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Abstract

The high-resolution structure of the eukaryotic ribosome from yeast,
determined at 3.0-Åresolution, permitted the unambiguous determi-
nation of the protein side chains, eukaryote-specific proteins, protein
insertions, and ribosomal RNA expansion segments of the 80 proteins
and ∼5,500 RNA bases that constitute the 80S ribosome. A comparison
between this first atomic model of the entire 80S eukaryotic ribosome
and previously determined structures of bacterial ribosomes confirmed
early genetic and structural data indicating that they share an evolu-
tionarily conserved core of ribosomal RNA and proteins. It also con-
firmed the conserved organization of essential functional sites, such as
the peptidyl transferase center and the decoding site. New structural
information about eukaryote-specific elements, such as expansion seg-
ments and new ribosomal proteins, forms the structural framework for
the design and analysis of experiments that will explore the eukaryotic
translational apparatus and the evolutionary forces that shaped it. New
nomenclature for ribosomal proteins, based on the names of protein
families, has been proposed.
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INTRODUCTION

Background

It has long been recognized that a complete un-
derstanding of the mechanism of translation ul-
timately depends on determining the molecu-
lar structure of the ribosome, the largest and
most complicated RNA–protein assembly in
the cell, that translates the genetic code into
proteins. A ribosome from bacteria and archaea
consists of a large (50S) subunit and a small
(30S) subunit, which together constitute the
2.5-megadalton (MDa) 70S ribosome. Their
eukaryotic counterparts are the 60S and 40S
subunits and the 80S ribosome (from 3.5 MDa
in lower eukaryotes to 4.5 MDa in higher eu-
karyotes). Many key ribosomal components are
conserved across the three domains of life—
bacteria, archaea, and eukarya—and constitute
a common core that performs the fundamental
processes of protein biosynthesis (for a review,
see Reference 1). The process of protein syn-
thesis has been studied during the past 50 years,
but until recently, detailed information about

the three-dimensional structure of the ribo-
some had been unavailable. Recent years have
seen many exciting advances in structure de-
termination of prokaryotic ribosome particles
and the entire prokaryotic ribosome, vacant
or complexed with its functional ligands; these
advances were enabled by the use of X-ray
crystallography and cryo–electron microscopy
(cryo-EM). Cryo-EM and single-particle anal-
yses enabled the first direct visualizations of the
bacterial ribosome in different functional states
(2–5). However, not until the determination of
X-ray crystallographic structures of the entire
prokaryotic 70S ribosome, as well as of the indi-
vidual prokaryotic 30S and 50S subunits, did ac-
curate atomic models become available (6–12).

That X-ray crystallography can provide
high-resolution structures of macromolecules
such as the ribosome has been known for
decades, but for such structures to be obtained
the macromolecule must be crystallized. Thus,
for many years there were no ribosome crys-
tals. Initial progress in the method development
of crystallization of the 50S ribosomal sub-
units isolated from Bacillus stearothermophilus
and Haloarcula marismortui (13–15), as well as
of the 30S subunit and full 70S ribosome iso-
lated from Thermus thermophilus (16–20), en-
abled advances in ribosome crystallography.
The introduction and development of innova-
tive methodologies, such as improvements in
synchrotron sources, computing, X-ray detec-
tors, and crystallographic software, have also
been essential.

During the past 10 years, investigators have
also made remarkable progress in full prokary-
otic 70S ribosome crystallography, and one can
now obtain, at medium or high resolution, not
only the structure of the vacant ribosome but
also the structure of the 70S ribosome with key
components bound. These structural studies of
the prokaryotic 70S ribosome functional com-
plexes span several steps in protein elongation
and termination and are reviewed elsewhere
(21–23).

However, until recently, our knowledge
about the structural organization of the
eukaryotic ribosome was based only on fitting
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high-resolution crystal structures of prokary-
otic ribosomes into medium-resolution cryo-
EM single-particle reconstructions (24–26).
Cryo-EM studies provided the first models of
the eukaryotic ribosome at 6–15-Åresolution,
as well as a much broader spectrum of
prokaryotic and eukaryotic ribosome com-
plexes for investigating the mechanisms of
translocation (27–29) and protein transport
(26, 30).

Despite this progress, we could not dis-
cern the relationship between the structure
and function of the eukaryotic ribosome at
the atomic level. As mentioned above, at
present only X-ray crystallography can provide
high-resolution structures of the eukaryotic
ribosome; until 2010, no three-dimensional
crystals of the eukaryotic ribosome or ribosome
particles had been reported. The eukaryotic
80S ribosome has an ∼40% larger mass than
its prokaryotic counterpart, and this high
complexity was the main obstacle to obtaining
well-diffracting crystals suitable for X-ray crys-
tallography. Our previous experience in obtain-
ing the first crystals of the entire prokaryotic
70S ribosome and its structural determination
(6, 12, 16–20) was a useful background for
developing new approaches that allowed us
to create diffracting crystals of the eukaryotic
full 80S ribosome from Saccharomyces cerevisiae.
Crystal structures of this ribosome from
S. cerevisiae, with a mass of ∼3.3 MDa,
were determined first at 4.2-Åand later at
3.0-Åresolution. These structures have sig-
nificantly advanced the field in investigating
protein synthesis and its regulation in the cell
(31, 32). The ciliate protozoa Tetrahymena ther-
mophila was recently used for crystallization.
The structures of the 40S and 60S ribosomal
subunits from T. thermophila were determined
at 3.9-Åand 3.5-Åresolution, respectively, and
provided information about their interaction
with the initiation factors eIF1 and eIF6
(33–35).

This review summarizes recent studies of
the eukaryotic full 80S ribosome structure per-
formed by X-ray crystallography. We focus on
recent work from our laboratory.

Isolation of Ribosomes for
X-Ray Analysis

The main challenge in crystallographic studies
of the ribosome is finding well-diffracting crys-
tals. Ensuring that the isolated samples of the ri-
bosome are highly homogeneous and can form
well-ordered crystals is very important. This
step differs from cryo-EM sample preparation,
wherein investigators select particles of similar
conformation for structure determination
(36).

We developed new methods of ribosome
purification to crystallize prokaryotic and eu-
karyotic ribosomes. For the prokaryotic studies,
we used an extreme-thermophilic bacterium,
Thermus thermophilus. In the early 1980s, we in-
troduced this extreme thermophile to the field
of ribosomal crystallography because the ribo-
somes isolated from this organism are robust
and resistant to degradation (16, 17, 37).
Obtaining the entire 70S ribosome in its mono-
some form was a difficulty we faced in develop-
ing new protocols, given that a significant frac-
tion of 70S ribosomes in cell extracts are in the
form of polysomes. A traditional way to isolate
monoribosomes from polysomes in bacteria is
based on salt washing in 0.5 to 1.0 M of NH4Cl,
KCl, or CsCl2, which removes ligands from the
ribosomes. We developed a purification proto-
col for T. thermophilus 70S ribosomes that in-
cludes this harsh salt treatment at the first stage
of purification. To improve the quality of the ri-
bosome, we introduced an additional treatment
step that involves binding ribosomes to a chro-
matographic resin (butyl-TOYOPEARL R©

hydrophobic resin) (6, 37, 38). We optimized
the ionic conditions used for chromatography
to obtain 70S ribosomal tight couples. As a re-
sult, we obtained crystals of T. thermophilus 70S
ribosomes from the samples purified without
dissociation of the 70S ribosome into the ribo-
somal subunits (6, 12, 17, 38). This approach
to ribosome purification with hydrophobic
chromatography was subsequently used to
optimize crystallization and solve the structures
of the T. thermophilus small (30S) ribosome
particle (10, 39) and the 70S ribosome (12, 40).
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We optimized various ribosome-purifica-
tion procedures to develop a suitable isolation
protocol for yeast ribosomes. Conventional
ways to isolate eukaryotic monoribosomes
from polysomes by salt washing produce 80S
ribosomes that fail to crystallize. On the basis of
previous experiences with other fragile systems
(41), we established a radically new approach
employing very mild manipulations. This gen-
tle isolation protocol ensures that the ribosomes
are in monosome form and that all ribosome
components are intact and present. To achieve
these goals, we exploited the observation that
glucose starvation (42) of growing yeast cells
inhibits initiation and causes accumulation
of very homogeneous ribosomes without any
ligands, thereby obviating the requirement for
harsh salt-washing steps. We accomplished
gentle cell lysis by shaking the cells with glass
beads, followed by polyethylene glycol frac-
tionation of cell extracts and sedimentation of
ribosomes through a sucrose gradient (31, 32).

Structure Determination

The initial crystals diffracted poorly but were
improved by soaking with various dehydration
agents and metal ions. These improvements
yielded three crystal forms: type I with four
ribosomes in the asymmetric unit and types
II and III with two. All three types belonged
to space group P21, but their cell parameters
differed. Type III crystals diffracted to a reso-
lution higher than 3 Å. Molecular replacement
procedures found clear solutions in all the crys-
tal forms by use of a search model composed
of the large subunit (50S) from H. marismortui
(11) and the small subunit (30S) from T. ther-
mophilus (43). This solution, following phase
improvement through rigid-body refinement,
was used to locate several hundred osmium
sites in type III crystals and thus obtain initial
single-anomalous dispersion (SAD) phases.
We performed the following steps: (a) phase
improvement using solvent flattening and
intercrystal and noncrystallographic averaging
between the three forms; (b) expansion of
the model by manual building, followed by

rigid-body refinement of large domains; and
(c) location of additional osmium sites by use
of the expanded model and map recalculation.
When the model approached completion, the
number of located osmium sites reached 700.

The model consisted of two ribosomes in
the asymmetric unit of type III crystals and
contained the entire ribosomal RNA (rRNA)
moiety, except for a single flexible expansion
segment (ES), ES27, and a small part of
ES7, both in the 60S subunit. The density of
the phosphates was usually unambiguous and
guided modeling of the rRNA parts. The model
also contained the Cα backbone of all proteins
with homologs in prokaryotic ribosome X-ray
structures, including, in most cases, their
eukaryote-specific additions. This structure
was determined at 4.2-Åresolution (32).

To extend the resolution of the electron-
density maps, we collected data from 13
isomorphous crystals (31). Improvements in
crystal treatment and data-collection method-
ology were also instrumental in obtaining
a full data set at 3.0-Åresolution (31). We
combined the phases obtained from the refined
lower-resolution model with experimental
SAD phases derived from ∼1,400 osmium
hexamine sites. The last round of model
refinement was Rfree/Rwork = 22.8%/18.2%.
The final model consisted of two ribosomes
in the asymmetric unit, termed ribosomes A
and B, that differed markedly in the degree of
rotation of the 40S subunit relative to the 60S
subunit (4◦ in ribosome A and 9◦ in ribosome
B) and in the extent of 40S head swiveling
(15.5◦ in ribosome A and 10.5◦ in ribosome B).

Ordered protein side chains were clearly
visible in the electron-density maps, and in
most cases, we could distinguish between rRNA
purines and pyrimidines. Most yeast ribosomal
proteins have duplicate genes (44), and in sev-
eral cases the high quality of the X-ray data al-
lowed us to determine the differences in the
amino acid sequences between isoforms of ri-
bosomal proteins (31).

A mass spectrometry analysis identified
Stm1 as the only nonribosomal component
of the ribosome preparations, and we traced
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residues 21–177 of this protein. The final model
contained all 44 proteins that are absent in bac-
teria and all 35 universally conserved proteins,
with the exception of the highly mobile protein
L1, regions within the L7/L12 stalk proteins,
and residues located in disordered loops or tails.
The rRNA was modeled almost completely, ex-
cept for the major hairpin of ES27L, part of the
L1 stalk, and a small part of ES7L. This model
included ∼90.5% of all ∼13,000 ribosomal pro-
tein residues and 96.5% of the ∼5,500 rRNA
residues. Approximately 2,000 metal ions were
also present.

THE ARCHITECTURE OF THE
80S YEAST RIBOSOME

Core of the Ribosome

Both bacterial 70S and yeast 80S ribosomes are
asymmetric assemblies comprising more than
50 different proteins and three or four RNA
chains (to see an overall view of prokaryotic
and eukaryotic ribosomes, see Supplemental
Video 1; follow the Supplemental Material
link in the online version of this article or
at http://www.annualreviews.org). Each
ribosomal component is present in a single
copy, except for the stalk proteins L7/L12 and
P1/P2, which are present in four or six copies.
Early genetic data, corroborated by structural
studies, revealed that bacterial and eukaryotic
ribosomes share a common structural core,
which comprises 34 conserved proteins (15 in
the small subunit and 19 in the large subunit)
and ∼4,400 RNA bases that harbor the major
functional centers of the ribosomes, such as the
decoding site, the peptidyl transferase center,
and the transfer RNA (tRNA)-binding sites (1,
24, 45).

Apart from the core (Figure 1), each
ribosome contains a unique set of specific
moieties: domain-specific proteins, insertions
and extensions of conserved proteins, and
ESs of rRNAs (46, 47). The 70S ribosome
contains 20 bacteria-specific proteins (6 in the
30S subunit and 14 in the 50S subunit); a few
extensions of the conserved proteins; such as

proteins S2, S3, and S4; and a few extensions of
rRNA, such as helices h6, h17, and h33a in 16S
rRNA and helices H1 and H68 in 23S rRNA.
The 80S ribosome contains 46 eukaryote-
specific proteins (18 in the 40S subunit and
28 in the 60S subunit) and extensions and
insertions in most of the proteins of the core,
and the rRNA contains several extensions in
the conserved rRNA chains; its total length is
900 or more bases. Most of these rRNA and
protein moieties envelop the core from the
solvent side and therefore are accessible for
potential interactions with molecular partners,
such as translation factors and chaperones.

The composition of ribosomes may also vary
within bacteria, within eukaryotes, and within
a single species (although to a lesser extent)
under different conditions of growth and stress.
Within each domain of life, ribosomes usually
contain the same set of rRNA and protein
chains, and all divergence is achieved via alter-
ations of the length and sequence of ribosomal
components, mainly rRNA. In eukaryotes,
the size of the 80S ribosome varies within an
∼1-MDa range, mainly owing to insertions
in four RNA ESs (ES7L, ES15L, ES27L, and
ES39L) in the 25–28S rRNA. In a few cases,
ribosomes contain one fewer or one additional
ribosomal protein. The 30S and 40S subunits
have similar shapes, including the landmarks
known as the head, body, platform, beak,
and shoulder (Figure 2a,c). The messenger
RNA (mRNA)- and tRNA-binding sites (A,
P, and E) are located on the subunit interface.
The mRNA enters through a tunnel located
between the head and the shoulder and wraps
around the neck of the 30S subunit. The
mRNA exit site (the 5′ end of the mRNA) is
located between the head and the platform (48,
49). The decoding center of the small subunit,
where the codon and anticodon are paired and
convey fidelity to mRNA decoding, is located
on the interface surface and is made of three
domains from the head, the shoulder, and the
penultimate stem. When one compares the
overall structures, it is evident that there is
no difference between the decoding centers
of eukaryotes and bacteria but that there are
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158 and 3,396 bases
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Small subunit: 40S
33 proteins (+18)
18S: 1,800 bases

4.3 MDa
80 proteins

4 rRNA molecules

Large subunit: 60S
47 proteins (++1)
28S: 5,034 bases
5.8S: 156 bases
5S: 121 bases

Small subunit: 40S
33 proteins

18S: 1,870 bases

The common coreBacteria
(Thermus thermophilus/

Escherichia coli)

Lower eukaryotes
(Saccharomyces cerevisiae) 

Higher eukaryotes
(Homo sapiens)

Figure 1
Composition of bacterial and eukaryotic ribosomes and the common core. Bacterial and eukaryotic
ribosomes share a massive conserved core built of RNA (light blue) and proteins (light red ). Ribosomes in
each domain of life contain their own set of proteins in addition to the core: extensions in conserved proteins
(both in red ) and extensions in ribosomal RNA (rRNA) (blue). Both 5.8S and 25–28S rRNA molecules are
homologous to 23S rRNA in bacteria. Dashed lines around the core indicate positions of flexible stalks that
are usually disordered in X-ray structures. For the sake of simplicity, these lines are not shown on other
structures. The 80S structure of higher eukaryotes has not been determined by X-ray analysis but is highly
similar to the solved structures of yeast and Tetrahymena thermophila ribosomes. On the panel of human
ribosomes, the yeast 80S structure appears in gray scale, and dashed lines indicate the positions of long RNA
expansion segments, the most distinctive characteristic of ribosomes from higher eukaryotes. Based on X-ray
and cryo–electron microscopy structures from References 31, 40, 43, 59, and 81–87.

extensive differences between the solvent sides
of the small ribosomal subunits.

The 50S and 60S subunits have similar over-
all crownlike shapes, which encompass the cen-
tral protuberance, the L1 stalk, and the L7/L12
stalk (in prokaryotes) or the P stalk (in eu-
karyotes) (Figure 2b). On the 60S ribosomal
subunit, 27 eukaryote-specific proteins, multi-
ple insertions and extensions of conserved pro-
teins, and several rRNA ESs are concentrated
on the periphery of the subunit, forming an al-
most continuous ring-shaped assembly that en-
velopes the core (Figure 1). This ring-shaped
assembly comprises two clusters of eukaryote-
specific moieties, about which little is known in
terms of biological function.

Located on the interface side of the
large ribosomal subunit are the three tRNA-

binding sites (A, P, and E) and the pep-
tidyl transferase center, where the peptide
bond formation is catalyzed. This peptidyl
transferase center is adjacent to the en-
trance of a tunnel, along which nascent
proteins progress before they emerge from
the ribosome on the solvent side. The overall
absence of bacteria- and eukaryote-specific
moieties on the central regions of both the
solvent and interface sides of the subunit
is consistent with the universally conserved
functions of these areas. The surface of the
peptidyl transferase center is also devoid of
bacteria- and eukaryote-specific moieties, as
is the area around the peptide tunnel on the
solvent side, which is used for ribosome associ-
ation with membranes during protein synthesis
(Figure 2b,d ).
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Head
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Subunit interface

Solvent side

L24e

L19e

L41e
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L1 stalk

P stalk

60S subunit40S subunit
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PTC

ES6S

a b

Body
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mRNA
exit

mRNA
entrance

Peptide
exit

Figure 2
View from (a,b) the interface and (c,d ) the solvent side of ribosomal subunits of the yeast ribosome, showing
the decoding center (DC), head, body, platform, beak, and shoulder in the small subunit and the central
protuberance (CP), peptidyl transferase center (PTC), L1 stalk, and P stalk in the large subunit. The
common core consists of ribosomal RNA (white) and proteins (light orange); eukaryote-specific moieties are
shown in red. Abbreviation: mRNA, messenger RNA.

The high sequence and structural conserva-
tion of the decoding and peptidyl transferase
centers, as well as of the tRNA substrates, sug-
gests that the knowledge about both the mech-
anism of decoding genetic information (50, 51)
and the peptide-bond formation that we have
gained from studies on prokaryotic and archaeal
ribosomes can be applied to eukaryotic ribo-
somes (52). This observation indicates that, in
general, the mechanism of elongation in eu-

karyotic protein synthesis is very similar to that
in prokaryotes. Also, we expect that eukaryote-
specific elements are involved in regulation of
initiation, termination, and recycling of trans-
lation (53). All these translation steps in eu-
karyotes are much more complex. For example,
eukaryotic initiation requires a multifunctional
complex of trans-acting factors bound to the ri-
bosome that are as massive as the ribosome itself
(54, 55).
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New Nomenclature of
Ribosomal Proteins

To facilitate comparison between ribo-
somes from different species, we adopted a
nomenclature system that is based on the
names of protein families (http://www.
uniprot.org/docs/ribosomp) (Table 1). In
this convention, the default name for any
protein in the universally conserved core (i.e,
with bacterial homologs) is the bacterial name
because that is the name given to the entire
protein family. Eukaryotic proteins lacking
bacterial homologs have names that end with
the letter e. Exceptions to these rules are as
follows: The name S. cerevisiae (instead of the
protein family name) is used for eukaryote-
specific proteins whose protein family names
are derived from mammals and have an ad-
ditional letter A (56). For example, the yeast
protein S1, which belongs to the protein family
S3Ae, is termed S1e. Figure 3 shows the
positions of all the ribosomal proteins on the
surface of the ribosome.

Expansion Segments

The rRNA expansion elements are located
predominantly on the periphery of the solvent-
exposed sides of both subunits (Figure 4a–d ).
As mentioned above, the interface between the
ribosomal subunits, as well as the area around
the mRNA entrance and the polypeptide exit
tunnel, is highly conserved and contains very
few ESs and eukaryote-specific protein parts
(31). The most impressive example of a eukary-
otic ES is the ∼200-nt-long ES6S in the small
ribosomal subunit. This ES emerges at the sol-
vent side of the platform, where it is enveloped
by several eukaryote-specific proteins, includ-
ing a 60-amino-acid-long α-helical extension of
the C terminus of protein L19e (Figure 4a,b).
ES6S then extends one of its two long arms in
the direction of the shoulder, where it interacts
with protein S8. The second long arm of this
ES runs down toward the bottom of the small
subunit. The tip of the second arm is located
∼120 Åaway from the tip of the first arm. ES6S
is in contact with the ribosomal components

that form part of both the exit and entry sites of
the mRNA. Therefore, ES6S may be involved
in translation initiation, perhaps as a docking
surface for factors that participate in activities
on both the mRNA exit and entry sites (57).

Unlike prokaryotic rRNA, eukaryotic ESs
are rich in irregular nonhelical elements. In
two-dimensional diagrams, rRNA is repre-
sented by helices connected by irregular linkers,
but three-dimensional crystal structures reveal
that in prokaryotes these linkers form regular,
double-stranded extensions of neighboring he-
lices (10, 11). In contrast, the 80S ribosome
structure reveals that long linkers within sev-
eral ESs of 25S rRNA form nonhelical, mostly
single-stranded elements—a unique character-
istic of eukaryote-specific rRNA (31). These
linkers, which contain high levels of unpaired
nucleotides that neither stack with neighboring
nucleotides nor participate in any RNA–RNA
interactions, play a dominant role in the associa-
tion between rRNA ESs and proteins. Multiple
interactions with several proteins that employ
different binding modes can be packed within
a short, single-stranded stretch, as exemplified
by the shortest stretch in ES39L. The applica-
tion of such stretches as a platform for protein
binding evokes Sm protein assembly onto the
single-stranded Sm-site RNA in spliceosome
small nuclear ribonucleic particles (58).

Intersubunit Bridges

Intersubunit bridges are important because
they maintain communication pathways be-
tween the small and large subunits during pro-
tein synthesis. During translation, the ribosome
undergoes global conformational rearrange-
ments that are required for mRNA and tRNA
translocation, termination, and other processes.
These changes involve intersubunit rotation
and swiveling of the head domain of the small
subunit. The interactions between the ribo-
somal subunits change with each rearrange-
ment and are dynamic in composition. The 80S
ribosome model derived from crystals captured
the ribosome in the rotated state.

Several eukaryote-specific bridges were vi-
sualized in low-resolution cryo-EM studies of
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Table 1 Nomenclature for ribosomal proteins

Taxonomic rangea Bacteria Yeast Human
Small subunit B S1 — —

S1e A, E — S1 S3A
S2 B, A, E S2 S0 SA
S3 B, A, E S3 S3 S3
S4 B, A, E S4 S9 S9
S4e A, E — S4 S4
S5 B, A, E S5 S2 S2

B S6 — —
S6e A, E — S6 S6
S7 B, A, E S7 S5 S5
S7e E — S7 S7
S8 B, A, E S8 S22 S15A
S8e A, E — S8 S8
S9 B, A, E S9 S16 S16
S10 B, A, E S10 S20 S20
S10e E — S10 S10
S11 B, A, E S11 S14 S14
S12 B, A, E S12 S23 S23
S12e E — S12 S12
S13 B, A, E S13 S18 S18
S14 B, A, E S14 S29 S29
S15 B, A, E S15 S13 S13

B S16 — —
S17 B, A, E S17 S11 S11

S17e A, E — S17 S17

B S18 — —
S19 B, A, E S19 S15 S15
S19e A, E — S19 S19

B S20 — —

B S21 — —

B THX — —
S21e E — S21 S21
S24e A, E — S24 S24
S25e A, E — S25 S25
S26e E — S26 S26
S27e A, E — S27 S27
S28e A, E — S28 S28
S30e A, E — S30 S30
S31e A, E — S31 S27A
RACK1 E — Asc1 RACK1

(Continued )
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Table 1 (Continued )

Taxonomic rangea Bacteria Yeast Human
Large subunit
L1 B, A, E L1 L1 L10A
L2 B, A, E L2 L2 L2
L3 B, A, E L3 L3 L3
L4 B, A, E L4 L4 L4
L5 B, A, E L5 L11 L11
L6 B, A, E L6 L9 L9
L6e E — L6 L6
L8e A, E — L8 L7A

B L9 — —
L11 B, A, E L11 L12 L12

B L12/L7 — —
L13 B, A, E L13 L16 L13A
L13e A, E — L13 L13
L14 B, A, E L14 L23 L23
L14e A, E — L14 L14
L15 B, A, E L15 L28 L27A
L15e A, E — L15 L15
L16 B, A, E L16 L10 L10

B L17 — —
L18 B, A, E L18 L5 L5
L18e A, E — L18 L18

B L19 — —
L19e A, E — L19 L19

B L20 — —
L20e E — L20 L18A

B L21 — —
L21e A, E — L21 L21
L22 B, A, E L22 L17 L17
L22e E — L22 L22
L23 B, A, E L23 L25 L23A
L24 B, A, E L24 L26 L26
L24e A, E — L24 L24

B L25 — —

B L27 — —
L27e E — L27 L27

B L28 — —
L28e E — — L28
L29 B, A, E L29 L35 L35
L29e E — L29 L29
L30 B, A, E L30 L7 L7
L30e A, E — L30 L30

B L31 — —
(Continued )
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Table 1 (Continued)

Taxonomic rangea Bacteria Yeast Human
L31e A, E — L31 L31

B L32 — —
L32e A, E — L32 L32

B L33 — —
L33e A, E — L33 L35A

B L34 — —
L34e A, E — L34 L34

B L35 — —

B L36 — —
L36e E — L36 L36
L37e A, E — L37 L37
L38e A, E — L38 L38
L39e A, E — L39 L39
L40e A, E — L40 L40
L41e A, E — L41 L41
L43e A, E — L43 L37A
L44e A, E — L42 L36A
P1/P2 A, E — P1/P2 (αβ) LP1/LP2
P0 B, A, E L10 P0 LP0

aAbbreviations: A, archaea; B, bacteria; E, eukarya.

the yeast ribosome (24, 25). Our model, at 3.0-Å
resolution, provided an accurate and detailed
view of the molecular components involved
in these contacts between ribosomal subunits
(Figure 4f ). The evolutionary conservation of
intersubunit bridges at the core of the ribo-
some is noteworthy: Each intersubunit bridge
that has been described in the crystal struc-
ture of the bacterial ribosome (12) has a corre-
sponding bridge in the eukaryotic ribosome. At
the same time, the interaction surface between
the two subunits is nearly doubled in eukary-
otes due to the appearance of additional bridges
(Figure 4f ). There are seven bridges in the
ribosomal core, as well as a few bacteria- and
eukaryote-specific bridges (12, 31, 40, 59). In
virtually all of the additional bridges, the vast
majority of the participating components on
both subunits are eukaryote specific. In striking
contrast to bacteria, proteins play the dominant
role in forming eukaryote-specific bridges (12),
which are located on the periphery of the sub-
unit interface and on the solvent sides of both

subunits. The appearance of these numerous
additional bridges on the outer edge of the eu-
karyotic subunit interface, which significantly
increases the interaction surface between sub-
units, may be the reason for the preferential ro-
tated state of eukaryotic ribosomes (31, 60, 61).

Only one eukaryote-specific bridge is po-
sitioned at the center of the ribosome: bridge
eB14 (Figure 4f ). This bridge is formed by
protein L41e, the smallest protein in yeast cells
(25 amino acids), which consists of a single α-
helix that is enveloped by conserved core rRNA
(Figure 2b). Protein L41e protrudes from the
60S subunit into the 40S subunit in the proxim-
ity of the decoding center and is nearly buried in
a binding pocket composed of helices h27, h45,
and h44. This bridge has two remarkable char-
acteristics. First, the binding pocket of protein
L41e in the small subunit is highly conserved in
eukaryotes and bacteria. Second, in the context
of the full ribosome, protein L41e is much more
strongly associated with the 40S subunit than
with the 60S subunit. Interestingly, although
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Figure 3
Architecture of the 80S ribosome with ribosomal proteins labeled according to the new nomenclature. Views from (a) the E site, (b) the
small subunit side, (c) the A site, and (d ) the large subunit side. Proteins colored red, orange, and yellow belong to the large subunit,
whereas proteins colored blue, cyan, and teal belong to the small subunit. Ribosomal RNA is represented in white. If a protein is
partially obstructed from view, it may be labeled more than once, even though all the ribosomal proteins shown appear in only a single
copy.
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Saccharomyces cerevisiae
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mRNA, messenger
RNA.
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protein L41e forms only minor contacts with
the 60S subunit, it remains part of the large
subunit upon dissociation. In bacteria, there is
only one example of such an unusual bridge; it
is formed by a ribosomal protein of the large
subunit and binds to the small subunit through
substantial parts of their structures (62). This
unusual bridge is formed by protein L31, which
is conserved among bacteria, and connects the
central protuberance of the large subunit with
the labile head domain of the small subunit.

The distinguishing features of the eukary-
otic large subunit are two long protein helices,
extending from the left and right sides, that are
markedly distinct from the bridges of the core.
These helices, which are eukaryote-specific ad-
ditions to proteins L19e and L24e, create two
bridges, eB12 and eB13, respectively, that are
not buried within the intersubunit interface
and are accessible from the solvent side. Bridge
eB12, appearing below the mRNA exit tunnel,
is formed mainly through multiple interactions
between several turns of the 60-residue-long
α-helical extension at the C terminus of pro-
tein L19e and ES6S (Figures 2b, 4f ). Protein
L24e consists of an N-terminal domain that re-
sides in the 60S subunit as well as a long, flexible
linker that protrudes deep into the side of the
40S subunit body and a C-terminal domain that
reaches the back of the 40S subunit. One should
keep the architecture of protein L24e in mind,
given the finding that protein L24e is crucial
to the translation reinitiation of polycistronic
mRNAs (63–65).

Peptide Exit Tunnel

During translation, the growing peptide chain
passes through the peptide exit tunnel to
emerge at the solvent side, where it undergoes
processing and folding. Recent X-ray structures
and cryo-EM reconstructions of bacterial, ar-
chaeal, and eukaryotic ribosomes have shown
that the dimensions of these exit tunnels are
almost identical. The 100-Å-long, 10- to 20-Å-
wide, irregularly shaped tunnel spans the entire
body of the subunit. Increasing evidence indi-
cates that the tunnel is a functionally impor-
tant compartment in which the structure of the

nascent peptide is monitored and from which
specific peptides can signal the ribosome to de-
crease its rate of elongation or even completely
stop translation (66–69).

In bacteria and archaea, the tunnel walls are
formed mainly by the conserved portions of the
23S rRNA and contain loops of proteins L4 and
L22 and a bacteria-specific extension of L23
(Figure 5a) (11, 40, 43, 59, 70). In eukary-
otes, the area corresponding to the bacteria-
specific moieties of protein L23 overlaps with
protein L39e (Figure 5b) (31, 34). In both the
50S and the 60S subunits, proteins L4 and L22
form a constriction of the tunnel that is lo-
cated ∼30 Åfrom the peptidyl transferase cen-
ter. In eukaryotes, the constriction is narrower
because of insertions in protein L4. Although
the role of these differences between bacteria
and eukaryotes is unclear, the narrower size of
the constriction in eukaryotes may block the ac-
cess of some macrolide antibiotics to the pep-
tidyl transferase center (71, 72). Investigators
have suggested that these antibiotics must be
delivered to the binding site through the tun-
nel. Genetic studies have revealed that insertion
of six amino acids into the loop of protein L4 in
Escherichia coli endows bacterial ribosomes with
resistance to large macrolides, similar to what
is found in eukaryotes.

On the solvent side, the rim of the polypep-
tide exit tunnel contains several bacteria- or
eukaryote-specific proteins and protein exten-
sions: proteins L17, L22, and an insertion in
protein L24 in bacteria and proteins L39e and
L31e in eukaryotes (Figure 5c,d ). These dif-
ferences are partly associated with the different
processing of the N termini of nascent chains
in bacteria versus eukaryotes.

PERSPECTIVES OF YEAST
RIBOSOME CRYSTALLOGRAPHY

Nonribosomal Protein Stm1

The stress-related protein Stm1 can associate
with 80S ribosomes and inhibit translation, but
the nature and role of these interactions are
unknown (73, 74). In the crystal structure of
the vacant 80S ribosome, we found that Stm1
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binds to the head domain of 40S and prevents
mRNA access by inserting an α-helix through
the mRNA entry tunnel (Figure 5e, f ). Fur-
thermore, Stm1 is bound inside the mRNA tun-
nel from the mRNA entry tunnel through the P
site, where it effectively blocks binding of tRNA
and mRNA at the A and P sites, thereby pre-
venting the formation of any functional ribo-
some complexes (Figure 5f ) (31). The protein
then crosses to the 60S subunit between the 5S
rRNA and protein L5. By interacting with the
ribosome in this way, Stm1 prevents subunit
dissociation and stabilizes the 80S particle.

For preparation of functional ribosome
complexes containing mRNA and tRNA li-
gands, the investigator’s first challenge is to re-
move Stm1 from the ribosome. One can do so
either by elaborating on the existing isolation
procedure for Stm1-containing 80S ribosomes
or by deleting it from the yeast genome, which
is not lethal (75).

Translocation and Domain Motions

The 80S crystal structure consists of two ribo-
some molecules in the asymmetric unit termed

ribosomes A and B. As described above, they
differ markedly in terms of the degree of ro-
tation of the 40S subunit relative to the 60S
subunit (4◦ for ribosome A and 9◦ for ribosome
B) and the extent of 40S subunit head swivel-
ing (15.5◦ for ribosome A and 10.5◦ for ribo-
some B) relative to the unrotated 70S state (49).
Previous cryo-EM and crystallographic stud-
ies (76–79) demonstrated that the two subunits
rotate and swivel relative to one another dur-
ing protein synthesis to allow for the translo-
cation of tRNA and mRNA along the subunit
interface. The two conformations that are ob-
served in the 80S crystal structures appear to
be related to the two states that occur prior to
(molecule A) and immediately after (molecule
B) translocation of tRNA and mRNA across the
interface of the ribosome, as deduced from re-
cent cryo-EM and crystallographic studies of
the ribosome in different states (28, 80). The
crystal structure of the 80S S. cerevisiae ribo-
some provides a unique opportunity for fur-
ther studies of translocation events involved in
the conformational changes that occur during
translation.

SUMMARY POINTS

1. The first crystal structure of the eukaryotic ribosome has been determined.

2. Eukaryote-specific elements of rRNA and ribosomal proteins have been interpreted and
localized on the solvent side of the ribosome structure.

3. The conservative organization of the ribosomal interface and ribosomal functional sites
has been confirmed.

4. Yeast ribosome crystals have two ribosome conformations in one asymmetric unit. These
conformations correspond to the functional states of the ribosome in translocation.

5. The nonribosomal protein Stm1 has been found in the empty ribosome structure.

6. New nomenclature for eukaryotic ribosomal proteins, based on bacterial ribosome struc-
ture and nomenclature, has been proposed.

FUTURE ISSUES

1. To study mechanisms of regulation of translation in eukaryotes, investigators should
undertake the formation and crystallization of ribosome functional complexes.
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2. Knowledge about yeast ribosome crystallography can be exploited for crystallization and
structure determination of the human ribosome.

3. Investigators should study yeast ribosome structure with eukaryote-specific antibiotics.
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