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Abstract

Transcriptomics experiments and computational predictions both enable
systematic discovery of new functional RNAs. However, many putative
noncoding transcripts arise instead from artifacts and biological noise, and
current computational prediction methods have high false positive rates. I
discuss prospects for improving computational methods for analyzing and
identifying functional RNAs, with a focus on detecting signatures of con-
served RNA secondary structure. An interesting new front is the applica-
tion of chemical and enzymatic experiments that probe RNA structure on
a transcriptome-wide scale. I review several proposed approaches for incor-
porating structure probing data into the computational prediction of RNA
secondary structure. Using probabilistic inference formalisms, I show how
all these approaches can be unified in a well-principled framework, which
in turn allows RNA probing data to be easily integrated into a wide range
of analyses that depend on RNA secondary structure inference. Such analy-
ses include homology search and genome-wide detection of new structural
RNAs.
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Noncoding RNA
(ncRNA): RNA that
does not code for
protein, which,
depending on context,
may include mRNA
untranslated regions
(UTRs) and/or
nonfunctional RNA

Transcriptional
noise: RNA species
produced by
background error rates
of other normal RNA
biogenesis processes
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INTRODUCTION

Some of the most important and controversial questions in molecular biology and genomics
today are about the biological functions of RNA (9, 36, 76, 107–109). Advances in sequencing
technology have made it possible to survey RNA transcript populations comprehensively using
cDNA sequencing (68), tiled microarrays (35), and now RNA-seq (62). As technology has become
more sensitive, a large number of putatively noncoding RNA (ncRNA) species have been detected,
and the apparent complexity of RNA transcript populations has grown (16, 20, 30).

There are two fundamentally opposed views of this growing complexity. One view is that it
indicates a vast unappreciated repertoire of functional noncoding RNAs (9, 15). Another view is
that many supposed noncoding transcripts are the result of experimental artifacts, analysis errors,
and transcriptional noise (4, 99, 108). On the one hand, the repertoire of functions for RNA
certainly continues to expand for noncoding RNA transcripts (2, 39, 40, 83, 118), cis-regulatory
RNA sequences in messenger RNAs (32, 42, 44, 80, 84, 92), and catalytic RNAs (74, 90). On
the other hand, studies have shown that high-throughput experiments and computational analysis
pipelines suffer from serious systematic artifacts (65, 108, 132), and RNA biogenesis, like any
biochemical process, must have some background level of infidelity (75, 99). Thus, the question
is not whether or not all newly discovered RNA transcripts are functional; rather, the question is,
for any one of them, how to tell the difference.
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RNA secondary
structure:
an essentially
two-dimensional
representation of an
RNA in terms of its
intramolecular nested
base pairing
interactions that form
stems and loops

Transcriptomics:
systematic discovery,
quantitation, and
cataloging of
individual RNA
transcripts

Selective 2′-hydroxyl
acylation analyzed by
primer extension
(SHAPE): a structure
probing chemistry
with favorable
sequence-independent
properties

RNA structure
probing: using
enzymatic or chemical
modification and/or
cleavage experiments
to differentiate
base-paired from
single-stranded
nucleotides in an RNA

Computational methods of RNA sequence analysis are at the crux of addressing these questions,
if only because the data sets are large. Historically, these methods assume that the RNA to be
analyzed is already known to be functional and that a secondary structure is involved. RNA
secondary structure prediction (67, 134, 135), structure-guided sequence alignment (18, 54, 120,
124), and database similarity searching with RNA sequence/structure consensus models (8, 18,
49, 89) are examples of these classic computational problems. Now, it has also become important
to be able to judge whether or not an RNA sequence is likely to have a biological function, as
well as whether or not the RNA has a secondary structure that plays a role in its function. For
example, signatures of evolutionary sequence conservation help distinguish functional RNAs from
transcriptional noise, and signatures of RNA secondary structure conservation help distinguish
RNAs that function via primary sequence alone from those that depend on a more complex
structure.

A class of computational RNA analysis methods has been developed that seeks to identify novel
structural RNAs in genome sequences (6, 11, 13, 26, 72, 86, 102, 106, 113, 115, 123, 129). Structural
RNA detection methods work by looking for evolutionarily conserved RNA secondary structure
using comparative analysis of patterns of covariation in homologous genome sequence alignments.
As a result, these techniques detect structural RNAs, including both structural noncoding RNA
genes and cis-regulatory RNA structures, but they do not detect functional RNAs that act as linear
sequences.

Rather than helping to clarify the results coming from systematic transcriptomics, computa-
tional methods for structural RNA detection have sown a parallel line of confusion. These methods
have been used to predict hundreds, thousands, or even millions of novel structural noncoding
RNAs (ncRNAs), especially in large mammalian genomes (71, 72, 79, 91, 95, 114, 117, 123). The
large number of candidate ncRNAs produced via computational predictions and experimental
transcriptomics has sometimes been seen as independent confirmation of the existence of a vast
hidden complexity of functional RNA, but the computational approaches are subject to their own
list of potential artifacts.

The problem with computational RNA structure detection approaches is that they are unreli-
able (5). Their signal-to-noise ratios are poor, and they are being used at a perilously ragged edge
of statistical significance. Because of difficulties in establishing appropriate negative controls, such
as adequately realistic homologous multiple genome alignments that are known not to be func-
tional structural RNA, there are large uncertainties in calculating statistical significance. Small
errors that are well within these uncertainties could erase the majority of the predictions. Thus,
these methods need to be improved.

The identification of new data sources that could be incorporated into genome-wide sequence
analyses to increase the detectable signal for structural RNAs might dramatically improve the
methods discussed above. One such data source has begun to look feasible. There is renewed
interest in using chemical modification and enzymatic cleavage experiments to probe RNA
secondary structure, using both well-established reagents (such as RNases and dimethyl sulfate)
(10, 38, 60, 77) and, especially, a powerful new class of reagents used in a technique called selective
2′-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry (59, 119). RNA structure
probing experiments have been coupled to high-throughput sequencing readouts, allowing
these approaches to be applied at scale to probe many RNAs in parallel, including transcriptome-
wide structure probing (37, 43, 48, 105, 133).

Structure probing data are noisy and statistical in nature. They provide an informative but
ambiguous signal of RNA structure. Several computational methods have been proposed already
for incorporating probing data into single-sequence RNA secondary structure prediction methods
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(12, 29, 52, 53, 69, 77, 116, 131). As yet, it remains unclear which of these approaches is most
powerful, most principled, or most generalizable to more complex problems in comparison with
single sequence structure prediction.

In what follows, I expand on the above themes, and I conclude by showing how all the existing
approaches for incorporating RNA structure probing data into RNA structure prediction can be
viewed from a unified statistical inference perspective. This perspective suggests ways of naturally
incorporating RNA structure probing data into all other classes of computational RNA analysis
methods that depend on RNA secondary structure inference. Such methods include de novo
genome-wide structure detection and homology search.

HETEROGENEITY OF RNA FUNCTION AND BIOGENESIS

It is necessary to appreciate the extreme heterogeneity of RNA functions in order to understand the
limitations of functional RNA discovery and analysis methods. RNAs can fold into complex three-
dimensional structures. They can present sequence or structural motifs for binding regulatory
macromolecules. They can use complementary base-pairing of linear sequence to recognize other
nucleic acid sequences with exquisite specificity and efficiency. They can use complementarity to
template nucleic acid synthesis. The act of transcription itself may have a function, rather than
the RNA that it produces (55).

Different functional RNAs combine and deploy these modalities in a variety of different ways
(28, 82). RNAs can serve as informational messages, as in protein-coding messenger RNAs.
RNAs can act as structural and catalytic machines, much as protein enzymes and protein com-
plexes do, as in ribosomal RNAs. RNAs can act as scaffolds, deploying a set of protein binding
motifs (either linear or structural) to facilitate assembly of a multiprotein complex, as in sig-
nal recognition particle RNA (73) or telomerase RNA (130). RNAs can act as templates for
complementary RNA or DNA synthesis, as in the core of a telomerase RNA. RNAs can act as
complementary guides, targeting a shared protein machine to several different specific nucleic
acid targets, such as the small nucleolar guide RNAs that direct specific 2′-O-ribose methylations
and pseudouridylations of other RNAs (81). Cis-regulatory RNA motifs act as posttranscriptional
signals and switches (78), with roles in essentially every imaginable step of RNA biogenesis and
trafficking. Regulatory RNA motifs may simply be small linear sequence targets of an RNA binding
protein (80, 93) or may be complex RNA machines, such as riboswitches (92).

RNA biogenesis is also heterogeneous (51). Noncoding RNA genes may be transcribed by RNA
polymerase I, II, or III, often as larger precursor transcripts that undergo trimming and processing.
Some functional RNAs are generated by processing of pre-messenger RNAs (pre-mRNAs), in-
cluding many intron-encoded microRNAs (miRNAs) and small nucleolar RNAs (snoRNAs) (104,
121). Unlike messenger RNAs, functional noncoding RNA transcripts are often not 5′ capped and
3′ polyA+; instead, they exhibit a variety of 5′ and 3′ ends, including circular RNAs with no ends
at all (58). Functional RNAs can range in size from very small (a 4–10-nucleotide protein binding
cis-regulatory site or a 20–25-nucleotide miRNA transcript) to very large (a large RNA catalyst or
a scaffold of several thousand nucleotides).

There is no such thing as an unbiased screen for functional RNAs. No one characteristic signal
discriminates functional RNA from other sequences. Functional RNAs may have conserved sec-
ondary and tertiary structure, but many do not. A linear RNA sequence can function as a message,
a guide, a scaffold, a template, or a signal. Functional RNAs may be independent transcripts aris-
ing from noncoding RNA genes, discoverable by transcriptomics, but the roles of cis-regulatory
RNA sequences in posttranscriptional gene regulation are at least as important (and still relatively
understudied relative to transcriptional regulatory signals).
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Long noncoding
RNA (lncRNA):
noncoding RNA
transcripts longer than
(i.e., other than) the
abundant classes of
small RNAs such as
microRNAs,
snoRNAs, snRNAs,
and tRNAs

Pervasive
transcription:
especially in
mammalian genomes,
the observation that
most of a genome is
transcribed at a
detectable level

TRANSCRIPTOMICS APPROACHES TO SYSTEMATIC
DISCOVERY OF NONCODING RNAs

Powerful experimental transcriptomics approaches (35, 62, 68) have resulted in the description of
large numbers of putative noncoding RNA transcripts, especially what are called long noncoding
RNAs (lncRNAs). lncRNAs are loosely defined as apparently noncoding mRNA-like transcripts
(5′ capped, 3′ polyA+ or polyA−, and transcribed by RNA polymerase II) that are at least 200
nucleotides long.

A small number of lncRNAs have known functions. One of the best studied is Xist, a very large
(19-kb) ncRNA transcript that triggers the heterochromatization (Barr body formation) of one of
the two X chromosomes in females. Among recent lncRNA discoveries, one of the best studied
is HOTAIR, an ∼2-kb RNA in the HOXC cluster that apparently regulates the transcription
of HOXD loci in trans via a mechanism having to do with chromatin modifications and associ-
ation with both the PRC2 histone H3K27 methylation complex and the coREST complex (83,
103). Similar to Xist and HOTAIR, there is evidence that several other lncRNAs are involved in
chromatin modification. A few other lncRNAs have been proposed to have other functions.

For the most part, well-studied lncRNAs such as Xist, HOTAIR, and others including
MALAT1 (125) provide substantial circumstantial evidence for their functionality, even leaving
aside the detailed experimental studies that have focused on them individually. These molecules
are highly expressed and localized to the nucleus. They contain evolutionarily conserved sequence
regions. Their sequences are unique and are devoid or highly depleted of the transposable element
(TE) remnants that are so abundant elsewhere in the human genome.

In contrast, most of the RNAs in the large catalogs of lncRNAs that have yet to be exper-
imentally characterized, lack the aforementioned expected characteristics of functional RNAs.
For example, in one recent meta-analysis of 127 human RNA-seq libraries—notable for the
thoroughness of its data availability, which allowed me to reanalyze the work in considerable
depth—Hangauer et al. (30) identified 53,864 lncRNA loci expressed above a chosen thresh-
old. I have replotted two key observations from their paper in Figure 1 in order to make two
points.

First, we must distinguish genome coverage from expression level when discussing pervasive
transcription (9, 20, 108, 109) and lncRNAs. Figure 1a illustrates how most (here 67%) of the
genome is detectable in cellular RNA (9), but only if we look at very low expression levels relative
to mRNA transcripts. At expression levels that are more typical of known and annotated genes
(coding and ncRNA both), only a small fraction of the genome is covered (108). For example, in
Figure 1a, 85% of the coding mRNA exons are covered at a read depth of at least 100, whereas only
5% of the genome and only 3% of the lncRNAs are covered at the same threshold. Functionally
characterized lncRNAs are unlike the bulk of the lncRNA distribution because they tend to be
expressed at levels that are comparable to or even higher than those of coding mRNAs (see, for
example, H19, NEAT1, and MALAT1).

Second, Figure 1b shows how most cataloged lncRNAs show sequence divergence in com-
parison to repeat sequences that are assumed to be nonconserved and neutrally evolving. Only a
few show segments of sequence conservation, including most of the well-characterized functional
lncRNAs. For example, only 7% of RefSeq exons fall below a threshold conservation score of 1
in Figure 1b, whereas 99.9% of repeats and 91% of lncRNAs are below this threshold. GAS5 is
an exception that proves the rule: GAS5 is an inside-out snoRNA carrier gene, whose function is
to have conserved introns processed into snoRNAs (94). Moreover, according to my analysis with
RepeatMasker, 56% of the sequence of these 53,864 lncRNAs consists of TE remnants, essentially
indistinguishable from genomic background (53%).
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Figure 1
Two key observations about pervasive transcription and long noncoding RNA (lncRNA) catalogs (30). (a) Gray line: fraction of the
uniquely mappable genome (2,570 Mb; assembly version hg18) covered at different thresholds of minimum read depth per genome
position. Red line: coverage of the sequence of 53,864 lncRNAs (38 Mb). Orange line: coverage of the sequence of 364,265 coding
exons of 34,978 RefSeq coding genes (34 Mb). Red circles placed along the lncRNA distribution mark the median read depth over 12
functionally characterized lncRNAs ( y-axis position for these points has no meaning). Read depth units from Reference 30 are roughly
convertible to mean FPKM (fragments per kilobase per million mapped reads) units; means are calculated over 127 RNA-seq libraries.
FPKM = 1,000 ∗ read depth/(read length per fragment)/(millions of fragments), where the aggregate data set has 3.39 billion
fragments with a mean read length of 60 nucleotides per fragment (top x-axis label). Data reanalyzed and replotted with permission
from Hangauer and colleagues (supplementary figure 1 and data set 8 from Reference 30, plus a BED file of read depth coverage per
genome position provided by M. Hangauer). (b) Cumulative distribution of sequence conservation (maximum in 50-bp windows, as
measured by PhyloP in a placental mammalian genome alignment) for human repeat elements ( gray line; presumed to be neutrally
evolving), exons of 31,204 RefSeq coding genes (orange line), and 53,864 lncRNAs defined by Reference 30 (red line). Conservation
values for 12 characterized functional lncRNAs are marked with red circles placed along the lncRNA cumulative distribution (their
y-axis positions have no meaning). Figure redrawn from the same data used in figure 3C of Reference 30, with permission.

To be functional, an RNA need not necessarily be expressed at levels comparable to those of
known mRNAs, nor evolutionarily conserved, nor devoid of TE remnants (15). However, other
more likely explanations exist for low-level nonconserved transcripts with TE content similar to
genomic background.

One source of lncRNAs is transcriptional noise (75, 99). Some authors (76) have taken tran-
scriptional noise to mean random transcription, a uniform haze across the genome, implying that
the observation that a lncRNA is expressed in a tissue-specific manner is evidence of functional-
ity (30). However, the neutral expectation is that cryptic RNA transcription and processing are
driven by randomly occurring (specific and discrete, but cryptic) short binding sites for regu-
latory proteins. Expression patterns of these discrete cryptic transcripts will follow the specific
spatiotemporal expression patterns of the regulatory proteins that activate them (17).

Other sources of lncRNAs are computational analysis errors, including failures to recognize
predictable experimental artifacts. Half of the so-called noncoding RNAs in a pioneering paper on
lncRNAs from the Functional Annotation of the Mouse 3 (FANTOM3) project (68) are cloning
artifacts that arose by internal priming on polyA tracts in pre-mRNA (65). False transcribed regions
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are created by cross-hybridization artifacts on genome tiling arrays (108) and by mismapping of
RNA-seq reads (even uniquely mapped reads) (132).

Even defining a transcript as noncoding is surprisingly difficult (34). Many real proteins are
shorter than the typical open reading frame (ORF) length cutoff of ≥100 amino acids used for
defining ncRNA (31). More powerful methods for recognizing coding genes using comparative
sequence analysis are often used (45, 112), but they are often trained and their accuracy evaluated
on complete sequences of normal proteins rather than on mRNAs expected to contaminate a
lncRNA catalog (these are not average mRNAs but are instead an extreme tail of the coding
mRNA distribution that is enriched for short coding genes and partial transcript sequences).
Even basic rules for defining ncRNA have proven inexplicably difficult to apply. The FANTOM3
bioinformatics pipeline failed to recognize that 27% of the so-called ncRNAs that they identified
in fact do contain an ORF of ≥100 amino acids, and 25% of them have a BLASTP similarity to
the protein database of E ≤ 10−10 (65), even though these criteria were among those used in the
FANTOM3 analysis of coding potential.

Putative lncRNAs need to be treated as heterogeneous, not as a class. Only some are likely to be
functional RNAs, and these are likely to have a variety of functions. Careful computational analyses
can help prioritize and sort putative lncRNAs into different categories. Improved computational
tools of all sorts will help these analyses. Such tools include read mappers with lower false posi-
tive mapping rates, spliced transcript assemblers that assemble longer and more complete RNA
transcripts from RNA-seq data, more quantitative measurements of sequence conservation and
evolutionary constraint, more powerful methods for detecting small coding regions, and better
methods for detecting homology between RNA sequences.

Often these computational analyses are subtractive. They look for positive signals of something
else (e.g., coding regions, experimental artifacts) to winnow down a set of candidate lncRNAs
and enrich for functional RNAs. One of the more interesting areas to me is the development
of methods for detecting evolutionarily conserved RNA secondary structure. Conserved RNA
secondary structure is one of the few affirmative signals we can look for in a functional RNA.

COMPUTATIONAL DETECTION OF CONSERVED RNA STRUCTURE

An evolutionarily conserved RNA secondary structure might be the most general feature shared by
many functional RNAs. Obviously, a drawback of using conserved structure as a detection strategy
is that this strategy will miss functional RNAs that act primarily by their linear sequences. Even in
the best-studied lncRNAs, it remains somewhat unclear whether there is much conserved RNA
structure. RNA secondary structures have been proposed for parts of HOTAIR (37, 103), parts
of Xist (50), and for other lncRNAs (66). In addition, MALAT1 clearly has a fascinating transfer
RNA (tRNA)-like structure at its 3′ end (125, 126). But lncRNAs that act as scaffolds, for example,
for chromatin modification complexes, could well bind those complexes via single-stranded RNA
sequence motifs. Nonetheless, computational detection of conserved secondary structure is a
useful signal to positively identify at least a subset of functional RNAs against a background of
other less interesting explanations, and this technique has an advantage (over transcriptomics, for
example) in that it can also detect cis-regulatory structures in mRNAs.

Development of Computational Methods for RNA Structure Detection

The first attempts to develop a general genome-wide approach to detecting RNA structures
looked for regions of a single sequence predicted to fold into RNA structures that are more ther-
modynamically stable than expected (41). However, random RNA sequences fold into secondary
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structures with predicted thermodynamic stabilities that are similar to those of functional RNAs,
so this approach was deemed insufficiently powerful for genome-wide screens (85). At best, ∼30%
of structural RNAs could be detected with an estimated false positive rate of ∼10 per megabase
of genome screened (85).

Attention moved to exploiting the evolutionary conservation of RNA secondary structure in
homologous sequence alignments as an additional source of signal to discriminate real functional
RNAs from background using pairwise (86) or multiple alignments (11, 13). The 2001 Rivas
QRNA algorithm was estimated to detect ∼80% of structural RNAs at an estimated false positive
rate of ∼20 per megabase, allowing for a screen of the small Escherichia coli genome (87).

The general idea of detecting conserved RNA structure in multiple sequence (or multiple
genome) alignments has now been extended and implemented in many ways, such as in RNAz
(115), EvoFold (72), CMfinder (129), FOLDALIGN (102), and other approaches (6, 26, 106, 113,
123). These programs have been used to predict regions of structural RNA in large eukaryotic
genomes, especially the human genome (71, 72, 79, 91, 95, 114, 117, 123). In one recent screen
of the human genome, for example Smith et al. (95) predicted 4.1 million structural RNAs in
the human genome, at an estimated sensitivity of ∼30% and an estimated false positive rate of
∼170 per megabase. The authors described this false positive rate as historically low.

In fact, the stringency demanded from these approaches has declined while the ambition to
screen large mammalian genomes has increased. Moreover, there is substantial uncertainty in how
false positive rates are estimated, either by shuffling or simulating negative multiple alignments.
My laboratory (98) abandoned attempts to extend QRNA screens to large genomes when we
found that our rate of experimental confirmation of the expression of predicted intergenic RNA
loci was far lower than the computationally predicted false positive rate. The Hughes laboratory
(4) reached the same conclusion in their experimental follow-up of a QRNA screen of the mouse
genome. The current false positive rates from this class of methods remain too high to justify their
use on large genomes (5).

Current Methods Remain Insufficiently Reliable

Consider the recent computational screen by Smith et al. (95) as a specific example of the poor
reliability of current methods. These authors applied two different approaches, RNAz 2.0 (27), and
a new method called SISSIz (24), to the human genome using a comparative analysis of a multiple
alignment of 35 mammalian genomes. RNAz and SISSIz, like all methods in this class, work by
scoring one small alignment window at a time (here 200 nucleotides) under a model that looks for
RNA structure conservation and by classifying that window as a structural RNA prediction if it
passes a chosen score threshold. The whole genome alignment is scored in overlapping windows
(in this case, 200-nucleotide windows overlapped by 100 nucleotides, both forward and reverse
complement); Smith et al. (95) scored 50 million alignment windows.

The false positive rate—the fraction of windows incorrectly scored as structural RNAs—is a
critical number to estimate. To estimate a false positive rate, we have to devise a negative control,
namely, a way to obtain windows that are known not to contain a structural RNA yet are matched
controls for all other background properties of genomic alignment windows (e.g., sequence conser-
vation, GC% composition, indel pattern). This is a hard problem. Two main approaches have been
used to address it. One approach is to shuffle alignments by columns, preserving properties such
as nucleotide composition in the window and primary sequence conservation in each column (1).
Another approach is to simulate synthetic alignments according to a phylogenetic model (6, 23, 24).

It is easy to create poor negative controls. Naive shuffling of an alignment shatters indel patterns
into many single-base insertions and deletions, disrupts background dinucleotide composition
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False discovery rate
(FDR): the fraction of
a set of predictions
that are statistically
expected to be false
positives

Expectation value
(E-value):
the number of false
positives expected at or
above some score
threshold

[which tends to have a strong effect on RNA structure calculations (127)], and homogenizes
conservation and GC% composition across a window that might encompass a local region of
high GC% or high conservation that already tends to score highly (85). Real genome alignments
may tend to score well only because of these confounding background effects, not because they
contain RNA structures. However, the more a shuffling procedure tries to preserve more realistic
background effects, the more it tends to preserve the original alignment. For example, a shuffling
procedure used in Reference 5 altered the order of only 53% of the alignment columns, on
average, and was thus probably inadequate to destroy all the signal of a true RNA structure.
Different methods produce very different predicted false positive rates. For example, Smith et al.
(95) show tenfold differences in the false positive rates measured by simulations with SISSIz (24)
versus shuffles with Multiperm (1).

Smith et al. (95) calibrated their score thresholds to allow 1% false positive predictions per
200-nucleotide alignment window, using both shuffled and simulated negatives. Therefore, they
expected to see ∼500,000 false positives when scoring a total of 50 million windows. Their screen
actually detects 4.1 million positive windows. Because we estimate that 500,000 of these windows
are false, all of the excess detections (3.6 million) should be true. This gives us a so-called empirical
false discovery rate (FDR) of 12% [500,000/(4.1 × 106) = 0.12]. [Smith et al. (95) varied how
they generated negative control windows and reported an FDR of 5–22%.]

Empirical False Discovery Rates are Vulnerable to the Choice
of Negative Control

Empirical FDRs are only as good as the estimate of the number of expected false positives under the
assumed null hypothesis. If we underestimated the number of false positives by just tenfold, a 12%
FDR might really be 100%. Essentially all of our statistically significant candidates could be false.

Could the estimated FDR be off by tenfold? Yes, easily. Consider the more familiar task
of a BLASTN DNA similarity search. We typically do not trust BLASTN expectation values
(E-values) to be more accurate than within a few orders of magnitude. BLASTN’s estimated false
positive rate, though quite good, is confounded by many nonrandom biases that occur in real
genome sequences (e.g., composition bias, repetitive sequence) that generate false positives at a
higher rate than randomized expectation predicts. For example, if we found 100 BLASTN hits in
a database search at an E-value threshold of 10, we would not assume that 90 hits were true, but
an empirical FDR calculation does make such assumptions.

The null hypothesis for detection of conserved RNA structure is much more complex than
that for BLASTN because the former requires matching of an even more complicated set of
relevant properties of non-RNA genomic alignment windows. Thus, it would be prudent to have
less confidence in the accuracy of these false positive estimates than in BLASTN-based estimates,
as background biological signals that could easily confound a structural RNA detector may not
be taken into account in current shuffled or simulated negative controls. Short and long inverted
DNA repeats are one example. These elements are abundant in genomes, partly because of the
activity of DNA transposons, and can look like RNA hairpins in a genome sequence analysis, even
if they are never expressed as RNA.

Thus, the application of these methods to large genomes seems premature and perilous, al-
though the fundamental idea is sound. The discriminatory power of these methods needs to be
increased substantially. One way to do this is by incorporating additional sources of information
to increase the signal-to-noise ratio. The use of deeper multiple sequence alignments analyzed
with more powerful phylogenetic models of sequence covariation patterns constrained by RNA
structure is currently the main path forward in the field. However, dramatic improvements in
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the use of chemical and enzymatic RNA structure probing experiments are opening up another
interesting direction.

PROBING-DIRECTED RNA STRUCTURE PREDICTION

Chemical and enzymatic modification experiments have long been used to probe RNA structure.
Various reagents differentially attack paired versus unpaired nucleotides and generate cleavages
or base modifications that can be assayed by sequencing (7, 19, 33, 61). Historically, interpreting
chemical or enzymatic modification patterns has been something of a black art, and the experiments
have been done on one RNA at a time. Recently, better reagents have been developed, including
those involved in SHAPE chemistry (described below), and several genome-scale methods have
coupled RNA structure probing to high-throughput sequencing (37, 43, 48, 105, 111, 133). Thus,
it has become feasible to probe the structure of every RNA in a transcriptome simultaneously.
However, it remains unclear how structure probing data should best be incorporated into RNA
structure analysis algorithms, even for the simplest problem of single sequence RNA structure
prediction.

In a landmark study, Deigan et al. (12) proposed a method for incorporating SHAPE probing
data as soft constraints into single-sequence RNA structure prediction. Their paper is a touchstone
for understanding a growing body of work from several laboratories. Since its publication, several
papers have introduced alternative methods (69, 77, 116, 131); at least one paper has extended the
method proposed by Deigan et al. (12) to another chemical probe, DMS (dimethyl sulfate) (10),
and another has extended it to the prediction of pseudoknotted RNA structure (29). To describe
this work, first it helps to give some background on single sequence RNA secondary structure
prediction, as well as on SHAPE chemistry.

Single Sequence RNA Structure Prediction

The most widely used methods for RNA secondary structure prediction utilize free energy mini-
mization. A nearest-neighbor thermodynamic model (often called the Turner rules) approximates
the free energy (�G) of an RNA secondary structure as a sum of individual free energy terms as-
signed to local features in an RNA structure, particularly to each base-pair stack (i.e., neighboring
base pairs, hence the name nearest-neighbor model), as well as to hairpin, internal, and bulge loop
lengths and various other elemental features (22, 47, 53, 128). Given the thermodynamic model, an
efficient dynamic programming algorithm (e.g., the Nussinov/Zuker algorithm) guarantees find-
ing the RNA secondary structure with the minimum free energy (67, 134, 135). A related algorithm
(the McCaskill algorithm, described in more detail below) calculates the partition function, the
sum over the ensemble of all possible secondary structures weighted by their predicted likeli-
hoods in solution, according to their estimated free energies (56). Using the McCaskill algorithm,
alternative structures can be sampled from the ensemble according to their probability (14).

Although single sequence RNA secondary structure prediction has been useful, its accuracy
remains unsatisfactory. Accuracy is limited by fundamental problems: The residual error in the
parameters [∼5% (128)] is greater than the typical free energy difference between quite different
alternatives in the low free energy RNA landscape, and the model neglects the contributions of
tertiary contacts and divalent cations to the overall free energy of an RNA’s fold.

This tantalizing state of affairs—namely, prediction accuracy that is useful but not reliable—has
motivated the search for additional information that can be used to constrain structure predictions,
including data from chemical and enzymatic structure probing experiments (7, 19, 33, 61). Several
past approaches for incorporating probing data in structure prediction have given uncompelling
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results (52, 53), partly because probing experiments give noisy and ambiguous data (53) and partly
because traditional probing reagents such as DMS have a complex dependence on sequence and
local structure (19), making it difficult to parameterize an ad hoc approach. A breakthrough came
from the development of a probing reagent that acts in a much less context-dependent way,
enabling simple ad hoc methods to be used, as described in the following section.

Selective 2′-Hydroxyl Acylation Analyzed by Primer
Extension (SHAPE) Chemistry

SHAPE, introduced in 2005, stands for selective 2′-hydroxyl acylation analyzed by primer exten-
sion (59). A SHAPE reagent acylates the 2′-hydroxyl position of the ribose sugar of a nucleotide.
This acylation impedes reverse transcription, so the presence of the acylated nucleotide can be
assayed by primer extension. The reaction rate depends on the local geometry of the nucleotide
backbone (57). Nucleotides in Watson–Crick base pairs are constrained in an incompatible geome-
try, resulting in low SHAPE reactivities. Unpaired nucleotides can show high SHAPE reactivities,
presumably because a flexible nucleotide backbone can frequently visit a compatible geometry.
Occasionally, a nucleotide may happen to be constrained in the right geometry, making that nu-
cleotide hyperreactive (57). Several different SHAPE reagents exist with different properties, such
as reagents with fast reaction rates for probing kinetics (63) or reagents with properties that are
well suited for in vivo SHAPE experiments (96).

The standard data processing protocol from a SHAPE experiment (3, 46, 70, 110) yields a
single normalized unitless number for each nucleotide in the probed RNA sequence. SHAPE
values range from 0 to ∼2 or sometimes more, as the upper bound is ill defined because of the ad
hoc nature of the so-called normalization.

SHAPE Data Analysis from a Likelihood Ratio Perspective

Similar to other structure probing reagents, SHAPE values do not unambiguously distinguish
paired bases from unpaired bases. Rather, a SHAPE experiment confers probabilistic information
about RNA secondary structure because the distribution of SHAPE reactivities for base-paired
residues is different than for unpaired residues. For example, Figure 2a,b shows empirical dis-
tributions of SHAPE values collected from E. coli SSU and LSU rRNA that were compiled by
Sükösd et al. (101) from SHAPE experiments published by Deigan et al. (12).

Intuitively, we might imagine that probing data distributions would show distinct modes for
unpaired versus paired bases: a high-reactivity peak for unpaired bases, a low-reactivity peak for
paired ones. However, the modes of the distributions are low for both paired and unpaired bases.
The information in SHAPE data comes from the increased variance at unpaired residues. An
unpaired base is more likely to have a low SHAPE reactivity than a high reactivity, but a base with
a high SHAPE accessibility is much more likely to be unpaired than paired. Figure 2c shows the
paired/unpaired likelihood ratio as a function of the SHAPE value. A base with a low SHAPE
value (e.g., 0) is approximately five times more likely to be paired than unpaired, and a base with a
high SHAPE value (e.g., 2.0) is conversely about five times more likely to be unpaired. We want
to incorporate this kind of information into SHAPE-directed structure prediction.

Deigan’s Pseudoenergy Approach

Deigan et al. (12) proposed a particular pseudoenergy term for incorporating SHAPE data,

�G′
i = m log(αi + 1) + b,

www.annualreviews.org • Analysis of Conserved RNA Secondary Structure 443



BB43CH19-Eddy ARI 10 May 2014 10:50

1.0

0.8

0.6

0.4

0.2

0

a   Paired bases

SHAPE value
0 0.5 1.0 1.5 2.0

Pr
ob

ab
ili

ty

Generalized extreme
value fit (μ = 0.054,
λ = 14.025, α = 0.896) 

Cumulative

Observed histogram

b   Unpaired bases
1.0

0.8

0.6

0.4

0.2

0

Pr
ob

ab
ili

ty

SHAPE value
0 0.5 1.0 1.5 2.0

Observed histogram
Exponential fit (λ = 1.468)

Cumulative

Likelihood ratio implicit in Deigan et al. (2009) pseudoenergies

...or in Zarringhalam et al. (2012) pseudoenergies

Observed
(fitted)

Observed
(histogram)

Threshold used in Washietl et al. (2012) model 

0 0.5 1.0 1.5 2.0

SHAPE value (More accessible)(Less accessible)

10

1

0.1

3

0.3

0.03

Likelihood ratio (paired/unpaired)

5× more likely
to be paired

5× more likely
to be unpaired

c   Paired/unpaired likelihood ratios, observed vs. implicit in models

28×

3×

4×

4×

Figure 2
Observed distributions of selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) values for paired versus unpaired
bases, compared to likelihood ratios implicit in different SHAPE-directed structure prediction methods. (a,b) Distributions of SHAPE
values observed for (a) 2,531 paired nucleotides and (b) 1,656 unpaired nucleotides in Escherichia coli SSU and LSU ribosomal RNA
(rRNA). Data are taken from the in vitro SHAPE experiments of Deigan et al. (12), collated by Sükösd et al. (101). Gray bars represent
histograms; orange lines represent cumulative distributions. Red lines show my maximum likelihood fits to the distributions chosen by
Deigan et al. (101); Panel a shows a generalized extreme value distribution (21), and panel b shows an exponential distribution. Data
replotted with permission from Reference 101. Figure 1 in Reference 101 distinguished helix end pairs from base pairs internal to a
stacked stem because helix ends are more flexible and therefore more accessible to SHAPE than are internal base pairs, but for simplicity
I have merged all base pairs here. (c) Paired/unpaired likelihood ratios from the two fitted distributions in panels a and b (red line), from
the corresponding histogram bins in panels a and b ( gray circles), implicit in the Deigan et al. (12) pseudoenergy model (blue line), and
implicit in the Zarringhalam (131) pseudoenergy model using their default β = 0.89 ( green line). See text for further explanation.

where αi is the SHAPE value for base i in the RNA; i = 1 . . . n, where n is the sequence length;
and m and b are free parameters with defaults set to m = 2.6 and b = −0.8 kcal mol−1. This
pseudoenergy term is applied to every residue i involved in a base pair (and not to unpaired bases)
in the calculations in the dynamic programming recursion.

If the SHAPE reactivity is minimal (i.e., αi = 0), then each base in a base pair is rewarded by an
additional −0.8 kcal/mol. If the reactivity is high, say αi = 2.0, then pairing of base i is disfavored
by +2.1 kcal/mol. If the reactivity is 0.36, there is no added pseudoenergy, and the SHAPE data
are considered to favor pairing or unpairing of base i equally.

Deigan et al. (12) did not justify their choice of functional form, and they set m and b empirically
by grid searching a wide range of parameter settings and finding values that optimized the accuracy
of E. coli LSU rRNA folding. However, via statistical thermodynamics, we can observe that the
pseudoenergy term described above implies a likelihood model. The probability that base i is
paired, given the SHAPE data, is proportional to e−�G′

i /RT. Unpaired bases are implicitly assigned
a pseudoenergy of 0, independent of SHAPE reactivity, so the probability that the base is unpaired
is proportional to 1. The proportionality constant is the same (a simple partition function, the
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sum of the two terms), so we obtain the following equation:

P (πi = paired)
P (πi = unpaired)

= e−�G′
i /RT.

The notation πi refers to the structural context of base i, which for the moment is either paired
or unpaired.

Thus, the Deigan pseudoenergy term corresponds (at 37◦C) to saying that a maximally unre-
active (αi = 0; �G′

i = −0.8 kcal/mol) base is approximately three times more likely to be paired
than unpaired, and a highly reactive base (αi = 2.0; �G′

i = +2.1 kcal/mol) is approximately
28 times more likely to be unpaired than paired. Figure 2c shows a plot of the paired/unpaired
ratio implied by the Deigan pseudoenergy term compared with the ratios implied by observed
distributions (101).

Sample and Select Approaches

It is not obvious that the thermodynamic RNA folding model can be combined in a mathematically
defensible way with structure probing data. The use of arbitrary pseudoenergy parameters looks
worryingly unprincipled. For this reason, an alternative, called a sample and select approach (69,
77), aims to keep the thermodynamic folding calculation separate from the probing data constraint.
The idea behind this approach is to first sample suboptimal structures from the thermodynamic
ensemble (14, 56) and then to rerank these sampled alternative structures by how well they agree
with the structure probing data according to some distance metric. This approach is not very
powerful because it relies on being able to sample the correct structure from the thermodynamic
ensemble in the first place. If the correct structure has a negligible posterior probability under the
thermodynamic model, it is never sampled.

The sample and select approach requires choosing which distance should be calculated between
the experimental probing data and a predicted structure. Such approaches threshold the probing
data to make discrete “paired” and “unpaired” calls for each base, after which they calculate
the number of discrepancies from the predicted structure (termed a Manhattan distance) (69, 77).
From a statistical perspective, a better-justified measure would be the log likelihood of the observed
probing data given the structure, for example, log P (α|π) = ∑

i log P (αi |πi ), using empirically
collated P (αi |πi ) distributions as done in Reference 101 (Figure 2a,b).

Zarringhalam’s Pseudoenergy Approach

Zarringhalam et al. (131) use a distance-based argument to criticize the Deigan approach (12)
and develop a new one. They propose to optimize a distance between the SHAPE data and the
structure, a Manhattan distance

∑
i |πi − ai |, where πi is the predicted structure of base i and

takes a value of 1 if unpaired or 0 if paired and ai is a modified SHAPE reactivity for position i,
rescaled (by an ad hoc piecewise linear transformation of the original αi ) to range 0. . .1. They
add a pseudoenergy of β|πi − ai | to all bases i (unpaired and paired). Impressively, Zarringhalam
et al. (131) prove mathematically that this approach is guaranteed to improve (decrease) the
calculated distance between the SHAPE data and the predicted structure in comparison to the
thermodynamic model alone. In contrast, the Deigan approach (12) often yields higher distances
for a SHAPE-constrained prediction than for an unconstrained prediction.

The argument proposed by Zarringhalam et al. (131) hinges on whether we agree that
minimization of a Manhattan distance between the probing data and the predicted structure is
desirable. In fact, this premise is probably not well justified, which is a shame because of the
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strong theoretical proof that followed from their premise. As is apparent in Figure 2, a SHAPE
reactivity αi cannot be compared directly with the probability that base i is unpaired because both
paired and unpaired bases are more likely to have low αi values.

In fact, the Zarringhalam et al. (131) and Deigan et al. (12) approaches are rather similar
in terms of the paired/unpaired likelihood ratios they imply (Figure 2). By using a symmetri-
cal pseudoenergy function with the same β for unpaired (πi = 1) and paired (πi = 0) bases,
Zarringhalam et al. (131) constrain the odds ratio to be symmetrical in the sense that at minimum
SHAPE values, a base is approximately four times more likely to be paired than unpaired, and
vice versa for maximum SHAPE values. The ad hoc piecewise linear mapping of the SHAPE
value to the range 0–1 has the effect of rather closely approximating the empirical likelihood ratio
distribution (Figure 2c).

Washietl’s Ensemble Approach

Both approaches described above assumed that base i is either 100% paired or unpaired under
SHAPE experimental conditions. This assumption is equivalent to assuming that a single RNA
structure dominates in solution (even if the approach uses an ensemble calculation, as in Reference
131). What about an RNA that adopts two or more different structures in solution? In this case,
the measured SHAPE data would be an ensemble-weighted average over the different structures;
i.e., the data would be a function of the ensemble, rather than of a single correct structure. Could
SHAPE data be used to predict not just a single optimal structure, but the whole ensemble? This
is the point of an ensemble-based approach introduced by Washietl et al. (116). Their basic idea
is to perturb the energy parameters by the minimal amount needed to bring the ensemble base
pairing probabilities into maximal agreement with the experimental SHAPE data.

Explaining the Washietl et al. approach (116) requires further introduction to ensemble calcula-
tions. According to the Gibbs–Boltzmann equation of statistical thermodynamics, the probability
that a system is in a given state i with free energy �Gi is proportional to e−�Gi /RT, where R is
the gas constant (0.001986 kcal mol−1 K−1) and T is the absolute temperature in Kelvin. If we
can enumerate the free energies of all possible states of the system, then the probability that the
system will be in state i is

e−�Gi /RT∑
j e−�G j /RT .

The summation over all states,
∑

j e−�G j /RT, is the partition function, often abbreviated Z, which
is the quantity that the McCaskill algorithm recursively calculates over all possible RNA secondary
structures for a sequence (56).

Washietl et al. (116) calculate a predicted ensemble base pairing probability zi (θ, ε) for each
residue i using a partition function calculation. This calculation uses a set of thermodynamic model
parameters θ, which are perturbed by an error vector ε that describes the uncertainty inherent in
the parameters. Perturbing the energy parameters amounts to treating the ensemble as a random
variable because the ensemble is completely determined by the energy parameters. For example,
we might assume that every energy parameter θu for some element u of RNA structure has a
normally distributed error εu ∼ N (0, τ 2

u ) with variance τ 2
u . This is an attractively explicit model

of the uncertainty in the Turner rules. We could then obtain variances (τ 2
u values) corresponding

to the different certainties of different parameters (for example, base-pair stacking parameters
are better determined than are loop parameters). What Washietl et al. (116) actually implement,
however, is an alternative in which perturbations εi are assigned to each residue i, with one position-
independent variance τ 2. This choice somewhat weakens their argument that their model is more
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physically grounded than a pseudoenergy model because the εi terms are now pseudoenergies,
rather than an explicit error model for the energy model parameters θu .

Critically, Washietl et al. (116) assume that the probing data α can be used to directly obtain an
experimentally “observed” probability pi (α) that base i is paired. They assume that this so-called
experimental measurement is subject to experimental errors, and the discrepancy zi (θ,ε) − pi (α)
is normally distributed as N (0, σ 2

i ). They further assume that this error is position independent
and therefore use a single σ 2.

Under this formulation, both the energy parameters and the observed SHAPE data are assumed
to be subject to unknown measurement errors, which are parameterized by variances τ 2 and σ 2,
respectively. The problem can then be written as the following least-squares optimization problem:

min
ε

∑
i

ε2
i

τ 2
+

∑
i

(zi (θ,ε) − pi (α))2

σ 2
.

This expression gives the maximum likelihood estimate for the perturbation vector ε under the
assumption that both so-called errors are normally distributed. The core of their paper then shows
that this minimization can be done by gradient descent.

A big difference between the Washietl et al. (116) approach and other probing-directed struc-
ture prediction methods is that the εi pseudoenergies here are optimized for each particular RNA
sequence and its SHAPE data. Each εi term is essentially a measure of how hard nucleotide i must
be tweaked to agree with the SHAPE data. The εi terms constitute a position-specific profile of
discrepancies between the RNA structure and the prediction of thermodynamic model. Washietl
et al. (116) show an interesting example in which εi terms tend to be high for nucleotides that are
modified in vivo (the thermodynamic model does not take in vivo nucleotide modifications into
account).

Because the SHAPE data α do not directly report the probability that a given base i is paired,
the principal weakness in this approach is in obtaining pi (α). Washietl et al. (116) tried many ways
of mapping αi to an “observed” pairing probability pi, but, in the end, they simply thresholded
at 0.25, setting pi equal to 1 (paired) for αi < 0.25 and equal to 0 (unpaired) for αi > 0.25. By
discretizing pi to 0 or 1, 100% paired or unpaired, the whole point of using an ensemble-averaged
calculation is lost. Moreover, when πi is discretized to 0 or 1, it is dubious whether the discrepancy
|zi − pi | should be treated as a normally distributed error. Rather, many pi are just wrong.

STATISTICAL INFERENCE FOR PROBING-DIRECTED
STRUCTURE PREDICTION

A well-principled framework for combining the inherently statistical information from a probing
experiment with the thermodynamic model of RNA folding is desirable. Such a framework might
improve the accuracy of probing-directed structure and would allow more subtle information to be
extracted from structure probing data than whether or not a base is paired. Reactivity depends on
structural context, meaning that reactivity carries statistical information about structural context.
For example, bases in helix end pairs tend to be more reactive to SHAPE probing than are bases in
internally stacked stems (101). Chemical and enzymatic data from DMS modification and RNase
cleavage mapping show more complex sequence dependencies than do SHAPE data, and the lack
of principled approaches impedes the analysis of more complicated data.

A general approach can be outlined using probabilistic inference. The observation that a pseu-
doenergy term implies a particular paired/unpaired odds ratio (Figure 2) essentially means that
the reverse is also true. We can therefore use the empirical likelihood distributions of SHAPE
data values αi to derive a principled approach in terms of probabilities.

www.annualreviews.org • Analysis of Conserved RNA Secondary Structure 447



BB43CH19-Eddy ARI 10 May 2014 10:50

Joint probability: the
probability of two or
more random variables
together, as in P(A, B)

Bayes’ rule: a basic
equation in probability
calculus for calculating
a posterior probability;
P (B|A) =
P (A|B)P (B)P (A)

Conditional
probability: the
probability of one
random variable given
the value of another, as
in P (A|B)

A strong approach to any inference problem, especially one involving integration of different
sources of evidence, starts with writing a generative probability model that specifies the joint
probability distribution of all of the data. This distribution should include the observed variables
that are giving us information, the hidden variables that we seek to infer, and any additional hidden
nuisance variables that our model needs to specify to calculate the joint probability. In the present
context, we need a computable model of the joint probability P (α, x, π, θ, ψ) for the observed
probing data α, the RNA sequence x, the RNA secondary structure π (which we want to infer), the
parameters θ of an RNA folding model, and the parameters ψ for a likelihood model of generating
SHAPE values from a particular structure.

Optimal Structure Prediction and a Derivation of Pseudoenergies

Suppose we assume that a single correct RNA secondary structure dominates in solution. This
critical assumption allows us to assume that the observed SHAPE data α arose directly from that
single structure π. [Otherwise the observed data are an ensemble-weighted average 〈α〉, over an
unknown α(π) for each structure in solution; this scenario is discussed further below.] We can
factor the joint distribution into a product of independent terms, for which the observed probing
data are sampled as a function of the structure π, and the probability of π is specified by the RNA
folding model for sequence x as follows:

P (α, x, π, ψ, θ) = P (α|x, π,ψ)P (x, π|θ)P (ψ)P (θ).

To simplify things a bit further, we can assume that we obtain fixed model parameters ψ and θ

from an outside source; for example, we might obtain them by fitting our data to known example
SHAPE data to obtain ψ (as in Figure 2) and by using the existing Turner energy model as θ.
This means we can drop both terms because they equal 1.

By Bayes’ rule, the posterior probability of any particular structure π is then given by

P (π|α, x, ψ, θ) = P (α|x, π, ψ)P (x, π|θ)∑
π̂ P (α|x, π̂, ψ)P (x, π̂|θ)

.

Generative probability models for RNA structure prediction give us P (x,π|θ) directly (88). In-
deed, Sükösd et al. (100) already introduced an inference equation much like the one above as
a means of incorporating SHAPE data into a probabilistic method of RNA structure, PPFold
(100). However, we need a bit more algebra for the thermodynamic folding model. Recall that
the thermodynamic model gives us P (π|x, θ) via the Gibbs–Boltzmann equation:

P (π|x, θ) = e−�G(π)/RT∑
π̂ e−�G(π̂)/RT

.

We need the joint probability (with x), not the conditional probability (given x), but we can expand
P (x, π|θ) to P (π|x,θ)P (x|θ), and, because we are dealing with only a single given sequence x, we
can cancel the P (x|θ) term out of the posterior probability equation. Similarly, the thermodynamic
partition function

∑
π̂ e�G(π̂)/RT is the same for both the numerator and denominator of the

posterior probability equation, so it also cancels. This leaves us with the following posterior
probability:

P (π|·) = P (α|x, π, ψ) e−�G(π)/RT∑
π̂ P (α|x, π̂, ψ) e−�G(π̂)/RT

.

Because the denominator, summed over all possible structures π̂, behaves as a normalization
constant with respect to any individual structure π , we can call it Z′ by analogy to a partition
function. Note, however that Z′ differs from the thermodynamic partition function because it
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includes the probability of the observed SHAPE data. We now take the logarithm of both sides
because probability model calculations are generally done as sums of logarithms rather than as
products of probabilities to avoid numerical underflows, yielding the following equation:

log P (π|·) = log P (α|x, π, ψ) − �G(π)
RT

− log Z′.

Finally, if we are only interested in inferring the optimal (maximum probability) structure, we can
drop the constant Z′ and just maximize as follows:

argmaxπ log P (π|·) = argmaxπ

[
log P (α|x, π,ψ) − �G(π)

RT

]
.

Thus, to make the thermodynamic folding calculation a probing-directed calculation we only need
to add the log probability of observing the probing data α given the RNA structure.

As long as the parameterization ψ of the probing data likelihoods is factored such that it maps
well onto the energy parameterization θ of the folding model in terms of having similarly factored
dependencies on elements of RNA structure and sequence context, then the above equation is
readily implemented in the dynamic programming recursions of existing RNA structure prediction
programs. For example, we might simply assume that the observed SHAPE data αi for base i are
independent of the sequence and depend only on what structural context i is in π i. This context
might be as simple as paired versus unpaired. Then, we add the appropriate log P (αi |πi ) term to
the appropriate free energy parameter (scaled by 1/RT) at every step of the dynamic programming
recursion that adds base i to a growing substructure, depending on whether i is unpaired or paired
in that substructure term in the recursion.

In summary, this derivation suggests that an appropriate SHAPE pseudoenergy term for base
i is �G′

i = RT log P (αi |πi ). This term should not be viewed as an energy at all; rather, it should
be viewed as a log probability in a statistical inference approach. More sequence and structural
context could easily be incorporated into this model as desired by relaxing any of the simplifying
assumptions.

Ensemble Prediction

Deriving the ensemble-based approach proposed by Washietl et al. (116) in terms of statistical
inference is also possible, but more difficult, so I only sketch the main issues here. In this case, we
want to infer the posterior distribution over ensembles, as opposed to over just a single structure.
Doing so is equivalent to inferring the posterior distribution P (θ|·), as opposed to P (π|·), because,
for a given sequence x, the ensemble probabilities are completely determined as a function of the
folding model parameters θ. As discussed in Reference 116, we might specify a prior distribution
P (θ) by assuming that θ ∼ N (θ̂, τ 2), i.e., normally distributed perturbations around the standard
Turner parameters θ̂. The difficulty with this approach comes from the fact that the observed
SHAPE data need to be treated as an ensemble average: 〈α|x, θ〉 = ∑

π α(π)P (π|x, θ). Thus, the
likelihood term P (〈α〉|·) unfortunately becomes a nasty multiple integral over all possible unknown
α(π) vectors for all of the individual structures in the ensemble, subject to the constraint that their
ensemble-weighted average equals 〈α〉. Under the simplifying independence assumptions that the
SHAPE data αi for each position depend on only a small number K of structural contexts for
(xi , πi ), we can obtain a tractable K-dimensional integration over those states (for example, K =
2 for π i = unpaired versus paired). All of this should be doable, resulting in a strongly grounded
version of the Washietl et al. approach in which we can avoid directly comparing the SHAPE
values αi to the base-pairing probabilities zi and instead utilize an empirical likelihood model for
the observed SHAPE data.
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CONCLUSION

A statistical inference approach for incorporating structure probing data is easily general-
ized beyond single sequence RNA structure prediction. More complicated RNA structure
analysis problems, including algorithms for de novo conserved structure detection and for
sequence/structure homology search (64, 122), also depend on scoring schemes that require
inferring an unknown secondary structure. It would be straightforward to extend the approach
described here to any of these methods. Essentially, one need only include an empirical log proba-
bility term for the observed probing data at each base i, given the unknown structural context into
which an algorithm is trying to put the base. If transcriptome-wide structure probing data become
readily available in a variety of organisms (37, 105), we can imagine using these experimental data
systematically across a variety of tasks in the computational analysis of RNA structure (122).

Computational RNA sequence and structure analysis is a broad topic, and I have not done
justice to many areas of it in this review. In particular, I have focused mainly on functional RNA
analysis and discovery in multicellular eukaryotes, especially humans because so much current
controversy about pervasive transcription and lncRNAs exists in this area. Arguably, however,
the richest hunting grounds for new functional RNAs are not in multicellular eukaryotes but in
bacteria, where small RNAs are used extensively for posttranscriptional regulation. There is an
excellent body of literature on bacterial regulatory RNAs, but I lacked the space to delve into it
here (25, 97).

SUMMARY POINTS

1. Functional RNAs are heterogeneous, and no one characteristic suffices to detect them
all in an unbiased fashion.

2. Putative long noncoding RNAs (lncRNAs) are likely to be a heterogeneous population
that includes analysis artifacts and transcriptional noise, but a subset of lncRNAs are well
expressed and evolutionarily conserved.

3. One useful positive signal that helps distinguish many functional noncoding RNAs
from other explanations is the presence of an evolutionarily conserved RNA secondary
structure.

4. Genome-wide computational screens for regions of conserved secondary structure are
a promising means of detecting functional structural RNAs (both RNA genes and cis-
regulatory RNA motifs), but the false positive rates of current methods are too high.

5. RNA structure probing experiments help constrain the prediction of secondary struc-
ture, and these experiments have recently been adapted to systematic transcriptome-wide
measurements, offering a way to increase the signal-to-noise ratio of any computational
analysis that depends on inferring RNA structure.

6. Several proposed methods for probing-directed prediction of RNA secondary structure
can be unified and rationalized using principles of probabilistic inference.

7. Using similar probabilistic inference principles, structure probing data could be used to
quantitatively constrain and improve other computational analyses of RNA, including
homology search, alignment, and conserved structure detection.
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