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Abstract

A healthy proteome is essential for cell survival. Protein misfolding is linked
to a rapidly expanding list of human diseases, ranging from neurodegener-
ative diseases to aging and cancer. Many of these diseases are characterized
by the accumulation of misfolded proteins in intra- and extracellular inclu-
sions, such as amyloid plaques. The clear link between protein misfolding
and disease highlights the need to better understand the elaborate machinery
that manages proteome homeostasis, or proteostasis, in the cell. Proteostasis
depends on a network of molecular chaperones and clearance pathways in-
volved in the recognition, refolding, and/or clearance of aberrant proteins.
Recent studies reveal that an integral part of the cellular management of
misfolded proteins is their spatial sequestration into several defined com-
partments. Here, we review the properties, function, and formation of these
compartments. Spatial sequestration plays a central role in protein quality
control and cellular fitness and represents a critical link to the pathogenesis
of protein aggregation-linked diseases.
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INTRODUCTION

The ability of the cell to maintain functional proteins is critical to cell survival (1, 2). Cells have
evolved complex protein quality control (PQC) systems comprised of multiple chaperone and
clearance pathways that cooperate to preserve protein homeostasis (3–6). Disruption of effective
PQC is linked to many human diseases, including neurodegenerative disorders such as Alzheimer’s,
Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis (ALS) but also metabolic diseases,
lysosomal storage diseases, cancer, and aging. Because aggregates of proteins misfolded to the
β-sheet-rich amyloid state are hallmarks of many neurodegenerative disorders (7–10), there has
been keen interest in understanding the cellular and structural bases of protein aggregation. The
recent evidence that cells actively promote sequestration of misfolded protein into inclusions is
challenging the simple view that the aggregates themselves are pathogenic.

Protein folding and assembly begins during translation, often with the assistance of cotrans-
lationally acting chaperones to achieve the native conformation (6, 11). However, newly made
proteins can fail to fold, for instance, if they lack a binding partner, contain mutations or trunca-
tions, or fail to reach the proper cellular compartment (3). Proteins also misfold due to exposure to
damaging environmental conditions such as elevated temperature, pH, or reactive oxygen species
(6, 12–14). Misfolded proteins can have a number of deleterious effects in cells due to loss of func-
tion of a required protein or toxic gain-of-function effects of the misfolded conformation (3, 15).
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Once a protein is misfolded, it can be refolded, degraded, or terminally sequestered. The
PQC system consists of several types of molecular chaperones and degradation systems that work
together to ensure a healthy and functional proteome (13, 16–18). Sequestration of misfolded
and aggregated proteins into distinct compartments in different locations of the cell (19, 20) was
originally thought to be a secondary effect caused by failure of primary mechanisms of quality
control; however, recent evidence indicates that this is an early feature of PQC in normal cells
(19–21). Substantial progress has been made on the nature of spatial PQC in both yeast and
mammalian cells since we first described the presence of two major sites for misfolded protein
sequestration nearly a decade ago (22). In this review, we summarize the current state of this field
and highlight the key areas of uncertainty that will form the focus of research for the next decade.

SPATIAL SEQUESTRATION IN DIFFERENT SUBCELLULAR
COMPARTMENTS

It had long been recognized that misfolded proteins can accumulate in intracellular, insoluble
inclusions. It is now clear that cells use molecular chaperones for recognition and sorting of
misfolded proteins to spatially restricted subcellular compartments (19, 22–24). An increasing
number of spatially distinct PQC compartments have been uncovered, and the exact function of
each is still being identified (Figure 1). Some PQC compartments function to enhance clearance
by the ubiquitin–proteasome system (UPS) or autophagy, whereas others appear to terminally
sequester aggregation-prone insoluble proteins (22, 25, 26). From a conceptual perspective, spatial
sequestration fulfills two additional important functions, namely, to concentrate potentially toxic
conformers away from the cellular milieu (21, 22) and to promote asymmetric inheritance of
damaged proteins upon division so that daughter cells have a fully functional proteome (26–28).
These functions appear to be essential for long-term cellular health and fitness (29–31).

Although most studies of PQC compartments have been carried out in yeast, a clear conser-
vation across eukaryotic cells has been observed, utilizing analogous pathways and sorting factors
(22, 23, 26, 32–35).

Two Major PQC Compartments for Misfolded Cytosolic Proteins

Misfolded cytosolic proteins have been shown to become sequestered in two distinct cytoplas-
mic PQC compartments. Sorting is dependent on the properties of the misfolded proteins, their
chaperone interactions, and possibly also their ubiquitination state. One of the first compartments
discovered contained insoluble aggregates, such as β-sheet-rich amyloid proteins, and was thus
termed the insoluble protein deposit (IPOD) (22). The IPOD is thought to terminally sequester
toxic amyloid and prion proteins in the periphery of yeast cells near the vacuole (22, 36) (Figure 1a).
The connection to amyloid proteins ties the IPOD to late-onset neurodegenerative diseases char-
acterized by insoluble intracellular inclusions. Indeed, the IPOD, defined in yeast, is likely equiv-
alent to the perinuclear aggresome described in mammalian cells as a site of sequestration for
amyloid Huntingtin (Htt) (22, 33, 37). Unlike the IPOD, however, aggresomes are located at the
centrosome and are surrounded by a vimentin cage.

Misfolded and stress-damaged proteins are shuttled to dynamic compartments called Q-bodies
that are anchored to the endoplasmic reticulum (ER) en route to clearance by the UPS (21).
Q-bodies form immediately upon misfolding, suggesting that they represent an early event in cel-
lular PQC. Their formation is energy and chaperone dependent but cytoskeleton independent (21,
38, 39). The misfolded proteins in Q-bodies are rapidly cleared through the ubiquitin–proteasome
pathway, but if clearance is impaired, these misfolded proteins concentrate in the juxtanuclear
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Figure 1
Protein quality control (PQC) compartments in eukaryotic cells. (a) Model illustrating protein misfolding and sequestration in yeast.
Proteins that fold into insoluble, or amyloid, conformations are sequestered to the insoluble protein deposit (IPOD). Soluble misfolded
proteins are stored in Q-bodies en route to the juxtanuclear quality control compartment ( JUNQ). Other PQC compartments in the
yeast cytoplasm include endoplasmic reticulum (ER)–associated compartments (ERACs), stress granules, P-bodies, and proteasome
storage granules (PSGs). Proteins are sequestered into the nucleolus, intranuclear quality control compartment (INQ), and
promyelocytic leukemia (PML) bodies in yeast nuclei. (b) Model illustrating PQC compartments in mammalian cells. Proteins are
sequestered into the JUNQ, aggresome/IPOD, ER quality control (ERQC; mammalian equivalent of the yeast ERAC) system, and
multivesicular bodies (MVBs). Messenger ribonucleoprotein (mRNP) complexes can be sequestered into P-bodies and stress granules
en route to the lysosome for degradation. Nuclear sequestration can occur in the nucleolus, PML bodies, nuclear speckles, paraspeckles,
and Cajal bodies in mammalian cells. (c) PQC compartments in yeast. (i) In the absence of proteasome inhibition, Ubc9ts–GFP (green)
localizes to Q-bodies. Q-bodies are distinct from the IPOD [marked by Htt-Q97–CHFP (red)]. (ii) Upon proteasome inhibition,
Ubc9ts–CHFP (red) localizes to the perinuclear JUNQ as well as to the IPOD, marked by Htt-Q103–GFP (green). (d) Quality control
compartments in mammalian cells. Upon proteasome inhibition, CHFP–VHL (red) localizes to the perinuclear JUNQ, whereas the
aggresome/IPOD is marked by Htt-Q103–GFP (green). Panel c, subpanel i, is adapted from Reference 21 and panel c, subpanel ii, and
panel d are adapted from Reference 22.
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quality control compartment ( JUNQ) (21, 22). The JUNQ forms near the nucleus during times of
stress when the proteasome is impaired (22). Proteins can diffuse in and out of the JUNQ, so this
deposition site is more dynamic than the IPOD and may act as a reservoir for the storage of mis-
folded proteins for subsequent refolding or clearance. Of note, the JUNQ has also been observed
in mammalian cells as a cytoplasmic perinuclear inclusion distinct from that formed by amyloid
proteins (22, 26, 34, 40). Under conditions of severe stress or blocked ubiquitination, misfolded
nonamyloidogenic proteins, such as those created by stress damage or missense mutations, can
be routed to the IPOD (22) or other peripheral aggregates in an Hsp42-dependent manner (32).

Stress Granules Are Storage Sites for the Protein Translation Machinery

During stress, the cytoplasm also sequesters mRNAs and proteins involved in the translation ma-
chinery into at least two different types of compartments: P-bodies, which contain mRNA decay
machinery, and stress granules, which contain several translation-initiation components (41, 42).
Stress granules and P-bodies can interact and exchange messenger ribonucleoprotein (mRNP)
complexes and both can serve as transient mRNP storage vesicles for later use or degradation (43,
44). Stress granules also seem to play a role in the decision to enter apoptosis during times of ex-
treme stress (45). Although these RNA quality control compartments do not specifically sequester
misfolded proteins, their formation and dissolution appear to involve chaperone regulation (42,
46–49).

It is currently unclear to what extent the cytosolic PQC compartments described here—most
specifically, Q-bodies, the JUNQ, and the aggresome/IPOD—overlap with the RNA quality
control compartments, P-bodies, and stress granules in terms of location, protein composition, and
cellular function. However, molecular chaperones characteristically associated with Q-bodies and
the JUNQ also colocalize with stress granule proteins (46, 49–51), suggesting that their formation
may be coordinated during stress. Thus, multiple types of inclusions exist under physiological
conditions and must form through separate pathways for sorting misfolded proteins and translation
factors. Stress appears to require the deposition of these components into distinct single sites until
the stress is relieved. It will be interesting to better understand the determinants for recognition and
sorting of misfolded proteins, mRNA, and translation factors to these distinct subcellular locations.
Mechanistically, sequestration may involve phase separation through sorting components with
distinct specificities (52–57).

Sites of Nuclear PQC

Misfolded proteins can also accumulate in the nucleus (24, 58–60). The nucleus contains a number
of different compartments, but the most pronounced is the nucleolus. Although traditionally seen
as the site of ribosomal RNA production and ribosome biogenesis, the nucleolus is also involved in
the stress response and aging (61, 62). The nucleolus becomes destabilized during stress, leading
to the sequestration of the E3 ubiquitin ligase Mdm2, which can no longer bind to its target
protein p53. This promotes p53 activation and expression of target genes, leading to cell cycle
arrest and/or apoptosis (reviewed in 61). Fragmented nucleoli are also linked to accelerated aging
in yeast with a possible link to premature aging in humans, but this appears to have more to do with
genome integrity than p53 activation (63). Boulon et al. (64) provide an excellent overview of the
effects of different types of stress on composition and fragmentation of the mammalian nucleolus
(and Cajal bodies). Promyelocytic leukemia (PML) nuclear bodies are also punctate proteinaceous
structures found in the nuclear matrix near the nucleolus (65). There are many hypotheses for the
function of PML nuclear bodies, including protein storage or involvement in transcription (61,
65).
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There are different subnuclear structures that are primarily associated with mammalian cells
including nuclear speckles, paraspeckles, and Cajal bodies. Nuclear speckles are storage compart-
ments for precursor (pre)-mRNA splicing factors and reside in the interchromatin regions of the
nucleoplasm (66). Paraspeckles are ribonucleoprotein structures also found in the interchromatin
region (67). They contain the long, noncoding RNA NEAT1 as well as several proteins involved
in transcription or RNA processing. They are proposed to play a role in coordinating gene ex-
pression in different cellular settings and are also involved in the regulation and posttranslational
modification of p53 in cancer cells (68). Cajal bodies are made up of proteins and RNA and teth-
ered to the nucleolus (61, 69). They are sites of assembly or modification of the transcription
machinery that is involved in pre-mRNA splicing, maturation of small nuclear ribonucleoproteins
(snRNPs), and pre-rRNA processing. Of particular interest, SMN is a Cajal body component
critical for assembly of snRNPs in the cytoplasm and their import to the nucleus. Depletion of
SMN causes spinal muscular atrophy, a neuromuscular degenerative disorder affecting the spinal
cord and skeletal muscles (69). Cajal bodies have also been shown to regulate telomere length, a
hallmark of aging in cells (67).

Compared to mammalian nuclei, less is known about nuclear PQC in yeast. A recent study
suggested that cytosolic misfolded proteins can also be routed to an intranuclear quality control
compartment (INQ) (60). The INQ is located just inside the nuclear membrane and next to the
nucleolus and may aid in clearance of misfolded proteins from the nucleus (60). It is currently
unclear how the INQ differs from other nuclear bodies described in mammalian cells; more work
will be required to determine the distinctions between these compartments.

PQC of Membrane Proteins

There are a number of different structures associated with the ER that sequester misfolded pro-
teins, but one of the most highly studied is the yeast ER-associated compartment (ERAC) (70),
which corresponds to the ER quality control (ERQC) system in mammalian cells (71). Both the
ERQC system and ERACs are networks of soluble tubule-vesicular structures that connect di-
rectly to the ER and serve as the site of sequestration for misfolded membrane proteins before
clearance by ER-associated degradation (ERAD) (72).

Aside from resident ER proteins, most misfolded intrinsic membrane proteins appear to be
sorted through the multivesicular body (MVB) pathway (reviewed in 73). This pathway was previ-
ously implicated in recycling activated receptors at the plasma membrane. However, it is becoming
clear that misfolded plasma membrane proteins (74, 75), as well as those of the Golgi body (76),
are also routed to the MVB pathway for lysosomal degradation. It should be noted here that a
separate pathway, more closely related to ERAD, has been identified for misfolded proteins of the
inner nuclear membrane (77).

SUBSTRATES OF SPATIAL PQC

Quality Control on the Ribosome

The last two years have witnessed great progress in our understanding of how the cell clears
nascent polypeptides from defective or stalled translating ribosomes, which was reviewed recently
by Brandman & Hegde (78). Elaborate mechanisms have been identified that sense problems
with the translating mRNA; for example, when ribosomes stall on a defective mRNA, specialized
machineries dissociate the ribosomes, target the mRNA for degradation, and recruit ubiquitin
ligases that target the nascent chain of the failed ribosomes for degradation in a process now called
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ribosome quality control (RQC). In contrast, still little is known about cotranslational quality
control associated with evaluating the folded state of the nascent chain (79) and detecting nascent
chains that fail to reach their native conformation as they emerge from the ribosome.

For RQC, the first step involves recognition of a defective or stalled ribosome. The exact
mechanisms and factors involved in recognition vary depending on the type of stall, but eventu-
ally all result in ribosomal dissociation into the small subunit; the mRNA (which is degraded);
and a ternary complex composed of the large subunit, the tRNA at the P-site, and the nascent
polypeptide. This ternary complex is recognized by the E3 ubiquitin ligase Ltn1/Listerin (an in-
teraction facilitated by Rqc2/NEMF), which ubiquitinates the nascent polypeptide. An additional
component, Rqc2, recruits tRNAs to the dissociated 60S–nascent chain complex and attaches an
alanine-threonine repeat stretch to the C terminus (known as a C-terminal alanine-threonine tail,
or CAT-tail) of the nascent polypeptide. Finally, the ubiquitinated nascent polypeptide must be
extracted from the 60S complex through the action of the AAA+ ATPase Cdc48 and Rqc1, before
it is degraded by the proteasome.

Compromising nascent polypeptide ubiquitination (e.g., by deletion of Ltn1 or Rqc1 in yeast)
triggers a stress response via activation of Hsf1 and leads to the accumulation of the CAT-tail-
containing nascent polypeptides in multiple cytoplasmic puncta (80–83). By sequestering molec-
ular chaperones and other key PQC factors, it is proposed that these CAT-tail-driven puncta are
the main cause of proteotoxicity observed in ribosome-stalled polypeptides (80). Interestingly,
Rqc2 appears critical for this process as inactivation of Rqc2 abrogates both Hsf1 activation and
the formation of multiple cytoplasmic puncta (80–82). The effect this has on proteotoxicity in
this context is unclear; however, the fact that double deletion mutants of Rqc2 and either Ltn1 or
Rqc1 display no marked differences in viability from single Ltn1 or Rqc1 deletion mutants alone
(80) would suggest that determinants of toxicity are more complex than puncta formation or Hsf1
activation alone.

Mistargeting of Newly Translated Proteins

Nascent polypeptides must be targeted to their correct compartment to fold. One of the best-
studied paradigms for cellular misfolding is the mislocalization of tail-anchored ER membrane
proteins in the cytosol. In general, membrane proteins are prone to aggregation in the aqueous
environment of the cytosol due to their hydrophobic transmembrane domains. As opposed to pro-
teins with transmembrane regions at the N terminus or within the body of the sequence—which
are protected from cytosolic exposure by the signal recognition particle as the nascent polypep-
tide emerges from the ribosome—tail-anchored proteins are recognized posttranslationally by
components of the Get/TRC pathway and subsequently inserted into the target membrane (84).
Inefficient targeting leads to the accumulation of tail-anchored proteins in the cytoplasm and
results in neurotoxicity such as that observed in prionopathies (85). When recognition fails, the
cytosolic BAG6 complex instead binds the substrate’s exposed transmembrane region and targets
it for degradation via the UPS (86). However, the tetratricopeptide repeat–containing protein
SGTA can antagonize BAG6-mediated ubiquitination, both by preventing BAG6 binding to the
substrate and by actively triggering substrate deubiquitination (87). Therefore, this quality control
system relies on a balance between prodegradative BAG6 and protargeting SGTA to determine
the fate of the mislocalized membrane proteins. Consistent with this hypothesis, overexpression
of SGTA delays clearance of mislocalized membrane proteins and causes them to accumulate in
insoluble cytoplasmic puncta (88).

Another PQC system that is triggered by mislocalized proteins involves specific detection of
mitochondrial proteins in the cytosol. In a mammalian cell, roughly 1,000 different proteins need
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to be imported into mitochondria following translation (89). Inefficient mitochondrial protein
import, such as that observed during aging or neuromuscular degeneration, results in their toxic
accumulation in the cytosol, eventually triggering cell death (90). Recent work shows that cells can
delay this toxic accumulation by simultaneously reducing protein translation and increasing pro-
teasome activity (91, 92), similar to the unfolded protein response (UPR) induced upon misfolded
protein accumulation in the ER lumen (93). In the case of mitochondrial membrane proteins,
it has recently been proposed that ubiquilins play a role in both targeting and triage (94). The
mechanism of luminal mislocalized mitochondrial protein recognition remains uncharacterized;
it does not seem to induce transcriptional responses associated with the general accumulation
of misfolded proteins in the cytosol, such as the heat shock response (91). Therefore, this path-
way likely represents a specific PQC system that buffers against cell death when mitochondrial
dysfunction is transient.

Stress-Induced Misfolding

In yeast, transcriptome analysis reveals that 900 genes (∼10–15% of the genome) are similarly
modulated by a wide range of environmental stresses (95). In the broadest terms, the common
theme among these core stress-modulated genes is the downregulation of protein synthesis and
cotranslationally acting chaperones and the upregulation of stress-inducible chaperones and degra-
dation components, which presumably protects the proteome from stress (95, 96).

Protein structure is generally fragile, and a variety of environmental stresses, including oxida-
tive stress and heat, can damage or destabilize labile protein structures. Heat shock leads to a clear
accumulation of protein aggregates (97). Newly translated proteins—which haven’t yet reached
their native conformation—are rapidly degraded upon heat shock, with the bulk of folded proteins
being comparatively less affected (98). However, mutations that destabilize protein structure will
render proteins that are at the boundary of stability highly vulnerable to misfolding during stress,
leading to loss of function and aggregation (22, 99, 100, 101). The trade-off among stability, aggre-
gation propensity, and abundance likely imposes an evolutionary drive to reduce the concentration
of aggregation-prone proteins (102, 103); however, this delicate balance can be disrupted by stress.

Heat shock also promotes the sequestration of proteins that remain folded. A recent proteomic
study identified around 170 endogenous proteins that moved from the soluble to insoluble cellu-
lar fraction upon heat shock (51). None of the proteins in the insoluble fraction were misfolded,
and all were recovered in the soluble fraction upon relief from heat shock. Although the authors
concluded that heat shock–induced aggregates are fully reversible and not in fact turned over by
the UPS or autophagy as was previously hypothesized, it is also possible that the mild sedimen-
tation conditions used here—which differed strongly from approaches normally used to identify
bona fide aggregates (104–106)—led to identification of proteins that upon heat shock move to
sedimentable inclusions, such as stress granules, which are much more abundant than heat-labile
proteins that aggregate. Indeed, there is an emerging understanding that stress, stationary phase,
or starvation, in addition to destabilizing labile proteins, induces phase-separation events that store
folded metabolic enzymes and other cellular complexes as a protective mechanism (54, 107, 108).

MECHANISMS AND DETERMINANTS OF SPATIAL PQC

The existence of several distinct spatial PQC pathways and compartments acting on distinct types
of misfolded proteins raises the question of the identity of the factors and determinants involved
in these decisions. Recognition of misfolded proteins may involve a common set of chaperones,
such as Hsp70s, but the location and nature of the misfolded protein may also recruit a specialized
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Table 1 Molecular chaperones implicated in spatial protein quality control

Chaperone Family Compartment Role in protein quality control Reference(s)

Ssa1/2
Hsc70/Hsp72

Hsp70 Q-bodies;
JUNQ/INQ; stress
granules

Refolds proteins in Q-bodies; Q-body coalescence; with Sis1
sorts to INQ; stress granule clearance

21, 22, 24, 49

Hsc82/Hsp82
Hsp90α/β

Hsp90 Q-bodies Refolds proteins in Q-bodies; Q-body coalescence 21

Sse1 Hsp110 Q-bodies Refolds proteins in Q-bodies; Q-body coalescence; Q-body
clearance; substrate ubiquitination

21, 132

Sti1
Hop

Sti1 JUNQ/INQ Sorting factor; JUNQ targeting and clearance 22, 60

Ydj1 Hsp40 Q-bodies; stress
granules

ER-associated sorting factor; Q-body formation; stress
granule disassembly; Rsp5-mediated degradation upon
heat shock

21, 49, 158

Sis1 Hsp40 JUNQ/INQ; IPOD;
stress granules

Sorting factor; with Btn2 sorts to JUNQ; with Cur1 sorts to
INQ; with Hsp104 sorts to IPOD; with Hsp70 sorts to
INQ; proteasomal degradation of cytosolic substrates;
vacuolar targeting of stress granules

23, 24, 49, 60,
114

Hsp26 sHSPs JUNQ/INQ; IPOD Sorting factor under severe heat shock; disaggregation of
heat-denatured proteins

32, 124

Hsp42 sHSPs Q-bodies; IPOD Sorting factor; with Btn2 sorts to IPOD/periphery 21, 23, 32

Hsp104 Hsp100
(AAA+
ATPase)

Q-bodies;
JUNQ/INQ;
IPOD

Disaggregase; with Sis1 sorts to IPOD; JUNQ clearance
after removal of stress

21–23, 32, 60

Btn2 Hook JUNQ/INQ; IPOD Sorting factor; with Hsp42 sorts to IPOD; with Sis1 sorts to
JUNQ

22, 23, 32, 60

Cur1 Hook INQ Sorting factor; with Sis1 targets to INQ 23

Cdc48
p97/VCP

AAA+
ATPase

INQ; ERAD; stress
granules

“Extractase”/disaggregase; extracts ubiquitinated membrane
proteins for ERAD; keeps aggregation-prone nuclear
proteins soluble for ubiquitination; autophagic clearance of
stress granules

47, 146

Abbreviations: ER, endoplasmic reticulum; ERAD, ER-associated degradation; INQ, intranuclear quality control compartment; IPOD, insoluble protein
deposit; JUNQ, juxtanuclear quality control compartment; sHSP, small heat shock protein.

machinery for sorting to a given PQC compartment. In this section, we describe what is currently
known about how a cell sorts misfolded proteins into distinct PQC compartments.

Molecular Chaperones Are Key Regulators of Spatial PQC

Molecular chaperones are central to misfolded protein recognition and sorting to the various PQC
compartments. For this, chaperones cooperate with other sorting factors and cellular structures
such as the nuclear membrane, ER network, and cytoskeleton to recruit misfolded and damaged
proteins to a particular quality control compartment (Table 1).

As chaperones also mediate de novo folding of newly synthesized proteins and the refolding of
misfolded/aggregated proteins, an important question concerns how triage decisions, namely, to
fold or sort to a PQC compartment, take place. Protein folding relies on several different ATP-
dependent chaperone families, including the ring-shaped chaperonins and the Hsp70 and Hsp90
families (3, 6). Together with a plethora of cochaperones, these chaperones promote protein
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folding and assembly through cycles of ATP-driven binding and release. Stress also upregulates
members of these chaperone families, including Hsp70, Hsp90, Hsp110, and small heat shock
proteins (sHSPs) (96), all of which have been implicated in PQC (6, 19, 109–112). Each of these
heat shock protein families has also been shown to play a role in the formation of Q-bodies, the
IPOD, the JUNQ and the INQ (21, 22, 32, 60). Hsp70s are central to all these pathways, but the
selectivity for sorting of misfolded proteins to different compartments appears to be determined
by their cochaperones.

Polypeptide substrate binding and release from Hsp70 is driven by cycles of ATP binding and
hydrolysis, which are regulated by cochaperones such as the J-domain proteins and the nucleotide
exchange factors (NEFs) (113, 114). The J-domain proteins, which promote substrate binding
to Hsp70 as well as ATP hydrolysis, are themselves chaperones in their own right (113). Ydj1,
Hlj1, and Sis1—all members of this family—are required for Q-body formation and maturation,
with Sis1 shuttling being especially important for targeting of stress-denatured proteins to the
nucleus and/or proteasomes (21, 23, 24, 115). Differential binding of the Ydj1 and Sis1 have
also been shown to target prions to different fates (116). The Hsp70 nucleotide exchange factors
Sse1/Hsp110, itself an ATP-dependent chaperone, and Fes1/HspB1 are also required for clearance
and sorting to the Q-bodies (21, 117–119).

The HOOK family member Btn2 is another stress-induced protein implicated both in forma-
tion of the INQ and JUNQ and in targeting of prions (23, 60, 120, 121). In cooperation with Sis1,
Btn2 is proposed to be a major sorting factor for nuclear deposition of aggregates (19, 23, 60).
By contrast, interaction of Btn2 with the ATP-independent chaperone Hsp42 leads to the forma-
tion of peripheral inclusions (23). Hsp42 is an sHSP required for Q-body formation, but it also
colocalizes with the IPOD under stress (21, 32). Under severe heat shock, another sHSP, Hsp26,
becomes activated (122, 123) and colocalizes with spatial PQC sites (32). sHSPs are emerging as
ATP-independent chaperones crucial for spatial sorting and sequestration of misfolded proteins.
Organized in large oligomeric complexes, these proteins bind and suppress the aggregation of un-
folded proteins, and their affinity for substrates is greatly increased upon heat shock. Interestingly,
many sHSPs are regulated by the Daf-16/FOXO transcription factor (105, 124–126), which has
been shown to stimulate a transcriptional induction of aggregases or sequestrases that promote
formation of protective inclusions in worms (127).

Hsp26, together with the Hsp40–Hsp70 machinery, is also implicated in the disaggregation of
heat-denatured proteins (128). This process is carried out by the yeast-specific AAA+ disaggregase
Hsp104 (129, 130). In an ATP-driven process, Hsp104 forces aggregated polypeptides through its
central pore; the unfolded polypeptide that emerges through the other side can then either refold
spontaneously or as assisted by other chaperones (129). Hsp104 localizes to both the JUNQ
and IPOD (21, 22), and its deletion prevents IPOD (but not JUNQ) formation and severely
inhibits clearance of the JUNQ upon removal of stress (32, 60). There is no Hsp104 homolog in
metazoans, likely because Hsp104 reduces cellular fitness under unstressed conditions (21). It is
however proposed that chaperones such as Hsp110 and Hsp40 cochaperones might perform some
of the same disaggregase functions (131–133). Of note, ubiquilins have recently been implicated
in the clearance of aggregates by shuttling them to the proteasome for degradation (134).

Function of the Ubiquitin–Proteasome System in Spatial PQC

The UPS is responsible for the majority of misfolded protein clearance in eukaryotic cells (reviewed
thoroughly in 135). In yeast, several E3 ubiquitin ligases have been implicated in the degradation
of misfolded proteins, including Ubr1 or San1 in the cytosol or nucleus, respectively (117, 136–
138), as well as the ER E3 ligases Hrd1 and Doa10 (139–142). Although the precise mechanisms
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Figure 2
Multiple proteostasis pathways contribute to management of misfolded cytosolic proteins. A cytosolic misfolded protein that is bound
by Ssa1/2 (Hsp70), Sse1 (Hsp110), and Hsp90 triggers a number of different protein quality control pathways. Binding of small heat
shock proteins (sHSPs) leads to sequestration in Q-bodies en route to the juxtanuclear quality control compartment ( JUNQ) or
degradation by the proteasome. Ubiquitination by Ubr1 or other E3 ligases such as Rsp5 or Hul5 can also mark the protein
for degradation by the proteasome. The ubiquitinated protein can be delivered by Sis1 to a site in or around the nucleus for
proteasomal degradation. If Sis1 function is compromised (e.g., when its expression is lowered, its Hsp70 interaction domain is
mutated, or it is sequestered to polyQ-expanded proteins in the insoluble protein deposit), the ubiquitinated protein accumulates in
cytosolic puncta. The type I Hsp40 Ydj1 may also be required in this process. If ubiquitination by Ubr1 is blocked, some misfolded
proteins can instead be transported to the nucleus—through a pathway requiring Sse1—to be ubiquitinated by San1. The AAA+
ATPase Cdc48 can also guide insoluble nuclear proteins to be ubiquitinated by San1, and blocking Cdc48 leads to sequestration of such
proteins in the intranuclear quality control compartment (INQ).

of triage remain unknown, these E3 ligases are proposed to function in concert with chaperones,
as schematized in Figure 2 for Ubr1/San1 substrates (24, 59, 60, 115, 117, 138, 143).

A role for ubiquitin in targeting of proteins to the JUNQ was suggested by findings that
(a) ubiquitin colocalized with the JUNQ; (b) proteasome inhibition enhanced JUNQ formation
and impeded its clearance; and (c) overexpression of the deubiquitinating enzyme Ubp4p, or dele-
tion of the E2 ubiquitin-conjugating enzymes Ubc4p and Ubc5p, blocked JUNQ formation (22).
Furthermore, fusion of a single ubiquitin moiety to the yeast prion Rnq1 triggered its partial
relocalization from the IPOD to the JUNQ, suggesting that ubiquitination itself was a sufficient
sorting signal for spatial PQC. However, a more recent study (60) did not detect ubiquitin colocal-
ization with VHL in the JUNQ or INQ. Although it is possible that substrate ubiquitination is not
essential for JUNQ/INQ sorting, it is also possible that substrate-specific differences exist, which
may be linked to the intrinsic solubility of the substrates (see the next section). Alternatively, it is

www.annualreviews.org • Mechanisms of Aggregate Deposition 107



BI86CH05-Frydman ARI 31 May 2017 7:24

possible that the ubiquitin modification leading to JUNQ sorting is not a canonical K48-linked
proteasomal targeting chain. Indeed, the finding that mono-ubiquitinated Rnq1 can localize to
the JUNQ (22) supports this hypothesis.

Role of Autophagy Machinery Receptors in Clearance of Spatial PQC Sites

Autophagy was initially characterized as a mechanism for the bulk recycling of larger structures
within nutrient-starved cells. However, it is becoming increasingly apparent that autophagy also
plays a role in PQC networks, including the degradation of aggregated proteins (144). The au-
tophagic clearance of aggregates, termed aggrephagy, involves the recognition of ubiquitin-labeled
cargoes by a number of adapter molecules, such as HDAC6, BAG3, p62/SQSTM1, NBR1, Atg8,
and Cue5 (144–146). HDAC6- and BAG3- mediated autophagy differ in the initial substrate-
recognition steps, with Hsp70 recruitment to aggregates being required for the BAG3-mediated
pathway (145). Additionally, HDAC6-mediated recognition requires K63-linked ubiquitination
of aggregates, whereas recognition by BAG3 appears to be ubiquitin independent. However, both
routes require the subsequent action of p62 and NBR1 for lysosomal degradation. Mammalian
aggresomes containing amyloidogenic proteins appear to be bona fide substrates of autophagy
(144, 147, 148).

Function of Spatial PQC Compartments: Refolding, Sequestration,
or Degradation?

It is unclear what happens to misfolded proteins once they are sequestered in spatial PQC sites.
They could remain there, become refolded by chaperones, or be cleared via the UPS or autophagy.
It is likely that all three paths are possible, depending on the properties of the misfolded proteins
and the cellular context.

The idea that solubility could be a key determinant of JUNQ and IPOD targeting comes from
the finding that the proteins contained within the JUNQ and IPOD differ greatly in their mobility,
as measured by FRAP (fluorescence recovery after photobleaching) and FLIP (fluorescence loss
in photobleaching) assays (22). In the nucleus, aggregation-prone insoluble substrates require
Cdc48 to maintain solubility so that they can be ubiquitinated by San1 (149). Cdc48/p97, an
AAA+ ATPase best known for its role in extracting ERAD substrates from the ER for targeting
to the UPS, may also play a similar role in the cytosol; that is, if a misfolded protein that would
normally be ubiquitinated and degraded by the UPS cannot maintain solubility long enough for
E3 ubiquitin ligase binding and/or ubiquitin transfer, the misfolded protein will aggregate and
therefore become sequestered in the IPOD. Hsp70 may also play a role in maintaining solubility
of ubiquitinated proteins that would otherwise be sorted to the IPOD in an Hsp42-dependent
manner (115, 117).

Even if protein aggregates are cleared, for example, as observed upon removal of stress, it is
difficult to determine whether they are refolded or degraded. It is likely that different types of aggre-
gates have different fates. For example, disaggregation of ubiquitinated proteins by Cdc48/VCP
is likely to release them for proteasomal targeting (149–151), although it should be noted that
ubiquitin-mediated autophagy might also play a role in clearing these aggregates (152). Con-
sistent with this notion, Cdc48/VCP is required for the autophagic clearance of stress granules
in both yeast and mammalian cells (47). By contrast, Hsp104-triggered disaggregation probably
favors refolding by the Hsp70–Hsp90 system (56, 129, 130). Note, however, that this may not
hold true for all contexts, given that Hsp104 overexpression in aged yeast cells restores their oth-
erwise impaired proteasomal activity (153), although it is possible that this is due to the release
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of trapped proteasomes from aggregates rather than the proteasomal degradation of the proteins
disaggregated by Hsp104.

Whether or not aggregated proteins that cannot refold are cleared through the UPS or au-
tophagy is likely dependent on cell context. The relative contribution of the UPS and autophagy
in protein degradation varies greatly in different cell types (154). Autophagy is thought to act as
a back-up mechanism when the UPS cannot meet the cellular proteolytic burden, such as during
stress (33, 155), perhaps because depletion of ATP reserves would inhibit several steps of the
ubiquitination cascade and proteasomal activity. Furthermore, the UPS and autophagy have sev-
eral overlapping elements (156), including the mammalian Hsp70 cochaperones CHIP and the
BAG family, which might directly determine which system a protein is targeted to (157, 158).
Consistent with this hypothesis, several aggregation-prone proteins can be degraded by either
pathway (33, 159, 160).

Stress can also change the specificity of the UPS itself. One study shows that the E3 ubiquitin
ligase Rsp5—which plays a key role in protein trafficking by catalyzing K63-linked substrate
ubiquitination under physiological conditions in yeast—switches to a prodegradative enzyme that
catalyzes K48-linked ubiquitination of a wide range of substrates upon heat shock (161). Rsp5
is also required for Cue5-dependent autophagy of polyQ-expanded Huntingtin upon nutrient
starvation (146). Similarly, the E3 ubiquitin ligase Hul5, which is required to maintain cell fitness
upon heat shock, increases proteasomal processivity and is required for ubiquitination of cytosolic
proteins that are short lived or of low solubility (162). Therefore, stress has pleiotropic effects
on cellular PQC, including changes in the chaperone machinery, upregulation of autophagic
clearance, and remodeling of the UPS to meet changing cellular proteostasis requirements.

Managing Prions and Amyloid Proteins

Whereas PQC sites containing misfolded proteins are generally cleared upon relief from environ-
mental stress, prion or amyloid protein aggregates tend to persist within cells. These aggregates
tend to be sequestered in the IPOD (22, 36)—although one study reports that prions can form
mobile compartments similar to the JUNQ under certain conditions (163).

It is thought that amyloid or prion aggregates are not suitable substrates for the UPS. Given
that the IPOD colocalizes with the macroautophagy marker Atg8 and is located adjacent to the
preautophagosomal structure, it is hypothesized that this compartment can be turned over by
autophagy (22), although direct evidence for this has yet to emerge. However, the finding that the
IPOD is generally inherited by mother cells during cell division (discussed in the next section)
indicates that such aggregates are not effectively cleared by the cell and are instead sites of terminal
aggregate sequestration. In fact, the disaggregation of prions by Hsp104 is a critical step in yeast
prion propagation and toxicity (129, 164 165). It should be noted that the sequestration of prions
in the IPOD can also contribute to proteotoxicity. For example, the Lindquist group found that
toxicity of the yeast prion Rnq1 is linked to selective Rnq1-mediated sequestration of the spindle
pole body protein Spc2 in the IPOD, thereby causing cell cycle arrest (166). Likewise, studies in
mammalian systems have proposed that some aggregates (but not others) can sequester essential
cellular proteins in sufficient amounts to produce a deleterious phenotype (167).

CONSEQUENCES OF SPATIAL PQC

The ultimate goal of all quality control systems—not just in biology—is to ensure that the released
product is at a functional standard that is competent and suitable to fulfill its purpose. Release of a
faulty product can have far-reaching consequences. In the context of a cell, release of faulty proteins
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into the cellular milieu is directly linked to many diseases, including aging-related disorders,
neurodegenerative conditions, metabolic disorders, and all types of cancer. It is unsurprising,
therefore, that eukaryotic organisms have evolved such intricate systems of quality control. In this
section, we describe how these PQC mechanisms keep the cell functional and viable and discuss
how their malfunction is linked to disease onset and/or progression.

Quarantine of Potentially Toxic Species

Protein misfolding and amyloid aggregation is a hallmark of many aging-related neurodegener-
ative diseases, including Alzheimer’s, Parkinson’s, and Huntington’s diseases as well as ALS and
many others. Additionally, protein misfolding can be linked to non-neuronal diseases, including
lysosomal storage disorders, cystic fibrosis, cancer, and aging. These aggregates have been clas-
sified into two broad categories: those with β-sheet-rich amyloid and those without a regular
structure, often called amorphous nonamyloid aggregates, which are sorted to distinct PQC com-
partments. The link between these aggregates and toxicity is unclear. It has been suggested that
aggregates are protective and respond to the above-described pathways to sequester misfolded
proteins (168, 169). In this view, it would be the dysfunction of protein sorting to compartments
and the increase in misfolded soluble species in the cytosol that cause cellular toxicity (170). Alter-
natively, some studies have shown that protein aggregates are linked to toxicity, either outright or
by aberrantly sequestering proteins necessary for cellular functions, such as chaperones and critical
enzymes (10, 171). This might indicate that a certain type of aggregate or PQC compartment is
linked to toxicity and other aggregates/compartments could be protective.

Compromising the sequestration of numerous nonamyloid, nonprion proteins has been shown
to decrease cell viability. To illustrate with one example, depleting cells of Hsp90 results in
the relocalization of several proteins of the galactose utilization pathway into Hsp104-positive
inclusions (172). As imbalances in this pathway are known to cause fatal growth arrest due to the
accumulation of toxic galactose metabolic intermediates, it is likely that this response to Hsp90
inhibition has a cytoprotective function. It is easy to imagine other similar scenarios in which spatial
PQC acts as a general “mop-up” mechanism to correct perturbations in vital signal transduction
networks. However, these pathways may also lead to pathological consequences. For instance,
tumor-causing mutations in p53 cause it to aggregate in nonamyloid inclusions (101, 173). As p53
forms oligomers, the mutant p53 tends to drag the wild-type allele to these inclusions, exacerbating
the loss of function (101, 173, 174).

Maintaining the Integrity of the Proteome

At the most fundamental level, spatial PQC serves to prevent imbalances in the proteome that can
compromise cell function. In addition to sequestration of potentially toxic proteins that interfere
with essential cellular processes, this also involves a number of mechanisms that alter synthesis
and turnover of the proteome as a whole.

Stress granules and translational fidelity. Stress granules ensure that new proteins are not
synthesized under conditions of stress, and allow for the rapid resumption of translation upon
relief from stress. Due to the vulnerability of newly made proteins to misfolding, a halt in protein
synthesis is presumably beneficial and also reduces the load on cellular proteostasis, allowing the
cell to manage the increased formation of aggregates (51, 97, 175). Newly translated proteins
may aggregate before they have a chance to reach their native conformation, because either the
kinetic landscape of the stressed cell favors pathways leading to aggregation (175) or the existing
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aggregates “seed” recruitment of normally non-aggregation-prone proteins, as described for one
mechanism of prion propagation (176). Formation of stress granules increases cell viability (177)
and can also delay entry into apoptosis (178, 179). Consistent with these findings, several studies
have linked survival of cancer cells to stress granule formation in response to chemotherapeutic
agents (180).

Whether stress granules have a protective or pathogenic role in the onset and progression
of other diseases is a topic of controversy. A number of neurodegenerative disease-related pro-
teins, such as TDP-43, Tau, Fus, Huntingtin, and PrP, are found associated with stress granules
(181, 182). Many RNA-binding proteins found within stress granules possess low-complexity,
aggregation-prone domains such as those found in prions (52, 183). An attractive hypothesis is
that some of these disease-causing mutants, or stress, reduce the dynamics of stress granules; the
stabilized stress granules could then drive the formation and propagation of pathogenic protein ag-
gregates (181, 182). Viral infection also triggers robust stress granule formation, but again, whether
or not they are beneficial to the host is unclear and may differ from virus to virus (184, 185).

Proteasome disassembly and relocalization in quiescent yeast. Rapidly dividing cells require
constant cycles of protein synthesis and degradation (186). By contrast, quiescence (e.g., by nutrient
starvation) leads to a drastic reduction in both these processes, presumably because the cell no
longer needs to amplify its bulk protein level (187).

In yeast, starvation or stationary phase causes the 26S proteasomes to disassemble into 19S and
20S subunits (188) and form dynamic cytoplasmic puncta known as proteasome storage granules
(PSGs) (189). Preventing PSG formation is linked to reduced viability in quiescent yeast cells (190).
Note also that dysfunctional proteasomes can at this stage be removed from PSGs by association
with the IPOD—a process dependent on Hsp42 and Cue5 (191, 192). Upon reentry into the
cell cycle, proteasomes within PSGs reassemble and translocate back to the nucleus. Therefore,
PSGs likely represent an inactive reservoir that not only prevents excessive protein turnover in
quiescent phase but also allows rapid upregulation of degradation when log-phase growth resumes.
It is unclear whether or not PSGs (or equivalent structures) form under conditions of stress. Given
that stress granules have been shown to form upon quiescence (193), it would be unsurprising to
find that PSGs exist in stressed cells. In this way, these two structures might provide a common
means by which a cell can carefully control proteostasis under differing protein loads. Remarkably,
other cellular complexes and enzymes localize to cytoplasmic storage granules in quiescent cells,
many of which also contain Hsp42 (191, 192, 194–196).

Mitochondria as gauges of cellular function. Mitochondrial function might act as a sensor for
the state of cellular function as a whole. This is not surprising given the importance of mitochondria
in maintaining correct cellular energy levels. Indeed, severe mitochondrial dysfunction leads to cell
death (90). Several mechanisms exist to delay this fate. We have already discussed how defective
mitochondrial protein import causes the toxic accumulation of mitochondrial proteins in the
cytosol, and considered the recent identification of a cytosolic response that alleviates this toxicity
by reducing protein translation and increasing proteasome activity (91, 92). Accumulation of
misfolded proteins inside the mitochondria themselves triggers the mitochondrial UPR, which
upregulates mitochondrial chaperones and proteases and arrests mitochondrial protein translation
(90, 197), analogous to the effects of cytosol-mislocalized mitochondrial proteins, and the UPR
in the ER. Another recently discovered mechanism in aged yeast cells involves selective removal
and autophagic clearance of part of the damaged mitochondria’s membranes (and with it, any
embedded proteins) but leaves the rest of the organelle intact (198). Should all else fail, the
entire mitochondrion can be cleared by autophagy (mitophagy) (199). Given that mitochondrial
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dysfunction is a hallmark of aging, cancer, and numerous neurodegenerative diseases (200, 201),
it is likely that these quality control mechanisms play a key role in maintaining cell health—
and may point to future avenues for therapeutic intervention. For example, artificially increasing
mitophagy in human fibroblasts and whole mice was recently shown to dramatically reduce many
of the deleterious effects associated with senescence-related aging (202).

Coping with PQC Decline upon Aging

A decline in mitochondrial function is just one of several intracellular changes observed dur-
ing aging. In addition to increased formation of protein aggregates (105, 106), one of the best-
characterized consequences of aging is the buildup of reactive oxygen species and, consequently,
oxidatively damaged proteins (203). One damage-induced modification, carbonylation, normally
marks proteins for degradation but can also lead to formation of high-molecular-weight aggre-
gates (204, 205). Carbonylated aggregates have been implicated in a wide range of aging-related
diseases. This, together with the increased accumulation of misfolded proteins, means that the
burden on the PQC system is dramatically increased in aged cells.

Proteostasis has been shown to decline during aging in many eukaryotes (206, 207). It is unclear
whether the components of the PQC systems themselves decline (e.g., a reduction in the capacity of
molecular chaperones or the UPS to deal with misfolded proteins) or the capacity of these systems
is simply exceeded by an increase in misfolded protein load (6, 207). In Caenorhabditis elegans,
it seems that proteostasis failure is linked to a severe dampening of the heat shock response
and the UPR (208). In humans, one study found that the expression of genes encoding ATP-
dependent chaperones was decreased and that of ATP-independent chaperones was increased in
aged brains (209). Strikingly, this same expression pattern was amplified in the brains of patients
with neurodegenerative disorders. Additionally, PSG formation—which is linked to maintaining
cell viability in quiescent yeast cells, as described above—is also reduced in aged yeast, and deletion
of certain N-acetylation complexes essential for proteasome relocalization and PSG formation
decreases fitness in young cells (210).

If there is such a severe reduction in PQC capacity, it is possible that aggregates formed in
aged cells and tissues are morphologically and functionally distinct from those induced by stress in
younger cells. In young cells, aggregates are formed actively by PQC systems to maintain cellular
proteostasis. By contrast, aggregates accumulate in aged cells due to a failure or decline in these
same PQC systems and so might contribute to pathogenesis. Consistent with this hypothesis,
numerous groups have observed distinct differences between stress-induced and aging-related
protein aggregates (29, 38, 211, 212).

Asymmetric Inheritance of Protein Aggregates

Although the mechanisms described above attempt to limit toxicity during the life span of a cell,
other mechanisms exist to ensure that toxic species are not transferred to one of the daughter
cells following cell division. Yeast cells provide aging paradigms for both mechanisms, whereby
the chronological life span is defined as the length of time a single cell survives and the replicative
life span as the number of divisions a cell can undergo (213). Yeast cells divide by asymmetric
budding, with the daughter cell being smaller than the mother. Both the JUNQ and the IPOD
are asymmetrically inherited by the mother cell during cell division in yeast (214).

Two important studies from the Nyström group identified that oxidatively damaged (27) and
aggregated (28) proteins are almost exclusively sequestered in the mother cell during division.
They identified the longevity-linked protein Sir2p as being critical for this process. Subsequent
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studies have identified involvement of molecular chaperones (Hsp70, Hsp104, Hsp42, and the
TRiC/CCT chaperonin), the actin cytoskeleton, the endocytic and vacuolar pathways, and pro-
teins involved in tethering of aggregates to the ER or mitochondria (19, 214–218). Asymmetric
inheritance would explain the full replicative potential of daughter cells, and also why mother
cells—which accumulate protein aggregates and otherwise damaged proteins—show a limited
replicative life span (219). Consistent with this hypothesis, abrogating asymmetric inheritance
(e.g., in Sir2p mutants, by deleting hsp42 or using actin depolymerization compounds) prolonged
the replicative life span of the mother cell and reduced that of the daughter (29, 30). Overexpress-
ing Hsp104p partially restored asymmetric inheritance and replicative fitness of the daughter cell.
The importance of Hsp104p is further highlighted by the finding that its overexpression also
restores proteasome activity in replicatively aged yeast, which suggests that UPS decline might be
directly linked to aging-related accumulation of aggregates (153).

Asymmetric inheritance of protein aggregates is also seen during mitosis in mammalian cells,
although the mechanisms are likely to be different and involve the intermediate filament vimentin
(26) as well as attachment to the ER (220). Nevertheless, the presence of such a pathway in mam-
malian cells could be one mechanism by which replicative fitness is maintained in cells undergoing
polar divisions, such as differentiating stem cells and tumors. Interestingly, the mechanisms to re-
tain aggregates asymmetrically in dividing neural stem cells decline with age (220), which could
in turn lead to impaired proteostasis. Of course, the molecular basis for aggregate toxicity is one
of the most important questions that remains unanswered.

CONCLUSION

Spatial sequestration of misfolded proteins is a complex process that occurs in many locations in
both yeast and mammalian cells. Although these processes are conserved, some of the compart-
ments and pathways differ across cell types. Sequestration into PQC compartments is not tied to
a breakdown in proteostasis or to disease but is an early physiological response of the cell to the
presence of misfolded proteins. Much work is needed to understand the role these compartments
play in the formation of both toxic and protective inclusions and what effect they have on cellular
fitness and progression of diseases linked to aggregation. Understanding the basic cell biology
involved in spatial sequestration may allow for the development of novel therapeutics for a wide
range of diseases, from neurodegenerative disorders to cancer.
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