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Abstract

Current technology enables the production of highly specific genome
modifications with excellent efficiency and specificity. Key to this ca-
pability are targetable DNA cleavage reagents and cellular DNA re-
pair pathways. The break made by these reagents can produce local-
ized sequence changes through inaccurate nonhomologous end joining
(NHEJ), often leading to gene inactivation. Alternatively, user-provided
DNA can be used as a template for repair by homologous recombi-
nation (HR), leading to the introduction of desired sequence changes.
This review describes three classes of targetable cleavage reagents: zinc-
finger nucleases (ZFNs), transcription activator–like effector nucleases
(TALENs), and CRISPR/Cas RNA-guided nucleases (RGNs). As a
group, these reagents have been successfully used to modify genomic
sequences in a wide variety of cells and organisms, including humans.
This review discusses the properties, advantages, and limitations of each
system, as well as the specific considerations required for their use in
different biological systems.
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INTRODUCTION

Targeted Genome Manipulation

This review describes how biochemistry has as-
sisted genetics by introducing reagents for ef-
ficient and effective genome engineering. The
science of genetics relies heavily on the analy-
sis of mutations and the phenotypes they cause.
Many geneticists seek to direct mutations and
precise sequence changes to particular genes
of interest. Targetable nucleases provide that

capability. The field is relatively new and is
moving very rapidly, so it may be considered
brave—more likely, foolhardy—to undertake a
review at this time. I hope that this effort, at
a minimum, provides a basis for understanding
and evaluating advances as they accumulate.

Targeted gene replacements in a small
range of organisms have been possible for
decades. The groups headed by Smithies (1) and
Capecchi (2) showed that DNA introduced
into cultured mammalian cells can be incorpo-
rated at the homologous natural locus, albeit
at very low frequency. Capecchi’s group devel-
oped methods to isolate the rare recombinants
in mouse embryonic stem (ES) cells (3), which
were then used to produce whole mice carry-
ing the targeted alteration. This technology had
been available even earlier for baker’s yeast and
other fungi (4, 5), and Rong & Golic (6) devel-
oped a gene targeting method for Drosophila.
These approaches were not effective in many
other organisms due to their inherently low
efficiency, the difficulty of finding the desired
products in the face of much more common
nonhomologous integration events, and the ab-
sence of stem cells that would allow in vitro se-
lection prior to generation of whole animals.
The development of targetable DNA cleavage
reagents greatly enhanced the efficiency of gene
targeting and substantially broadened its uses.

Double-Strand Break Repair

Essentially all cells treat double-strand breaks
(DSBs) in their genomic DNA as potentially
lethal damage and have multiple mechanisms to
repair them. Among the repair processes is ho-
mologous recombination (HR). Cells can use
an unbroken sister chromatid or homologous
chromosome as a template to copy appropri-
ate information into the break site (Figure 1).
It is well known that DSBs caused by ionizing
radiation are often repaired by HR (7). In es-
sentially all organisms, naturally occurring mei-
otic HR events—both crossing over and gene
conversion—are initiated by intentional DSBs
(8), as is the HR-mediated mating-type switch
in fungi (9). Several groups have shown that
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Figure 1
Repair of a double-strand break. A break in
chromosomal DNA can be repaired by homologous
recombination (HR) with a sister chromatid (a) or a
homologous chromosome. If a donor DNA supplied
by the experimenter is used as a template for repair,
some sequences from the donor will replace those at
the target (b). Alternatively, nonhomologous end
joining (NHEJ) may join the broken ends
inaccurately, resulting in local, small insertions
and/or deletions (c).

synthetic sites for highly specific nucleases, such
as HO and I-SceI, can serve as targets for HR
by using a genomic template or one supplied by
the experimenter (10–13).

Most cells have an alternative to HR for re-
pairing DSBs, known as nonhomologous end
joining (NHEJ) (14). In this process, broken
ends are rejoined without regard for homology,
and the products often contain small insertions
and deletions that alter the genomic sequence
(Figure 1). In many cell types, NHEJ events
outnumber those that depend on HR. The con-
clusion from these observations is that reagents
that can make unique, targeted DSBs in chro-
mosomal DNA both generate local mutations
via NHEJ and provide the means for gene edit-
ing via HR.

THE PLAYERS

Investigators have attempted to use several dif-
ferent types of synthetic molecules to make
targeted DSBs or other DNA damage, but

with limited success (15–17). The most effective
reagents to date have been protein nucleases
with flexible specificity. Those that are the sub-
jects of this review are shown in Figure 2. Sev-
eral research threads converged to produce the
first targetable nuclease, specifically the recog-
nition that DSBs in chromosomal DNA stimu-
late HR, the discovery of zinc fingers as DNA
recognition modules, and the characterization
of the FokI restriction endonuclease.

Zinc-finger nucleases (ZFNs) consist of
DNA-binding modules derived from natural
transcription factors (TFs) that are linked to
the nuclease domain of the Type IIS restriction
enzyme, FokI (18, 19). Because the nuclease
domain must dimerize to cut DNA, two ZFN
molecules are required to target a single site.
Transcription activator–like effector (TALE)
nucleases (TALENs) employ DNA-binding
modules from bacterial TALEs linked to
the same FokI cleavage domain (20). The
CRISPR/Cas RNA-guided nucleases (RGNs)
rely on base-pairing between a guide RNA
and the DNA target for recognition and on

ZFNs 

TALENs 

Guide RNA 

PAM 

Cas9 

Recognition 

1 module/3 bp

1 module/1 bp

1 base/1 bpCRISPR/Cas

Figure 2
Targetable nucleases discussed in this review. For the zinc-finger nucleases
(ZFNs) and transcription activator–like effector nucleases (TALENs), DNA
appears horizontally in black, purple ovals are the FokI nuclease domain, and
individual modules are colored differently to indicate that they recognize
different bases. For CRISPR/Cas, the Cas9 protein appears as an orange oval,
DNA is in black, and guide RNA is in blue. The location of the protospacer
adjacent motif (PAM) sequence is indicated with an arrow, and the sites of
DNA cleavage are indicated with arrowheads.
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a multifunctional Cas9 protein for cleavage
(21, 22). All of these types of reagents, along
with their development, are described in more
detail below.

Members of another class, the homing
endonucleases (HEs, also known as meganu-
cleases), have long recognition sites (15–30 bp)
but do not have distinct binding and cleavage
domains. Many natural HEs with a wide range
of recognition sequences exist (23, 24), and
investigators have expended considerable effort
on engineering HEs for novel specificity, with
some notable successes. I do not describe these
HEs extensively here, but an excellent recent
review exists (25).

ZINC-FINGER NUCLEASES

FokI Cleavage Domain

The familiar Type II restriction endonucle-
ases—long-time workhorses of molecular
biology—recognize a short DNA sequence and
cut within it. Type IIS enzymes, in contrast,
cut some distance from their recognition
site. Chandrasegaran and colleagues (26)
examined FokI, a Type IIS enzyme, and found
that its recognition and cleavage activities
could be isolated in separate fragments fol-
lowing limited proteolysis. These authors
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Figure 3
Zinc-finger recognition of DNA. (a) Three fingers bound to their target in
the major groove. (b) A single finger, highlighting individual side chains that
make contact with DNA bases. Positions −1, 3, and 6 are responsible for the
principal contacts; the residue in position 2 contributes in some contexts. The
zinc atom in each finger is shown as a gray ball. Modified from Reference 31
with permission.

demonstrated that cleavage specificity can be
altered by linking the nonspecific nuclease
domain to alternative DNA-binding domains.
First, they fused the nuclease domain to the
homeodomain DNA-binding module from
the Drosophila Ubx protein (27). Second, they
fused it to two different sets of zinc fingers
provided by the Berg lab (19). Each hybrid
cleaved phage λ DNA in a unique pattern
that differed from that of natural FokI. Thus,
the cleavage domain can be directed to an
arbitrarily chosen sequence by linkage to an
appropriate DNA-binding domain.

Zinc Fingers

The type of zinc finger employed in ZFNs is
known as Cys2His2, which refers to the four
residues that coordinate a zinc atom (Figure 3).
After the Klug group (28) identified this mod-
ule in the Xenopus laevis TFIIIA, Berg (29) made
a remarkably accurate prediction of its fold.
Pavletich & Pabo (30) determined the structure
of a three-finger unit bound to its DNA target,
confirming the modularity of DNA recognition
(Figure 3) (31).

Each finger is relatively small (∼30 amino
acids) and has one α-helix and two short
β-strands (Figure 3). A finger interacts with
DNA through contacts between specific pro-
tein side chains and functional groups in the
major groove. The primary contacts are made
by residues −1, 3, and 6 relative to the start
of the α-helix (31); we usually say that each
finger binds 3 bp, recognizing that this is only
an approximation. At least three consecutive
fingers are needed to provide adequate binding
affinity, and the best three-finger combinations
have an equilibrium dissociation constant (Kd)
value in the low-nanomolar range. Notably,
zinc fingers bind DNA backwards; in other
words, the N-terminal finger contacts the
3′-terminal DNA triplet, and so on.

Natural zinc fingers are abundant in eu-
karyotic sequence-specific TFs, and new ones
have been created by protein design (32, 33).
Some of these have been adopted for use in
synthetic ZFNs, but most available fingers
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and finger combinations have been derived
in the laboratory by partial randomization
and selection. Using phage display (34–36),
Barbas and colleagues isolated new fingers
with specificity for all of the 5′-GNN triplets
(where N is any base) (37) and many of the
5′-ANN and 5′-CNN triplets (38, 39). Liu
et al. (40) characterized a somewhat different
set for the 5′-GNNs. Researchers at Gendaq,
Ltd., and at Sangamo BioSciences accumulated
an extensive, proprietary inventory of fingers
and finger pairs. Kim et al. (41) recovered
natural zinc fingers from the human genome
and characterized their binding preferences.
Many other fingers have been recovered from
the selection schemes described below.

Using lists of zinc fingers for individual
DNA triplets, one can assemble new combi-
nations for a broad range of target sequences,
and this has been done in many cases (42–46).
Success is not guaranteed, however, in terms of
either affinity or specificity. A finger that per-
forms well in one context may not do as well
in another (47). The limited extent of contact
between consecutive fingers seems unlikely to
influence DNA binding; instead, a property of
the sequence-dependent disposition of the base
pairs may affect interaction. Investigators have
achieved the best success with modular assem-
bly using targets composed largely of 5′-GNN
triplets (43, 47).

Because of this unreliability, several groups
have focused on selecting new fingers in the
desired context (48, 49). Schemes based on se-
lection for binding activity in bacteria take ac-
count of context effects but can be time consum-
ing, and they are based largely on affinity rather
than specificity. Pairs of fingers that work well
together have been tabulated (50–52), and they
can be used for modular assembly. More fin-
gers can be added to increase affinity and speci-
ficity, although more is not always better (53).
Because zinc-finger clusters are not in perfect
registration with B-form DNA, separating two-
finger units with a one-amino acid linker may
be helpful (54), and longer linkers can permit
base pairs to be skipped (55). For those with few
targets and deep pockets, Sigma-Aldrich R© sells

ZFN pairs that are constructed from the Sang-
amo database and have been extensively tested
for activity.

In assembling new zinc-finger combina-
tions, one can choose among several different
frameworks on which to append the specificity-
determining residues. The most common are
(a) the natural Zif268 backbone, in which all the
fingers are somewhat different (43); (b) a frame-
work in which Zif268 fingers two and three are
used for each pair of new zinc fingers; and (c) one
in which all fingers have the same framework,
either iterations of Zif268 finger 2 or one de-
rived from an early consensus, known as Sp1C
(33, 56). Fortunately, the choice of framework
seems to have only modest effects on recogni-
tion properties (46).

Cleavage Requirements

In characterizing the requirements for ZFN
cleavage, Smith et al. (57) found that the cleav-
age domain must dimerize to be active, a find-
ing that is also true for natural FokI (58) but had
not been appreciated in earlier ZFN research.
Because the dimer interface is very weak, two
monomers are required, each of which consists
of a set of zinc fingers linked to a cleavage do-
main (Figure 2). The requirement for dimer-
ization turns out to be a great advantage. Be-
cause neither monomer is active, the cleavage
reagent is assembled only when both partners
bind their target sequences. This characteristic
has also enabled independent manipulation of
the cleavage domain, including the isolation of
a hyperactive variant (59).

The need for dimerization highlights the
importance of the size of the spacer between
binding sites and the length of the linker be-
tween the zinc-finger and nuclease domains of
the protein (57, 60). In cells, when the linker
was very short (initially called n = 0, but now
generally referred to as n = 4), the optimum
spacer length was exactly 6 bp (60). A molecu-
lar model of a ZFN pair on B-form DNA sup-
ported this observation. Subsequent research
has confirmed this finding and shown that 5-
bp spacers can also be effective (61–63). In the
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Table 1 TALE modules used in DNA recognition

Base pair Canonical modulea,b Alternativesa

A:T NI —
C:G HD N∗c

G:C NN NK, NHd

T:A NG —

aModules are identified by the amino acids in positions 12 and 13 of the transcription activator–like effector (TALE) repeat,
using one-letter codes: D, aspartic acid; G, glycine; H, histidine; I, isoleucine; K, lysine; N, asparagine. The asterisk
indicates no residue.
bModules HD and NN, for C:G and G:C base pairs, respectively, are considered strong in terms of binding affinity; NG is
called weak by some (71) and strong by others (72).
cThis module alleviates inhibition by methylation on position 5 of cytosine (73) but binds more weakly than HD.
dThese alternatives are more specific for G:C but have weaker affinity than NN (69, 71, 72).

initial fusion and in almost all subsequent ones,
the nuclease domain was linked to the C ter-
minus of the zinc-finger cluster, but the reverse
arrangement is probably also active.

For experiments in cells, our group in-
jected synthetic substrates and the ZFN protein
into Xenopus oocyte nuclei. Importantly, cleav-
age and break-induced recombination occurred
readily in a cellular environment with a chro-
matin substrate (60). Because natural FokI is a
bacterial protein, it could easily have been de-
feated by chromatin structure.

TALENS

TALEs

The genomes of some plant-pathogenic bac-
teria (Xanthomonas and related genera) encode
proteins that are imported into the host cell
nucleus and regulate genes to promote infec-
tion (64). These proteins are known as tran-
scription activator–like effectors (TALEs), al-
though they are actually genuine transcription
activators. The proteins have a DNA-binding
domain made up of tandem repeats of ∼34
amino acids, and these modules are not re-
lated to any other DNA-recognition motif. The
framework is highly conserved among modules,
but residues in positions 12 and 13—termed re-
peat variable diresidues (RVDs)—vary in con-
cert with individual base pairs in the target

DNA sequence (65, 66). In natural TALEs, sev-
eral different RVDs may be found for any par-
ticular base pair, but the most common ones
for each base pair constitute a recognition code
that seems robust (Table 1). In contrast to zinc
fingers, TALE modules bind DNA forward; in
other words, the N-terminal repeat binds the
5′-most base pair, and so on.

The structures of TALE repeats bound
to DNA (67, 68) show a remarkable helical
staircase–like form, with consecutive modules
closely apposed to each other (Figure 4). The
RVD of each repeat is on a loop that is di-
rected into the major groove. Surprisingly, only
residue 13 makes contact with DNA, while the
residue 12 side chain folds back and makes stabi-
lizing contacts with other residues in the mod-
ule. Furthermore, the specificity of the RVDs
for A:T and T:A base pairs is determined largely
by steric compatibility and van der Waals con-
tacts, not by hydrogen bonds.

Table 1 shows the accepted code for DNA
recognition by TALEs, along with alternative
RVDs that may be useful. The standard RVD
for G is NN (asparagine in positions 12 and
13), but it recognizes A in some contexts.
NK and NH have greater specificity for G,
but bind more weakly (69–72). Although HD
provides good specificity for C, its binding
is inhibited by methylation at position 5 of
the base. This inhibition may pose a problem
when targeting sites in higher organisms that
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contain CpG dinucleotides, given that such
sequences are often heavily methylated. The
RVD N∗ (asparagine in position 12, no residue
in position 13) overcomes this inhibition (73).

Numerous schemes for assembling new
combinations of TALE modules for new tar-
gets have been published (74–86), and most
of the building blocks have been made pub-
licly available. See Reference 20 for a review of
methods.

TALENs

Once the TALE recognition code was identi-
fied and tested, the parallel to zinc-finger recog-
nition became obvious, and it was not long be-
fore fusions to the FokI cleavage domain were
produced (87–89). Whereas zinc-finger clus-
ters require no additional protein, TALEs re-
quire some protein sequence beyond the DNA-
binding modules on both ends (87, 89). Note
that TALE frameworks and modules for new
construction have been derived from several
different natural proteins, but they are treated
in the literature as having essentially the same
properties.

Upstream of the obvious repeats in TALE
proteins are two cryptic modules (known as re-
peats 0 and −1) that resemble the repeats struc-
turally, although not in sequence (68). These
modules make contacts with T, which is the
preferred base in the 0 position of the target.
The last TALE repeat is only partial and is of-
ten referred to as a half-repeat. Moreover, ad-
ditional C-terminal residues from the natural
protein are required before linkage to the FokI
cleavage domain (89), perhaps for folding and
stability.

When a new TALEN target is chosen, the
nuclease domain must still be encouraged to
dimerize, so two binding sites are necessary.
Each site should start with a T in the DNA and
have at least an additional 10–12 bp, although
15–21 bp are more common. The binding sites
are in opposite orientation and are separated by
12–20 bp due to the additional protein sequence
between the TALE modules and the nuclease
domain. A site of the form TN18 is commonly

HD C:G 

NG T:A 

NN G:C 

NI A:T 

Repeat 5

Repeat 6

Repeat 16

Repeat 3

H
D

C G

N GG

T A

N
N

G C
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Figure 4
Transcription activator–like effector (TALE) recognition of DNA. (a) 23.5
modules of the PthXo1 TALE protein bound to their target in the major
groove. (b) Contacts between each of the canonical modules and the
corresponding base pair. Modified from Reference 68 with permission.

referred to as an 18-bp site, and the protein that
binds it carries 17.5 repeats, ignoring the initial
T and acknowledging the final half-repeat.

CRISPR/Cas RNA-GUIDED
NUCLEASES

CRISPR Systems in Bacteria

The most recent entry to the targetable nu-
clease family derives from an adaptive immune
system that is widespread among bacteria and
archaea (90). In simple terms, these microbes
capture short DNA segments (20–50 bp) from
invading viruses and plasmids and integrate
them into their own genomes between copies
of a repeat sequence (also 20–50 bp). The
resulting arrays have been dubbed CRISPRs
(short for clustered regularly interspaced short
palindromic repeats) (91). When a member of
the same virus or plasmid family invades again,
the corresponding spacer sequences direct
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cleavage of the incoming genome, thereby
combating the intrusion.

In the Type II CRISPR system, only
three components are required for cleavage:
a processed RNA transcript of the CRISPR
array containing one spacer and part of a
repeat (crRNA); a second RNA with partial
complementarity to the repeat, known as
tracrRNA; and the CRISPR-associated Cas9
protein. Cas9 has two nuclease active sites, one
to cleave each strand of the target DNA. It
is guided by the crRNA/tracrRNA complex,
which forms an RNA/DNA hybrid between the
spacer sequence and the homologous sequence
in the target (known as the protospacer because
it gave rise to the spacer in a prior infection).
Cas9 also requires a very short sequence in the
target immediately downstream of the hybrid
region, namely a protospacer adjacent motif
(PAM). Jinek et al. (92) fused the crRNA and
tracrRNA of Streptococcus pyogenes into a single
guide RNA (sgRNA) that induced efficient
Cas9 cleavage in vitro.

CRISPR/Cas Nucleases

The genome-engineering possibilities pre-
sented by the CRISPR/Cas system were im-
mediately obvious to several groups. The Jinek
et al. (92) paper appeared online at the end of
June 2012. By January 2013, four groups had
applied these reagents to genomic targets in
human cells (93–96); one described its use in
zebrafish (97); and a flood of additional reports
followed. A consensus among these papers is
that the sgRNA should have a 20-nt guide se-
quence corresponding to the desired target fol-
lowed by 80 nt of hybrid crRNA/tracrRNA (95,
98). This sgRNA structure is often referred to
as +85 in the literature.

The basic approach is quite simple
(Figure 2). A target site is selected on the basis
of the experimenter’s preferences. In addition
to the 20 bp to be bound by the sgRNA, there
must be an appropriately located PAM. For
the S. pyogenes Cas9, this sequence is simply
5′ NGG. RNA/DNA hybrids slightly shorter
than 20 bp have also been used successfully (99,

100). sgRNAs are typically produced by tran-
scription in vitro or in vivo, and the promoters
used will specify the base(s) at the 5′ end (one
G for an RNA polymerase III promoter, two
Gs for the commonly used SP6, T3, and T7
promoters). Initially, researchers were careful
to have this base match the target, but doing so
appears not to be strictly necessary (93, 101).

The first crystal structures of the Cas9 pro-
tein, alone (102) and in complex with sgRNA
and a single strand of target DNA (103), and
cryo-EM reconstructions (102) show how the
protein domains are arranged and how recog-
nition and cleavage are accomplished. Because
of this protein’s multiple functions, little of
the protein sequence is dispensible. There are
extensive contacts with the RNA/DNA hybrid
and with the constant portion of the sgRNA, as
well as separate domains for cleavage of each of
the target strands. These structures provide a
basis for engineering versions of Cas9 that may
have enhanced specificity and altered PAM
recognition, among other valuable features.

The significant advantages of the
CRISPR/Cas system versus ZFNs and
TALENs are as follows.

1. A single protein is required, and it is al-
ways the same—no protein engineering
is needed.

2. Targeting depends on base pairing, so
sgRNA design requires only knowledge
of the Watson–Crick rules.

3. New sgRNAs are very easily produced.
4. Because of advantages 1–3, it is feasible

to attack multiple targets simultaneously
with mixed sgRNAs (see the sections ti-
tled Rodents and Human Applications,
below).

Other Constructs

Some researchers have made other types of
cleavage reagents by using the flexible recog-
nition modules described above. Specifically,
they have created hybrids between HEs and
zinc fingers or TALE domains to make recogni-
tion more flexible (104, 105). A restriction en-
zyme (106) and a nicking enzyme (107) have
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been fused to TALEs to increase their speci-
ficity. Moreover, engineered zinc fingers and
TALEs have been linked to other types of do-
mains, including transcriptional regulatory se-
quences (108). A nuclease-dead version of the
Cas9 protein, when linked to such a domain,
becomes an RNA-guided TF (109, 110). Fu-
sions to recombinases have also been produced
(111, 112).

GENOME ENGINEERING

A Little History

After learning the basic requirements for ZFN
cleavage—finger number, dimerization, linker
and spacer lengths—it was time to attack a gen-
uine genomic locus. With help from the Golic
group, we chose the yellow gene of Drosophila
melanogaster as a target. This gene has an
easily visible mutant phenotype; gene activity
is cell autonomous, so somatic mosaics can be
identified; Rong & Golic (6) had successfully
targeted yellow with their approach, which did
not involve target cleavage; and we found a
promising ZFN target in the coding sequence
that consisted entirely of GNN triplets for
which fingers had been characterized. We
produced the novel zinc-finger combinations
needed to address this target. Using heat shock
to induce ZFN expression from integrated
transgenes, we found both mutant patches in
the injected generation and germ-line trans-
mission of the mutant phenotype resulting
from NHEJ repair of the induced DSB (113).
Using FLP and I-SceI to excise and linearize
a donor DNA (6, 114), we also demonstrated
homologous gene replacement (115).

Effective ZFN cleavage and recombination
were also demonstrated in cultured human
cells, both with new zinc-finger combinations
for genomic targets (63) and at synthetic targets
for ZFNs of known specificity (116). There-
after, these processes were carried out in other
cells and organisms, and the list of species in
which genomic targets have been modified is
now quite long (Table 2).

Delivery

All of the above nucleases have been used in var-
ious biological systems to create targeted muta-
tions and sequence replacements. In each case,
success depended on the ability to deliver all the
reagents efficiently and functionally to the cells
or organisms under study. For cultured cells,
the options for expressing the nuclease pro-
teins include plasmid DNA transfection, viral
vector delivery, and transfection with synthetic
mRNA. When DNA is introduced, the nucle-
ase coding sequences must be flanked by appro-
priate expression modules, including promoter,
enhancer, and polyA addition signals. The
proteins themselves should carry a nuclear lo-
calization signal. ZFN proteins inherently have
an excess of positive charge that allows them to
be taken up by cells directly from the culture
medium (117), but this is not true for TALENs
or Cas9. Long donor DNAs can also be sup-
plied on plasmid or viral vectors, and oligonu-
cleotide donors can simply be added to the
medium.

When whole organisms are being addressed
with targetable nucleases, other methods of de-
livery are required, and they must be adapted to
each particular situation. In many cases, direct
injection of nuclease mRNAs or DNA expres-
sion constructs into embryos is very effective. In
zebrafish, for example, mRNAs are injected into
the embryo cytoplasm shortly after fertilization
(118, 119). Early expression of the proteins
leads to both somatic and germ-line mutations
via NHEJ. The same approach has been effec-
tively used with many other organisms, includ-
ing mammals (120–125). Drosophila embryos
are multinucleate at the stage when injections
are performed, but directing the injection to the
posterior site of the germ-line precursor cells
enhances the recovery of transmissible muta-
tions (126). For all organisms, donor DNAs
can simply be added to the mRNA injection
mix.

In some situations, the biology of the organ-
ism interferes with a straightforward approach
to delivery. Despite early success with NHEJ
mutagenesis in zebrafish by use of ZFNs,
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Table 2 Organisms with genomes modified by targetable nucleasesa

Organism ZFNs TALENs CRISPR/Cas
Invertebrates
Drosophila 113, 115, 126 145, 181 182–184
Silkworm 213 211, 212 214
Mosquito 216 217, 218 —
Cricket 242 242 —
Butterfly 203 — —
Caenorhabditis elegans 130, 134 133, 134 132, 133, 135–141
Other nematodes — 133 133
Sea urchin 243 244 —
Ciona 245 246 —
Plasmodium 247 — —
Vertebrates
Zebrafish 118, 119 76, 127, 185 97, 128, 189, 190
Medaka 248 249 —
Catfish 250 — —
Rainbow trout 251 — —
Xenopus 252 253, 254 255–257
Rat 123 198, 259 258, 260
Mouse 120, 125, 261, 262 199, 201 200, 202, 260
Rabbit 263 264 —
Goat 265 266 —
Pig 124 121, 266 266
Cow 210 121, 266 —
Chicken 267 — —
Monkey 268 — —
Human 63, 116, 233 75, 80, 89, 172 93–96, 220, 221, 269
Plants
Arabidopsis 194, 195 75 196, 278
Tobacco 205 206 196
Maize 207 — —
Soybean 270 — —
Rice — 271, 272 196, 200, 273
Bunchgrass — 272 —
Cabbage — 274 —
Barley — 275 —
Wheat — — 273, 276
Sorghum — — 196
Nicotiana benthamiana — — 277, 278
Petunia 208 — —
Chlamydomonas 279 — —

(Continued )
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Table 2 (Continued )

Organism ZFNs TALENs CRISPR/Cas
Miscellaneous
Chinese hamster ovary cells 219, 280 — —
Yeast — 87 204
Bacteria — — 281
Hepatitis B virus 282 283 —
HIV-1 284 — 285

aReferences describe the use of zinc-finger nucleases (ZFNs), transcription activator like–effector nucleases (TALENs), and
CRISPR/Cas nucleases in various organisms. Not all existing papers are cited, but the earliest ones and significant advances
are provided. A similar table appears in another recent review (286).

investigators could not achieve repair from a
donor template. When incorporation of an
oligonucleotide donor was observed following
TALEN or Cas9 cleavage, many of the prod-
ucts only partially matched expectation; they
looked homologous on one end but nonhomol-
ogous on the other (127, 128). More recently,
fully homologous products were obtained with
a long donor (129), albeit at levels far below
that of NHEJ mutants. Zebrafish embryos
go through very rapid cell divisions following
fertilization. During this phase, prompt repair
of DSBs by NHEJ seems to be preferable to
more deliberate, template-directed HR; this
preference is also imposed on experimental
manipulations.

An equally challenging situation is presented
by the popular nematode Caenorhabditis elegans.
Somatic mutagenesis was readily achieved with
ZFNs, at both genomic and extrachromosomal
targets (130). These worms are notorious for
their ability to suppress transgene expression
in the germ line via RNA interference (RNAi)
(131), which probably frustrated early attempts
to produce transmissible mutations. Recently,
researchers successfully used mRNA injection
or DNA injection to achieve germ-line mu-
tagenesis, including HR, with all three nucle-
ase platforms (132–140). Cho et al. (141) em-
ployed a novel scheme based on injection of
Cas9 protein-sgRNA complexes, so no mRNA
translation was required and RNAi was evaded.
Surprisingly, in at least some of these cases
(141), mutagenesis appears to have occurred in

the germ line of the F1 generation, indicating
that the nuclease persists for several days. Al-
though the frequencies are typically not high,
successfully modified worms are readily isolated
by screening.

Nuclease-Induced Mutations

When a nuclease successfully cleaves its de-
sired target, what are the consequences? As
discussed above, small-scale sequence changes
are often introduced at the break by NHEJ.
These changes are typically deletions and/or
insertions of a few or some tens of base pairs.
By chance, two-thirds of them will create a
frameshift in a protein-coding sequence, of-
ten completely inactivating the gene product. If
the alteration is in a critical region of the pro-
tein, even a multiple of 3 bp can produce a null
mutation. The level of sequence alteration is
typically assayed by polymerase chain reaction
(PCR) amplification of the region, followed by
DNA sequencing, by a gel electrophoresis assay
based on the mismatch-specific Surveyor (142,
143) or T7EI endonuclease (41), or by high-
resolution melt analysis (144).

The spectrum of mutations following
TALEN cleavage is more biased toward dele-
tions, and somewhat longer ones, than that ob-
served with ZFNs (145, 146), presumably re-
flecting events that occur in the longer spacer
between binding sites for TALENs. My as-
sessment of published data indicates that Cas9
cleavage also leads to longer deletions. What
limits them (if anything) is unclear, given that
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neither the RNA/DNA hybrid region nor the
PAM is spared from deletion. Occasionally,
longer insertions and deletions of up to several
hundred base pairs are produced. Attempts to
bias repair toward long deletions by coexpress-
ing exonucleases have been only moderately
successful (147, 148). With all of the nucleases,
occasional repair products have base substitu-
tions at the repair site, suggesting that an error-
prone DNA polymerase may be involved in the
process.

Having characterized hundreds of NHEJ
products in Drosophila, we found several inser-
tions for which the source can be identified.
Some are direct or inverted copies of short
sequences very close to the break. A plausi-
ble model for generation of such insertions has
been proposed (149), but it accounts for only
a minority of all insertions. Although there is
no direct evidence to suggest it, short inser-
tions that have no obvious source might be pro-
duced by untemplated DNA additions to the
ends at the DSB. Among the longest insertions
are some that correspond to genomic sequences
very far from the break. In one case, the inser-
tion is a direct or indirect product of reverse
transcription, given that it matches an exon–
exon junction with an intron cleanly removed
(150). Apparently, what we lump into the term
NHEJ is actually a range of processes, all of
which are designed to fix a break before more
serious consequences occur.

One can make other genomic changes by
using the targetable nucleases. Large deletions,
thousands of base pairs long, have been pro-
duced by inducing cleavage at two widely sepa-
rated sites in human cells (151), pigs (121), and
zebrafish (152). Although each break is usually
repaired independently, some events join one
end from each break and eliminate the inter-
vening DNA. Inversions and duplications can
also be detected at low levels (153). Making a
break on each of two different chromosomes
has allowed for the construction of transloca-
tions that mimic those found in human cancers
(154, 155). Researchers have also made large
deletions on a single chromatid by making a sin-
gle cut and providing a donor DNA with one

homology at the break and another to a se-
quence some distance away (156).

Homologous Recombination Versus
Nonhomologous End Joining

Often an experimenter wishes to recover prod-
ucts of HR with a donor template, in preference
to NHEJ mutants. Doing so can be challenging
because NHEJ dominates DSB repair in many
situations, although this preference also varies
among cell types. When frequencies are high
enough, the desired HR products can be iden-
tified with molecular analyses.

As part of a study of the genetic require-
ments for genome engineering with ZFNs in
Drosophila, we found that knocking out a key
component of the major NHEJ pathway, DNA
ligase IV, greatly improved the ratio of HR to
NHEJ repair without significantly reducing
the overall recovery of sequence alterations
(126, 150). A lig4 knockout also reduced the
level of NHEJ mutagenesis in C. elegans (130).
These organisms tolerate the loss of ligase IV,
but many others do not. The identification
of a small-molecule inhibitor that is specific
for that ligase and could be used for transient
depletion of its activity more broadly would be
beneficial.

Another way to influence the outcome of nu-
clease cleavage is to change the type of break
produced. Several groups have made deriva-
tives of HEs, ZFNs, and Cas9 that cut only one
strand at the target (94, 96, 157–160). Nicks are
not substrates for NHEJ, but they can stimu-
late HR. A low level of NHEJ mutagenesis still
takes place, perhaps because of progression of
a replication fork into the nick, but it is sub-
stantially reduced. HR is also significantly lower
with nicks than with DSBs, but not as dramat-
ically reduced as NHEJ is. Nickases have been
proposed to be safer alternatives to full nucle-
ases, given that off-target single-strand breaks
should not lead to mutations. The trade-off in
efficiency can be considerable, however. A use-
ful reporter, known as Traffic Light, was devel-
oped to make rapid distinctions between HR
and NHEJ products (161).
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When engineering HR, several practical
concerns arise. The donor DNA must have
sufficient homology to the target. With long,
double-stranded donors, most investigators use
homologies in the range between 1,000 and
4,000 bp, which are approximately equally dis-
tributed on the two sides of the break. The
fact that longer homologies and perfect matches
to the target are not required distinguishes
break-induced targeting from traditional meth-
ods used in mammalian cells. Oligonucleotide
donors as short as 40 bases have been success-
fully used (156); of course, they must span the
break.

Another issue is how much sequence from
the donor is incorporated at the target. This
parameter is equivalent to what geneticists
call conversion tracts, and it is important for
two reasons: (a) Once a nuclease is known
to be effective, it can be used to introduce
desired sequence changes throughout a region,
if conversion tracts are long, and (b) some
applications (e.g., translational fusions) require
exact insertion or substitution of sequences
from the donor, so making a cut very close to
the insertion site is necessary when conversion
tracts are short. In Drosophila, conversion tracts
after ZFN cleavage are gratifyingly long (many
kilobases) (162), but they tend to be rather
short in mammalian cells (100–200 bp) (163).
Knowing what limits tract length and how that
might be manipulated would be very useful.

Off-Target Cleavage

The above sections focus on ways to address an
intended target. None of the nucleases has per-
fect DNA recognition specificity, so we should
also be concerned about possible cleavage and
mutagenesis elsewhere in the genome. In fact,
the first genomically targeted ZFNs were toxic
due to excessive cleavage and were effective
only at moderate expression levels (113, 164).
Cleavage and mutagenesis at off-target sites
complicate the intended use in experimental
organisms, but this problem can usually be ame-
liorated by repeated outcrossing or by studying
combinations of independently isolated mutant

alleles. For use in human gene therapy and in
human food sources, such secondary mutations
must be thoroughly characterized for safety or
else scrupulously avoided.

How can we assess the extent and location of
off-target effects? General assays, such as stain-
ing repair foci, provide only a broad assessment
of the problem (142, 165). A popular approach
is to make educated guesses about the identity
of potential secondary targets and to monitor
them individually. For example, experimental
measures of nuclease sequence preferences can
be turned into predictions of at-risk genomic
sites. These preferences have been obtained
through selection for preferred binding (166–
168) or by in vitro cleavage of partially ran-
domized substrates (169). Simple searches for
genomic sequences with the fewest mismatches
to the desired target have also been performed.

Candidate secondary targets have been
monitored by PCR amplification and either a
gel assay or deep sequencing. Often the level
of mutation at such sites is undetectable, but
in some instances it is distressingly high. Off-
target cleavage is often a property of only one of
a pair of nucleases that apparently has poor dis-
crimination against related targets and/or ex-
cess affinity (164). A major step forward was the
introduction of obligate heterodimer modifica-
tions of the FokI cleavage domain (142, 165).
Interestingly, Smith et al. (57) anticipated these
modifications by making changes at the dimer
interface that prevented cleavage by a homo-
dimeric ZFN. The first generation of obligate
heterodimers also reduced cleavage activity in
some contexts, but second-generation adjust-
ments (170) corrected this flaw and are now
routinely used for ZFNs and TALENs.

An unbiased method to identify secondary
targets and to assay cleavage and mutagenesis
at those sites is required. Gabriel et al. (171)
developed such a method by capturing ends
produced in cells by ZFNs for a target in the
human CCR5 gene using ligation to the DNA
of an integration-defective lentivirus. Whether
some bias exists in this experiment is difficult
to assess, but if so, it is expected to be minor.
This approach and two others guided by in vitro
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data (167, 169) all agree that the closely related
CCR2 gene is the most commonly affected sec-
ondary target. For the less commonly mutated
sites, there is much less agreement among the
studies.

TALENs are generally less toxic and ap-
parently more specific than ZFNs (144, 172–
175). Remarkably, single mismatches between
modules and base pairs can significantly de-
crease binding, even when there are still 15 or
more matches. Because of the tight apposition
of consecutive modules (67, 68), a single mis-
match may disrupt adjacent contacts, propagat-
ing the disruption beyond a single base pair.
Mismatches near the 5′ end of the target are
more disruptive than ones near the 3′ end (72).
As mentioned above, alternative modules for
some base pairs exist that can increase speci-
ficity (69, 71, 72).

As of early 2014, it is too early to pass judg-
ment on CRISPR/Cas specificity, but several
very recent studies suggest that this may be a
significant issue (98, 99, 176–178). Some sec-
ondary targets—even ones with multiple mis-
matches to the sgRNA—are mutated at rates
similar to that of the desired target. In princi-
ple, 20 bp are more than adequate to specify a
unique site in the human genome, but not all
positions in the RNA/DNA hybrid are equally
specified. Positions closest to the PAM are most
stringent, whereas those nearer the 5′ end of
the RNA are less so, and multiple mismatches
can apparently be tolerated. The Cas9 protein
presumably stabilizes the duplex between the
sgRNA and the target and also determines the
base-matching requirements.

The relaxed specificity in this system may
be adaptive (178a). Precise specification of 22
bp (20 in the sgRNA, 2 in the PAM) seems ex-
cessive if the goal is simply to find a match in
a viral genome of less than 106 bp and avoid
cutting in the host genome of less than 107 bp.
Viral genomes are subject to constant variation
and selection, so the next infecting agent will
certainly differ slightly from the one that es-
tablished a CRISPR insert. By accommodat-
ing mismatches, the host defense allows for this
variation. It may be possible to engineer the

Cas9 protein to require longer or more perfect
matches, or Cas9 from other species may have
more inherent specificity.

Three groups (99, 101, 179) describe an
alternative that makes the CRISPR system
more specific. They produced a version of
Cas9 with only one nuclease active site and
used two sgRNAs to direct it simultaneously
to a pair of sequences near each other on
opposite strands of the target. When both
sites were nicked, a DSB was produced and
led to both NHEJ and HR repair. This paired
nicking approach both increases specificity by
requiring dual recognition (analogous to ZFNs
and TALENs) and reduces off-target effects
by limiting single events to nicks.

Fu et al. (100) found that, in several cases,
sgRNAs that are slightly truncated compared
with the standard 20-nt guide sequence had im-
proved specificity with little loss of on-target
efficacy. These 17- and 18-nt guides have en-
hanced specificity presumably because shorter
duplexes are more sensitive to mismatches in
secondary targets.

A practical consideration is that high nucle-
ase concentrations, although favoring efficient
cleavage of the desired target, endanger off-
target sites. Specifically, as the nuclease con-
centration nears saturation, the ratio of off- to
on-target cleavage rises. Reducing the nucle-
ase concentration improves this ratio, but at the
cost of less-efficient on-target events.

APPLICATIONS

Model Organisms

Because of space constraints, I cannot describe
all of the contexts in which ZFNs, TALENs,
and CRISPR/Cas have been successfully ap-
plied to genomic targets in various organisms
and cell types. Instead, I cite some examples
and provide additional references. Table 2 lists
these applications, but it will soon be out of
date.

Drosophila. The first organism successfully
targeted with ZFNs was the fruit fly (113). By
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now, numerous genes have been knocked out in
this organism with ZFNs (126, 164), TALENs
(145, 180, 181), and CRISPR/Cas (182–184);
these include genes in which null mutations
had not previously been available. With these
reagents, initial experiments were aimed at tar-
gets that provide an easily scored mutant phe-
notype, but mutation frequencies are often high
enough that the desired alleles can be recovered
using straightforward molecular analysis (126,
145, 184). Both NHEJ mutagenesis and HR
have been achieved with an embryo injection
procedure (126) by use of either long double-
stranded DNAs or single-stranded oligonu-
cleotides as donors (162). The ease of study-
ing mutant phenotypes made Drosophila a good
organism in which to evaluate several parame-
ters that affect targeting efficiency. Because of
the availability of other powerful genetic tools
for Drosophila, ZFNs were not broadly adopted
for flies, but with the ease of construction and
high success rate observed for TALENs and
CRISPR/Cas, this situation is likely to change.

Zebrafish. Despite the popularity of zebrafish
in genetic and developmental studies, effective
gene manipulation procedures were not avail-
able for them until the advent of targetable
nucleases. Many genes were successfully mu-
tated with ZFNs (118, 119), but the frequencies
were often rather low. TALENs have provided
much higher rates (76, 144, 185–188), enabling
identification of new mutants in the injected
generation as well as the isolation of germ-
line variants. The CRISPR reagents also work
well in fish (97, 189, 190), and several genes
have been mutated simultaneously (192). As
mentioned above, the biology of the zebrafish
embryo frustrated initial attempts to achieve
HR, but this problem has been overcome with
the higher cleavage efficiency of TALENs and
CRISPR/Cas (127–129).

Arabidopsis. Initial experiments with
Arabidopsis targeted transgenes that had
been inserted in the genome (193), but later
efforts manipulated genuine genomic loci (75,
194–196). A continuing issue with this and with

other plants is the delivery of the nucleases and
donor DNAs. Arabidopsis is readily transfected
using the T-DNA plasmid from Agrobacterium
tumefaciens, but it has limited carrying capacity
for exogenous sequences.

Rodents. Rat researchers point out that their
organism has greater physiological similarity to
humans in many respects than does the mouse
and that it is more widely used for pharmaco-
logical testing. The absence of robust rat ES
cells meant that the powerful gene-targeting
approach used for mice (197) is not available for
this organism. The demonstration that ZFNs
can produce targeted mutations by direct em-
bryo injection generated considerable interest
(123). TALENs have been effectively used in
rats as well (198). Direct embryo injection also
works well in mice (120, 122, 125, 199–201),
and this approach could replace currently used
cell-culture steps and eliminate at least one
generation on the path to recovering useful
mutants.

Wang et al. (202) demonstrated the unique
power of the CRISPR system by expressing the
Cas9 protein in mouse ES cells along with up to
five different sgRNAs. This experiment led to
the recovery of cells with simultaneous disrup-
tions in all the alleles of these genes. In mouse
embryos, coinjection of Cas9 mRNA with two
sgRNAs enabled biallelic mutation of both tar-
gets with high efficiency. Finally, coinjection
of oligonucleotide donor DNAs produced tar-
geted sequence changes at both sites. In prin-
ciple, a very large number of sgRNAs, with
or without donors, can be coinjected and the
emerging newborns screened for any combina-
tion of induced sequence changes.

Others. The situation with C. elegans is
described above. Targetable nucleases have
been used successfully in Xenopus, sea urchin,
Chlamydomonas, and many other organisms
(Table 2). In the monarch butterfly, inves-
tigators mutated genes that affect circadian
rhythms, with the long-term goal of dissecting
migration behavior (203). The genome of the
yeast Saccharomyces cerevisiae has been targeted
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with nucleases (87, 204), but given the ease of
gene replacement without target cleavage in
this organism, nuclease-mediated approaches
may have little impact.

Economically Important Organisms

The targetable nucleases offer an attractive al-
ternative to standard trait identification and
breeding in agricultural plants and animals.
Known mutations can be transferred from one
breed or cultivar to another without disrupt-
ing a favorable genetic background, and novel
mutations can be easily produced.

Plants. Tobacco protoplasts are readily trans-
formed and subsequently regenerated into
whole plants, making tobacco a good candidate
for early experiments with ZFNs and TALENs
(205, 206). Maize can also be handled experi-
mentally in embryonic callus culture and regen-
erated. Shukla et al. (207) showed that a single
allele governing phosphate production can be
manipulated in this plant. Nuclease coding se-
quences and donor DNAs were delivered on
plasmids in both the above cases. Plant viruses
have also been used for this purpose (208), but
like T-DNA, they have limited capacity for car-
rying exogenous sequences. Other plants that
have been targeted include soybean, rice, cab-
bage, barley, and bunchgrass (Table 2).

Livestock. Imagine increasing skeletal muscle
mass (i.e., meat) genetically in cows and pigs
(121), making pig organs more suitable for hu-
man transplantation (124) or curing econom-
ically important genetic diseases of livestock
(209). The tools for accomplishing this task
have been developed using ZFNs, TALENs,
and CRISPR/Cas. Direct embryo injection of
mRNAs and donor DNA is an effective deliv-
ery method, as is somatic cell-nuclear transfer
to enucleated eggs following in vitro manip-
ulation of the genome (121, 124, 210). Other
food animals that have been successfully tar-
geted with ZFNs and TALENs include rabbit,
catfish, and trout (Table 2). Large animals can

also serve as models for human genetic diseases,
sometimes with greater relevance than rodents.

Others. The silkworm has been targeted with
ZFNs, TALENs, and CRISPR/Cas (211–214).
Although the dramatic example of making fluo-
rescent silk (215) employed a transposon vec-
tor, not nuclease targeting, the latter approach
opens the door to a wide variety of other manip-
ulations. Economically important in a different
sense, mosquitos are vectors for transmission
of devastating tropical diseases. Initial success
in targeting the genome of Aedes aegypti with
ZFNs (216) and TALENs (217), and in Anophe-
les gambiae with TALENs (218), has been re-
ported. When large-scale production of mam-
malian proteins is needed, Chinese hamster
ovary cells are often used; these cells have been
subjected to nuclease targeting, including three
successive rounds of gene knockouts (219).

Human Applications

Much nuclease-based genome engineering re-
search has focused on cultured human cells be-
cause of potential uses in human health. Tar-
geting with all of the nuclease classes is simple
to perform in established lines that are readily
transformed. Achieving efficient delivery to pri-
mary cells and to other cell types is more chal-
lenging, so appropriate vectors must be cho-
sen. For example, Reyon et al. (80) attacked 96
genomic targets with TALENs and recovered
mutations in 84 of them at frequencies rang-
ing from 2.5% to 56%, on the basis of the
T7EI assay. With greater sensitivity, more tar-
gets might have been deemed successful. Very
recently two groups demonstrated the multi-
plexing capabilities of the CRISPR/Cas nucle-
ases by simultaneously targeting tens of thou-
sands of human genes in populations of cultured
cells (220, 221).

Beyond the obvious knockins and knock-
outs, additional inventive applications have
been developed. Lombardo et al. (222) targeted
a sequence in a relatively early exon of the
IL-2Rγ gene with ZFNs and used HR with
a donor DNA to insert all downstream exons
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at the site. This maneuver, also used in a
mouse model of hemophilia (223), provides
a means to correct disease-causing mutations
throughout a large portion of a gene using a
single nuclease target. Gutschner et al. (224)
used ZFNs and HR to insert a strong polyA
addition signal near the 5′ end of the gene
for a long noncoding RNA. This process
allows one to disrupt production of the RNA
without needing to know what portions of its
sequence are critical to its function. Hu et al.
(225) demonstrated the versatility of TALEN
targeting by knocking out the core sequence
of a microRNA—a very small target indeed.

An exciting prospect is genome manipu-
lation in human pluripotent cells—both ES
cells and induced pluripotent stem (iPS) cells
(172, 223, 226–232). Yusa et al. (233) clearly
demonstrated how targetable nucleases could
be used for therapeutic applications. These au-
thors generated iPS cells from a patient carrying
a mutation in the α1-antitrypsin gene and used a
complex strategy involving ZFNs to correct the
mutation without leaving a mark. This strategy
led to the isolation of cells targeted at one allele
and a proportion with biallelic correction. The
cells were differentiated in culture and injected
into immune-deficient mice to demonstrate the
efficacy of the gene correction. In the future,
these cells could be introduced back into the
original patient. Only a single off-target exon
mutation was introduced upon ZFN treatment,
although 25 mutations accumulated during the
initial derivation of the iPS cells (233).

A clinical trial using ZFNs has been un-
der way for several years, and others have been
approved. The initial target is the gene for
CCR5 (167, 234), the most common coreceptor
for HIV-1. Natural human CCR5 mutants are
healthy and are resistant to the development
of AIDS after infection. This trial uses ZFNs
delivered by an adenovirus vector to introduce
NHEJ mutations into the CCR5 gene in T cells
derived from HIV-positive patients (168). The
cells—a substantial proportion of which now
carry null mutations in CCR5—are reinfused
into the person who originally donated them.
Trial results have not yet been published, but

reports made at meetings are very promising.
An obvious extension would be to perform the
targeting in hematopoietic stem cells so that the
therapeutic benefits will be long-lasting (235).

An alternative to correcting a mutated
sequence is to deliver an intact version of the
missing gene. Doing so would be indicated, for
example, when the disease mutation is a large
deletion. Random integration of a therapeutic
gene has inherent dangers, as demonstrated
by X-SCID trials in which a retroviral vector
activated an oncogene by integration in its
vicinity (236). Several groups have initiated the
use of nucleases to insert genes into so-called
safe-harbor sites in the human genome—loci in
which an integrated gene would be expressed,
but would have little danger of causing un-
wanted effects. One such site is AAVS1 (237),
the preferred integration site for adenoassoci-
ated virus. Placement of a therapeutic gene in a
safe harbor requires that it be provided with all
necessary regulatory sequences, which is usu-
ally less desirable than manipulating the natural
locus and relying on endogenous controls but
would permit placing the transgene under
inducible control, if that were desired. Other
potential clinical applications that are being
explored include (a) correcting hemophilia mu-
tations in the Factor IX gene (223); (b) restoring
the reading frame in some cases of Duchenne
muscular dystrophy (175); (c) knocking out the
other coreceptor for HIV-1, CXCR4 (238);
(d ) correcting mutations in hemoglobi-
nopathies, including sickle cell anemia (230);
and (e) creating universal donor cells by
eliminating human leukocyte class I antigen
expression (239).

CHOOSING A NUCLEASE

Regarding the choice of platform, it seems safe
to say that the TALEN and CRISPR/Cas sys-
tems are replacing ZFNs for routine research
laboratory use on the basis of their design ad-
vantages, efficacy, and reliability. Specificity re-
mains an issue in the CRISPR system, but its
simplicity and the fact that it is readily multi-
plexed are unique advantages.
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It is too early to sound the death knell for
ZFNs, however. Some of the current ZFN pairs
are very highly engineered, very effective, and
very specific. The ZFNs for CCR5, for ex-
ample, will probably persist both as clinical
reagents and as a standard to be met by future
designs. ZFNs also have the advantage of small
size. Coding sequences for two four-finger pro-
teins occupy just over 2 kb and are readily car-
ried by plasmid or viral vectors. TALEN coding
sequences are approximately 3 kb each, and the
Cas9 coding sequence is more than 4 kb.

LOOKING AHEAD
Targetable nucleases are valuable tools for ge-
netic manipulation and analysis. To date, many
published studies have focused on optimizing
the construction and demonstrating the activ-
ity of the nucleases. Practical applications are
now being explored in the areas of medicine and
food production, as described above. In model
organisms, we can expect increasing analyses
of specific gene functions and development of
human disease models that utilize nuclease-
induced genome modifications.

Why the range of cleavage efficiency varies
so greatly (and often fails outright) among tar-
gets within each class of nuclease remains a puz-
zle. There is no obvious correlation with affin-

ity, although this lack of correlation has not
been extensively evaluated. People often won-
der whether chromatin structure plays a role.
No systematic study has explored this relation-
ship, but both active and inactive genes are tar-
geted with equal efficiencies. The issue may
be moot for most researchers, given that at-
tempting a few designs for any one target gene
has been sufficient to guarantee success. As de-
mands for finer control and higher cleavage ac-
tivity increase, however, the question may be
worth addressing.

At present, it is difficult to imagine a type of
nuclease that would have greater simplicity than
base-pairing for target selection, but we may
yet be surprised. In the CRISPR arena, com-
ponents from organisms other than S. pyogenes
may prove useful (240). For example, different
PAM requirements, both looser and stricter,
will broaden the range of accessible targets,
and some Cas9 proteins might be less toler-
ant of mismatches between the target DNA
and sgRNA. TALE modules from genera other
than Xanthomonas could provide additional
materials for TALEN designs (241). Consider-
ing the rate at which new studies are appearing
and the speed with which interest in genome
engineering is increasing, we can safely predict
only that this area will continue to witness ex-
citing developments.

SUMMARY POINTS

1. Three nuclease platforms—ZFNs, TALENs, and CRISPR/Cas—are very effective in
generating targeted sequence changes in the genomes of a wide variety of organisms.

2. CRISPR/Cas nucleases are particularly easy to design and use but have shown a lack of
specificity.

3. Local mutations are generated at the site of cleavage by NHEJ, and specific sequence
changes can be introduced from a donor DNA template.

4. How the nucleases are delivered, and the expected outcomes, depends on the biology of
the organism or cells being studied.

5. Applications of targetable nucleases include genome editing in model organisms, genetic
improvement of economically important plants and animals, and human gene therapy.
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FUTURE ISSUES

1. Specificity of nuclease cleavage is a significant issue; additional methods to reduce and
detect off-target effects will be welcome.

2. With all three platforms, some new designs work well, whereas others function only
marginally or not at all. It would be useful to know whether nuclease design, target
accessibility, or other factors limit efficacy.

3. Applications to crop plants and food animals will require proof of efficacy and safety to
gain regulatory approval and public acceptance.

4. The use of targetable nucleases in conjunction with human stem cells promises to be an
exciting area of future therapeutic applications.
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