the large-scale field at a factor√

Rm smaller than equipartition. In the solar interior, Rm ∼ 1010 leads to a saturation at the level
|〈B〉| ∼ 10−6 T, which is now a long way from sunspot field strengths.

A pioneering measurement of the α-effect in numerical simulations by Pouquet et al. (1976)
indicates that in nonlinearly saturated helical MHD turbulence, Equation 17 picks up a magnetic
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contribution of sign opposite to that associated with the kinetic helicity:

α = − τc

3
(〈u′ · ∇ × u′〉 − ρ−1〈j′ · b′〉). (35)

The second term on the right-hand side is the mean current helicity associated with the small-scale
magnetic field and is closely related to magnetic helicity (think spectrally!). The cascade of tur-
bulent helicity to small scales, required for the buildup of a large-scale magnetic component, thus
inevitably leads to the growth of current helicity, which then quenches the α-effect. This idea has
been successfully implemented in mean-field dynamo models by complementing the mean-field
dynamo equation with an evolution equation for small-scale magnetic helicity driven by helicity
buildup at large scales (e.g., Blackman & Brandenburg 2002, Kleeorin et al. 2003, Chatterjee
et al. 2011, Hubbard & Brandenburg 2012), a procedure known as dynamical α-quenching.

Figure 8e shows the mean current helicity in the EULAG-MHD simulation of Video 1.
Comparison with the mean kinetic helicity in Figure 8d reveals that both are of opposite sign
over a large portion of the meridional plane, although here the kinetic helicity exceeds the current
helicity by a factor of about five.

Equation 35 also allows, in principle, a sign change in the α-effect in the nonlinearly saturated
regime, if the second term on the right-hand side dominates the first. Something akin to this may
be at play in the simulations by Käpylä et al. (2012, 2013), where poleward propagation of the
low-latitude toroidal field in the kinematic growth phase of the large-scale dynamo switches to
equatorward propagation following nonlinear saturation (see Käpylä et al. 2012, their figure 3; see
also Figure 4 herein), consistent with a sign change in the α-effect.

4.6. Instabilities and Dynamo Action in the Tachocline

The aforementioned difficulties encountered with conventional mean-field dynamo models, in
particular catastrophic quenching of the turbulent α-effect, have motivated the study of alternate
dynamo mechanisms operating in the tachocline, where amplification and storage of strong mag-
netic fields is in principle easier than in the strongly turbulent overlying convection zone. The class
of magnetoshear instabilities discussed in Section 3.4 has been shown to generate kinetic helicity
as it develops, which could, upon acting on a pre-existing large-scale toroidal magnetic field, drive
an α-effect-like poloidal field regeneration mechanism (Dikpati & Gilman 2001, Dikpati et al.
2003).

Another related potential dynamo mechanism involves the development, through the action
of the Coriolis force, of helical waves along the axis of a toroidal flux rope undergoing buoyant
destabilization (Ferriz-Mas et al. 1994, Ossendrijver 2000b). In either case, with tachocline dif-
ferential rotation shearing this poloidal field into a toroidal component sustaining the instability,
a complete dynamo loop can be produced, residing entirely within the tachocline [these dynamo
models are discussed further by Charbonneau (2010, his section 4)].

4.7. Recent Progress in Mean-Field Dynamo Modeling

The design of solar cycle models based on mean-field electrodynamics remains a very active field
of research. Recent progress focuses on models bypassing catastrophic α-quenching by spatially
separating the α-effect and the strong toroidal fields produced by rotational shearing. These
interface dynamos (Parker 1993) can achieve the desired result (Charbonneau & MacGregor 1996),
but tend to be rather sensitive to modeling details and so far have not satisfactorily reproduced
solar cycle characteristics (see also Tobias 1996, Petrovay & Kerekes 2004).
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Another very active research thrust in mean-field dynamo modeling involves the relaxation
of the kinematic approximation; solving an evolution equation for the magnetically driven, time-
dependent deviation (〈U′〉) from the imposed (steady) large-scale flow (〈U〉),

∂〈U′〉
∂t

= �

μ0ρ
(∇ × 〈B〉) × 〈B〉 + Pm∇2〈U′〉, (36)

and the total flow is now given by

u(x, t, B) = 〈U〉(x) + 〈U′〉(〈B〉(x, t)) (37)

(see Tobias 1997, Moss & Brooke 2000). Solving Equation 36 together with the α� form of
Equations 24 and 25 yields a nonkinematic mean-field dynamo in which the cycle amplitude
develops modulations on timescales longer than the cycle via the magnetically driven modulation
of differential rotation (see, e.g., Tobias 1997, Küker et al. 1999, Brooke et al. 2002, Bushby 2006
and references therein). The period of this modulation is usually found to scale with the inverse of
the magnetic Prandtl number Pm. This offers a possible explanation for Maunder Minimum-like
episodes of reduced activity, if the internal field strength falls below the threshold for sunspot
formation, while allowing for residual magnetic activity, as during the Maunder Minimum (Beer
et al. 1998).

4.8. Mean-Field Electrodynamics as a Probe on
Magnetohydrodynamic Simulations

The large-scale flows and α-tensor extracted from global numerical simulations can be reinserted
into the kinematic axisymmetric mean-field dynamo (Equations 24 and 25) to ascertain the degree
to which the resulting large-scale magnetic field resembles what is produced by the numerical
simulations. This seemingly circular exercise can actually help pin down the mode of dynamo
action operating in these simulations and disentangle aspects of magnetic field evolution associated
with the nonlinear backreaction on the large-scale flow (see Käpylä et al. 2006b, Simard et al. 2013,
Dubé & Charbonneau 2013).

One interesting conclusion to arise from such analyses is that even though the underlying
toroidal structures are often not strictly axisymmetric, the common tendency for poleward mi-
gration observed in many global MHD simulations (e.g., Figure 3c; also Dubé & Charbonneau
2013, their figures 7 and 8) can be understood at some level in terms of classical dynamo waves.
With the northern hemispheric αφφ > 0 in the bulk of the convection zone and low-latitude
differential rotation increasing outward on isocontours approximately parallel to the rotation axis
(e.g., Figure 2), propagation away from the equatorial plane is predicted by Equation 27.

Käpylä et al. (2006b) used the α-tensor extracted from their local MHD convection simula-
tions (Käpylä et al. 2006a) to construct α2� kinematic axisymmetric mean-field dynamo models
that proved to exhibit a number of solar-like characteristics, including equatorward migration
of the large-scale magnetic fields, although the latter was found to peak at too-high latitudes as
compared with solar observations. Simard et al. (2013) carried out a similar exercise using the
full α-tensor extracted from the EULAG-MHD simulation of Video 1, again as input into a
kinematic α-quenched α2� model. Their mean-field dynamo solution showed many similarities
with the axisymmetric magnetic component building up in the parent global MHD simulations
(Simard et al. 2013, their figure 5). By selectively zeroing out various combinations of tensorial
components, they could demonstrate the importance of turbulent pumping and that the complex
form of the α-tensor could support cycling solutions even in the absence of differential rotation
(see also Rüdiger et al. 2003).
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The Simard et al. (2013) α2� solution also reproduced the observed tendency of the global
simulation to produce “double cycles,” i.e., spatially segregated dynamo modes with distinct cy-
cle periods. This tendency can be understood upon noting that differential rotation is typically
strongest at the equator and decreases toward the poles (e.g., Figure 2), whereas most α-tensor
components, including αφφ , peak at the pole and decrease in magnitude toward the equator (see
Figure 8a). Interestingly, hints of such double cycle behaviors have been detected for many
years in indicators of solar activity (e.g., Mursula et al. 2003) and more recently in acoustic os-
cillation frequencies, suggesting a subphotospheric origin (Fletcher et al. 2010). The numerical
experiments of Simard et al. (2013) thus support the notion that there may be two large-scale dy-
namos operating in the Sun (see also Benevolenskaya 1995, 1998; Mason et al. 2002; Brandenburg
2005).

The mean-field machinery can also offer some useful hints as to the manner in which magnetic
self-organization takes place in the global simulations. Consider the mean-field induction equation
in the limit where dissipation is inefficient at large spatial scales:

∂〈B〉
∂t

= ∇ × (〈U〉 × 〈B〉 + ξ ). (38)

Now, the turbulent emf ξ = 〈u′ × b′〉 can be expected to vary on the “short” advective timescale
associated with u′, which is much smaller than the cycle period of 〈B〉. The large-scale flow 〈U〉, if
it varies significantly, will also vary on this “long” cycle timescale. The only way for 〈B〉 to remain
quasi-steady on the convective timescale is to have

〈U〉 × 〈B〉 + ξ ≡ ε � 0; (39)

the small residual emf ε (small in the sense that |ε| � |〈U〉×〈B〉| and |ε| � |ξ |) drives the evolution
of 〈B〉 on the long timescale. That the small- and large-scale emfs should conspire to nearly cancel
each other out in this manner is rather counterintuitive, but has actually been observed in global
numerical simulations producing either steady or cycling large-scale magnetic fields (Brown et al.
2010, Racine et al. 2011). This offers a possible explanation as to why magnetic self-organization
on large scales seems to be such a sensitive affair. Varying numerical treatment of small-scale
dissipation through explicit or implicit subgrid models will surely affect the turbulent emf to some
extent; even if the differences introduced by the choice of subgrid model were small (and available
empirical evidence indicates that they are not) a small relative change in ξ can still translate into
a large change in the residual ε, perhaps even changing its sign. Computational “details” matter!

5. FLUX TRANSPORT DYNAMOS

With the turbulent α-effect positive (negative) in the bulk of the convection zone’s Northern
(Southern) Hemisphere, coupled to the primarily latitudinal rotation therein, low-latitude equa-
torward propagation of dynamo waves is problematic unless dynamo action is concentrated in
the equatorial portion of the tachocline, where d�/dr > 0, and the α-effect experiences a sign
change. Unfortunately, the two instabilities discussed in Section 4.6 both yield a positive α-effect
in the Northern Hemisphere, which is not surprising because in all cases it is the Coriolis force
that sets the sign of the kinetic helicity. One appealing strategy to bypass this problem is to invoke
a large-scale meridional flow, directed equatorward at the base of the convection zone, to bodily
advect the magnetic field and thus achieve dynamo-wave-like equatorward propagation of the
sunspot-forming toroidal magnetic component in the course of the cycle (e.g., Choudhuri et al.
1995, Durney 1995, Küker et al. 2001, Pipin & Kosovichev 2011). These solar cycle models are
generically known as flux transport dynamos.
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One specific class of such models, the so-called Babcock-Leighton dynamos, has received
increasing attention in recent years because of their ability to reproduce many observed cycle
fluctuation patterns, including Maunder-Minimum-like intermittent episodes of suppressed
activity, and they have even been used to predict characteristics of upcoming solar cycles. Partially
eclipsed for a time by the rise of mean-field electrodynamics, they offer a very attractive alternative
to turbulent dynamos based on the α-effect, and the bulk of this section is consequently dedicated
to these models.

5.1. Surface Flux Evolution and the Babcock-Leighton Mechanism

Large sunspots often appear in pairs of opposite magnetic polarity; the member of the pair that
is farther ahead in the direction of solar rotation lies closer to the solar equator than the trailing
member. A line segment connecting both members thus shows a tilt with respect to the east-west
direction, and this tilt increases with increasing latitude, a pattern known as Joy’s law (Hale et al.
1919). Because leading/following polarities of sunspot pairs are opposite in both solar hemispheres,
in their decay phase the leading member tends to experience more cross-equatorial diffusive
cancellation with the leading member of sunspot pairs located in the other hemisphere, leading to
the accumulation, in each hemisphere, of magnetic flux having the polarity of the trailing member.
Transport of this magnetic flux to the pole by meridional circulation and/or diffusion then leads to
the reversal of the polar cap field from the previous activity cycle and subsequent buildup of a net
dipole moment of polarity opposite to that present in the rising phase of the cycle (Babcock 1961;
and Figure 9). This process shows up clearly in synoptic solar magnetograms (e.g., Figure 1c).

This surface magnetic flux evolution is readily computable by solving the MHD induction
equation on a spherical shell subjected to the advective and shearing action of surface differential
rotation, poleward meridional flow, diffusion, and injection of tilted bipolar sunspot pairs (Wang
et al. 1989, Wang & Sheeley 1991, Baumann et al. 2004, Jiang et al. 2013). One example is shown
in Figure 9b. The similarity with the observed synoptic magnetogram shown in Figure 1c is quite
remarkable. Such simulations reveal that the bulk of the magnetic flux contained in bipolar sunspot
pairs experiences resistive decay and that only a small fraction makes it to the solar poles. With a
mean polar field strength of ∼10−3 T, the polar cap magnetic flux is ∼1014 Wb; this is similar to the
total unsigned flux in a single large bipolar sunspot pair and three orders of magnitude lower than
the total unsigned magnetic flux emerging in active regions in the course of a typical activity cycle.
The conversion efficiency required of the Babcock-Leighton mechanism is therefore quite modest.

The east-west tilt of sunspot pairs is crucial to the operation of the Babcock-Leighton mech-
anism and originates from the action of the Coriolis force on the flow developing along the axis
of a sunspot-forming magnetic flux rope during its rise through the convection zone (Fan et al.
1993, D’Silva & Choudhuri 1993, Caligari et al. 1995). The pattern of tilt compatible with Joy’s
law turns out to be only possible in a finite range of magnetic intensity; flux ropes with field
strengths inferior to about 1 T are deflected to high latitude and emerge with randomized tilts
even if they survive their rise through the turbulent convection zone. Beyond ∼10 T, by contrast,
the tilt vanishes because the ropes rise to the photosphere too rapidly for the Coriolis force to
have time to act. This implies that there exist both lower and upper thresholds on the internal
toroidal magnetic field for the Babcock-Leighton mechanism to operate.

5.2. Magnetic Flux Transport: Meridional Flow, Diffusion,
and Turbulent Pumping

Because sunspot pairs represent the surface manifestation of a deep-seated toroidal magnetic
component, globally the Babcock-Leighton mechanism produces a (surface) poloidal magnetic
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Figure 9
The Babcock-Leighton mechanism, illustrated (a) in diagrams and (b) via a 2D surface magnetic flux transport simulation covering the
years 1965–2009 (activity cycles 20 to 23, numbered from one activity minimum to the next, as delineated by vertical dashed lines). On
this latter plot, showing the variation with latitude and time of the zonally averaged surface radial magnetic field component (measured
in teslas), transport to the poles shows up as inclined streaks extending poleward from low latitudes, where active region emergence
takes place. Note how polarity reversal of the polar cap magnetic field occurs at about the time of activity maximum, 4–5 years after
cycle onset. Compare panel b with the synoptic magnetogram plotted on Figure 1c. Graphics in panel a produced by D. Passos
(CENTRA/IST), simulation in panel b by A. Lemerle (Univ. Montréal).

component from a (deep) toroidal component. Because the trailing polarity is identical to that of
the original underlying toroidal field and is that which accumulates at the pole, the polarity of the
dipole moment produced is identical to that of the deep-seated toroidal field. This is conceptually
similar to the action of a positive α-effect in mean-field electrodynamics. In conjunction with
the shearing of this poloidal field by differential rotation, a complete dynamo loop can thus be
constructed, without invoking the turbulent α-effect as a source term on the right-hand side
of Equation 24. However, here the poloidal and toroidal source terms are spatially segregated,
with the Babcock-Leighton mechanism operating in the surface layers, whereas toroidal field
amplification and magnetic flux rope formation and storage are presumably taking place at or
immediately beneath the base of the convection zone. These two source regions need to be coupled
to close the dynamo loop. The first Babcock-Leighton solar cycle models (Babcock 1961, Leighton
1969) assumed the sunspot-generating toroidal magnetic field to reside in the subphotospheric
layers, so this coupling issue was not deemed problematic. With the formation and storage site of
magnetic flux ropes now pushed down to the tachocline, an efficient coupling mechanism becomes
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essential. Following Wang et al. (1989) and Wang & Sheeley (1991), large-scale meridional flows
have taken up this role (see, e.g., Wang et al. 1991, Choudhuri et al. 1995, Durney 1995, Dikpati
& Charbonneau 1999).

In practice, the vast majority of Babcock-Leighton solar cycle models published to date are
mean-field-like in that they model the evolution of the large-scale axisymmetric solar magnetic
field by solving the α� form of Equations 24 and 25 augmented by an advection term associated
with the meridional flow, with all large-scale flows considered to be given (kinematic regime):

∂ A
∂t

= η

(
∇2 − 1

� 2

)
A − 1

�
up · ∇(� A) + S(r, θ, B), (40)

∂ B
∂t

= η

(
∇2 − 1

� 2

)
B + 1

�

dη

dr
∂(� B)

∂r
− �∇ ·

(
B
�

up

)

+ � (∇ × Aêφ) · (∇�),
(41)

where up ≡ ur êr +uθ êθ (compare with Equations 24 and 25). A mean-field-like turbulent magnetic
diffusivity is implicitly invoked, now allowing for a variation with depth, and the novel (nonlinear)
source term S(r, θ, B) appearing on the right-hand side of Equation 40 replaces the α-effect and
operates only in the near-surface layers. It is typically formulated as an ad hoc parameterization
of the Babcock-Leighton mechanism, required here because a fundamentally nonaxisymmetric
process must be “forced” into a global axisymmetric model (see, e.g., Durney 1995, Dikpati &
Charbonneau 1999, Nandy & Choudhuri 2001, Chatterjee et al. 2004, Charbonneau et al. 2005,
Muñoz-Jaramillo et al. 2010). Most models use a steady meridional flow characterized by a single
flow cell per hemisphere, with the flow speed set by the average poleward flow measured at the
solar surface (e.g., Hathaway 1996, Ulrich 2010).

As with other flux transport dynamos, equatorward propagation of the internal toroidal field
is achieved here through the advective effect of the meridional flow. If the advective terms on
the right-hand sides of Equations 40 and 41 dominate over the diffusive terms (the “advection-
dominated regime”), then the cycle period is inversely proportional to the meridional flow speed
(Wang et al. 1991, Dikpati & Charbonneau 1999). The required (turbulent) magnetic diffusivity
values turn out to be two orders of magnitude smaller than estimates based on, e.g., Equation 18
or mixing length theory, but even with larger magnetic diffusivity values (the diffusion-dominated
regime), solar-like dynamo solutions are readily obtained (see also Muñoz-Jaramillo et al. 2011).
The inclusion of turbulent pumping as an additional contribution to the large-scale flows further
improves the solutions, also providing an additional coupling from the surface source region to the
base of the convection zone (Guerrero & De Gouveia Dal Pino 2008, Kitchatinov & Olemskoy
2012). With surface poleward flow speeds on the order of 10 m s−1, as observed, reversal of the
polar field occurs around the time of cycle maximum, also as observed. However, the associated
polar field strengths tend to be much larger than observed, and the deep toroidal field often
develops a branch at high latitude associated with the shearing action of the radial shear in the
high-latitude reaches of the tachocline. Some of these difficulties can be alleviated by changes in
the imposed meridional flow profile, enhanced magnetic diffusivity in the surface layers, and/or
inclusion of downward turbulent pumping in the subsurface layers (see, e.g., Dikpati et al. 2004,
Jiang et al. 2009, Kitchatinov & Olemskoy 2012). Finally, these dynamo models can in principle
operate in the strong-field regime—indeed, they require strong internal toroidal fields to operate.

5.3. Cycle Amplitude Fluctuations and Grand Minima

An appealing property of Babcock-Leighton solar cycle models is their response to fluctuations
in the (imposed) meridional flow speed. Many observed features of the sunspot cycles can be
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Impact of forced fluctuations of the meridional flow in the kinematic Babcock-Leighton dynamo model by Chatterjee et al. (2004).
The (a) piecewise-constant imposed meridional flow variations lead to (b) a time series of pseudosunspot emergences (red ) whose
(c) amplitudes and (d ) durations correlate quite well with the observed sunspot number time series (black in panel b). Reproduced from
Karak (2010) with permission.

recovered, including the observed relationship between cycle amplitude and period (e.g., Dikpati
et al. 2010, Karak & Choudhuri 2011, Nandy et al. 2011). Figure 10, taken from Karak (2010)
offers a particularly impressive example. Working with the Chatterjee et al. (2004) kinematic
model, the meridional flow speed is artificially adjusted from one sunspot cycle to the next as plot-
ted in Figure 10a, which leads to the cyclic behavior plotted as a red dashed line in Figure 10b.
The correlation with the observed sunspot number time series (in black) is excellent (e.g.,
Figure 10c,d). This appears to be a robust result in that a similar behavior materializes in
other formulations of Babcock-Leighton dynamos (e.g., Passos & Lopes 2008, Lopes & Passos
2009). Another sunspot feature reproduced by such models is the observed alternance between
higher-than-average and lower-than-average cycle amplitude, a pattern that can arise naturally
from the time delay between poloidal field production at the surface and its shearing by differential
rotation upon being transported in the tachocline by the meridional flow (see Charbonneau 2001,
Charbonneau et al. 2007 and references therein).

Because the Babcock-Leighton mechanism is characterized by a lower operating threshold on
the internal toroidal field strength, the associated dynamo can shut off if the field falls below this
threshold in response to perturbations of whatever origin. This feature is also shared by dynamos
relying on the instability of magnetic flux tubes in the tachocline, mentioned in Section 4.6. Recov-
ering “normal” cyclic behavior then requires an additional source to kick-start the dynamo once
again (see, e.g., Schmitt et al. 1996, Ossendrijver 2000a, Charbonneau et al. 2004). Unlike the
nonlinear amplitude modulation of mean-field dynamos discussed in Section 4.7, here the dynamo
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is switching between two distinct dynamical states, a process known as intermittency. Figure 11
shows an example taken from Passos et al. (2014). Intermittency is driven here by stochastic forcing
of two source terms, one of the Babcock-Leighton type, the other a conventional α-effect operating
throughout the convection zone. Similar behavior has also been obtained by simultaneous stochas-
tic forcing of the meridional flow and Babcock-Leighton source term (Choudhuri & Karak 2012).

All of these results are predicated on a meridional flow pattern characterized by a single flow
cell per hemisphere. Multiple cells stacked in depth and/or latitude can have a strong impact on
the operation of these models (see, e.g., Jouve & Brun 2007). However, recent modeling work
suggests that what matters primarily is the presence of an equatorward flow near the base of the
convection zone and an efficient mechanism, or combination of mechanisms, to carry the surface
magnetic field there (Hazra et al. 2014, Pipin & Kosovichev 2013). Much remains to be learned
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also on the magnetic backreaction on the meridional flow and how it affects dynamo action in flux
transport dynamos in general (Rempel 2006b, Karak & Choudhuri 2012, Passos et al. 2012).

5.4. Cycle Prediction

Because the solar magnetic cycle modulates the frequency of all geoeffective solar eruptive phe-
nomena, prediction of its characteristics is considered an important aspect of space weather
forecasting (Petrovay 2010). In Babcock-Leighton dynamo models, the evolving surface
magnetic field at cycle n acts as a source of the toroidal field for cycle n + 1 after being transported
in the interior by the meridional flow. This implies that some prediction of the characteristics of
cycle n + 1 could be produced from magnetic field observations at cycle n. This idea forms the
basis of the so-called precursor methods (see Petrovay 2010, his section 2).

Dikpati et al. (2006) have developed a novel, dynamo-based prediction scheme in which a pa-
rameterization of the zonally averaged observed surface magnetic flux is used as a surface boundary
condition to a modified Babcock-Leighton model (see also Dikpati & Gilman 2006). Figure 12
shows a cycle 24 prediction produced by the similar prediction scheme developed by Choudhuri
et al. (2007; see also Jiang et al. 2007). Interestingly, these two closely related dynamo-based
approaches have led to markedly distinct predictions for cycle 24, indicating that the prediction
is sensitive to modeling details (see also Cameron & Schüssler 2007, Bushby & Tobias 2007).
Substantial efforts are underway to understand and improve the predictive capabilities of this type
of forecasting scheme (e.g., Yeates et al. 2008, Karak & Nandy 2012, Dikpati & Anderson 2012,
Muñoz-Jaramillo et al. 2013).

6. CONCLUDING REMARKS

These are very exciting times for solar dynamo theory. The past two decades have witnessed a
wide diversification of dynamo mechanisms and solar cycle models, propelled and constrained by
the ever more-detailed view of solar internal flows provided by helioseismology and of ever finer
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surface magnetic field observations. The subtle role of magnetic helicity in constraining large-scale
dynamo action has been recognized and by now largely clarified. In parallel, spectacular advances
in computing power and algorithmic design have jointly contributed to the development of global
MHD simulations of solar convection and dynamo action, which can reproduce more and more
features of the real solar cycle. These represent outstanding virtual laboratories within which
physical insight gained from simpler modeling approaches can be tested and validated, and these
in turn can guide the design of improved global simulations. Understanding the workings of the
solar dynamo remains the ultimate goal, and in this respect the words of computer scientist R.W.
Hamming (1962) are as timely now as they were over fifty years ago: “The purpose of computing
is insight, not numbers.”

FUTURE ISSUES

1. How critical are subgrid models? Empirical evidence accumulated to date indicates
that this seemingly secondary and highly technical computational issue is actually of great
importance for magnetic self-organization. Detailed intercomparison of similar global
MHD simulations using distinct subgrid formulations is essential to disentangle which
aspects of magnetic self-organization are critically dependent on such computational
details.

2. What sets the dynamo period? It is sobering to reflect upon the fact that over 150 years
after the discovery of the solar cycle, the mechanism(s) setting its period has not yet been
pinned down with confidence. In mean-field and mean-field-like models, the possibility
to adjust parameter values not well-constrained observationally often makes it possible to
obtain solar-like cycle periods no matter which dynamo modeling framework is adopted.
This is where observations of magnetic activity cycles in stars other than the Sun can
offer powerful discriminants. The importance of sustained monitoring of solar-type stars,
such as those carried out by the Mt. Wilson program for decades, cannot be overstated.

3. Is the tachocline important in driving the dynamo? Various lines of evidence point
to the tachocline as an important agent in achieving magnetic self-organization on large
spatial scales. This is a towering computational and physical challenge given the expected
strong anisotropy of turbulence therein, the interactions of waves excited by convective
overshoot with large-scale flow and magnetic fields, the development of dynamical in-
stabilities, and possible coupling to an underlying fossil magnetic field.

4. Is the Babcock-Leighton mechanism crucial? The Babcock-Leighton mechanism is
clearly observed to operate at the solar surface; however, it remains unclear whether it
represents a mere by-product or an essential element of the dynamo loop. This question
may perhaps be answered through an accurate determination of the magnetic flux budget
of the solar polar caps, which represents a challenging observational undertaking.

5. What triggers grand minima? As reviewed in Sections 4.7 and 5.3, many “simple” mean-
field or mean-field-like dynamo models can produce Maunder-Minimum-like episodes
of interrupted cyclic behavior, or strongly suppressed magnetic cycle amplitude, through
distinct combinations of deterministic and stochastic forcing mechanisms. Most of these
scenarios were developed in the context of mean-field or mean-field-like dynamo models,
and the hunt is now on to produce similar behavior in dynamically consistent MHD
simulations of large-scale magnetic cycles.
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Choudhuri, Gustavo Guerrero, Petri Käpylä, Bidya Karak, Mark Miesch, and Dário Passos, as well
as my graduate students Patrice Beaudoin, Caroline Dubé, Nicolas Lawson, Alexandre Lemerle
and Jean-Francois Cossette for providing custom-made figures “on order.” The preparation of
this review has been supported in part by the Natural Science and Engineering Research Council
of Canada.

LITERATURE CITED

Babcock HW. 1961. Ap. J. 133:572–87
Balbus SA, Bonart J, Latter HN, Weiss NO. 2009. MNRAS 400:176–82
Barnes G, MacGregor KB, Charbonneau P. 1998. Ap. J. Lett. 498:L169–72
Baumann I, Schmitt D, Schüssler M, Solanki SK. 2004. Astron. Astrophys. 426:1075–91
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Muñoz-Jaramillo A, Balmaceda LA, DeLuca EE. 2013. Phys. Rev. Lett. 111(4):041106
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Ossendrijver MAJH, Stix M, Brandenburg A, Rüdiger G. 2002. Astron. Astrophys. 394:735–45
Parker EN. 1955a. Ap. J. 121:491–507
Parker EN. 1955b. Ap. J. 122:293–314
Parker EN. 1979. Cosmical Magnetic Fields. Oxford, UK: Clarendon. 858 pp.
Parker EN. 1993. Ap. J. 408:707–19
Parnell CE, DeForest CE, Hagenaar HJ, et al. 2009 Ap. J. 698:75–82
Passos D, Charbonneau P, Beaudoin P. 2012. Solar Phys. 279:1–22
Passos D, Lopes I. 2008. Ap. J. 686:1420–25
Passos D, Nandy D, Hazra S, Lopes I. 2014. Astron. Astrophys. 563:A18
Petrovay KP. 2010. Living Rev. Solar Phys. 7:lrsp-2010-6
Petrovay KP, Kerekes A. 2004. MNRAS 351:L59–62
Pipin VV, Kosovichev AG. 2011. Ap. J. 738:104
Pipin VV, Kosovichev AG. 2013. Astron. Astrophys. 776:36
Pitts E, Tayler RJ. 1985. MNRAS 216:139–54
Pouquet A, Frisch U, Leorat J. 1976. J. Fluid Mech. 77:321–54
Prusa JM, Smolarkiewicz PK, Wyszogrodzki AA. 2008. Comp. Fluids 37:1193–207
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Vögler A, Schüssler M. 2007. Astron. Astrophys. 465:L43–46
Wang Y-M, Nash AG, Sheeley NR Jr. 1989. Science 245:712–18
Wang Y-M, Sheeley NR Jr. 1991. Ap. J. 375:761–70
Wang Y-M, Sheeley NR Jr, Nash AG. 1991. Ap. J. 383:431–42
Warnecke J, Brandenburg A, Mitra D. 2011. Astron. Astrophys. 534:A11
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