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Abstract

Autophagy is a highly conserved and regulated process that targets pro-
teins and damaged organelles for lysosomal degradation to maintain cell
metabolism, genomic integrity, and cell survival. The role of autophagy in
cancer is dynamic and depends, in part, on tumor type and stage. Although
autophagy constrains tumor initiation in normal tissue, some tumors rely on
autophagy for tumor promotion and maintenance. Studies in genetically en-
gineered mouse models support the idea that autophagy can constrain tumor
initiation by regulating DNA damage and oxidative stress. In established
tumors, autophagy can also be required for tumor maintenance, allowing
tumors to survive environmental stress and providing intermediates for cell
metabolism. Autophagy can also be induced in response to chemotherapeu-
tics, acting as a drug-resistance mechanism. Therefore, targeting autophagy
is an attractive cancer therapeutic option currently undergoing validation in
clinical trials.
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1. INTRODUCTION

As cancers develop and progress, fundamental alterations in basic cellular processes are required to
maintain tumor growth. These hallmarks of cancer have been identified during the past 30 years of
cancer biology research (Hanahan & Weinberg 2011). More recently, autophagy, a conserved cel-
lular degradation pathway, has been shown to be important for multiple aspects of cancer biology,
including cell metabolism, protein and organelle turnover, and cell survival. The role of autophagy
in cancer is complex, as demonstrated by studies describing situations in which autophagy can ei-
ther promote or inhibit tumorigenesis (Kimmelman 2011). The most likely explanation is that the
role of autophagy in cancer is dynamic. Although autophagy constrains tumor initiation through
its role in tissue homeostasis by maintaining cellular and genomic integrity, it is clearly required
for tumor progression and, depending on the tissue of origin and tumor type, can also be required
for tumor maintenance. Here we review the role of autophagy in cancer and highlight recent
advances, first, as it pertains to constraining tumor initiation and, second, as a protumorigenic
mechanism.

2. MOLECULAR MECHANISMS OF AUTOPHAGY

Macroautophagy (referred to as autophagy) is a conserved catabolic cellular pathway that degrades
macromolecules and organelles via the lysosome to maintain cellular homeostasis and fitness at
a basal state, as well as during periods of stress (Kimmelman 2011, Yang & Klionsky 2010). Au-
tophagy involves the coordinated activity of more than 30 autophagy-related (Atg) proteins that
sequester cargo in double-membrane vesicles (autophagosomes) that fuse to lysosomes (autolyso-
somes), leading to the degradation of cargo, such as toxic protein aggregates, damaged organelles,
lipids, and nucleic acids, as well as pathogens, such as Salmonella (Figure 1). The breakdown
products of lysosomal degradation (nucleotides, amino acids, and fatty acids) are basic molecular
building blocks that can be used in anabolic and bioenergetic pathways (Mizushima & Komatsu
2011, Noda & Inagaki 2015). Two additional forms of autophagy, microautophagy and chaperone-
mediated autophagy, which differ from macroautophagy in function and how cargo is delivered
to the lysosome, are not discussed but are reviewed in detail elsewhere, including their potential
roles in cancer (Cuervo & Wong 2014, Li et al. 2012).

Although autophagy was initially thought to be a bulk, nonselective degradative pathway stim-
ulated in response to stressors, including starvation, more recent research has identified selectivity
in the autophagic pathway for the identification of specific cargo for degradation (Khaminets et al.
2015a, Mancias & Kimmelman 2016). Coincident with its importance in maintaining cellular ho-
meostasis, the disruption of autophagic pathways has been shown to play a part in diverse disease
processes, including neurodegeneration, atherosclerosis, and cancer (Choi et al. 2013, Kenific &
Debnath 2015, Kimmelman 2011, Mizushima & Komatsu 2011, White 2015).

2.1. Molecular Mechanisms of Autophagy Initiation
and Autophagosome Formation

Autophagy was initially characterized in mammalian cells as an adaptive response to starvation
(De Duve & Wattiaux 1966, Yang & Klionsky 2010). However, it is now clear that autophagy is
active at some basal level in all cells and can be further activated by a variety of stressors, including
hypoxia, reactive oxygen species (ROS), chemotherapeutics, and radiotherapy (Amaravadi et al.
2007, Degenhardt et al. 2006, Scherz-Shouval & Elazar 2007). The initial studies of the autophagy
activation molecular signaling apparatus were performed in yeast, and these identified a complex
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Figure 1
Molecular mechanisms of autophagy. The stages of autophagy (initiation/elongation, closure, maturation, and degradation) are shown.
(Bottom) Cargo, such as mitochondria ( purple ellipsoid ), bacteria ( green rounded rectangle), and protein aggregates (brown tangle), is
sequestered in selective and bulk degradative manners via a double-membrane phagophore that fuses onto itself to form the
autophagosome (closure). The autophagosome subsequently fuses to the lysosome (autolysosome), where the cargo is degraded by
lysosomal enzymes and degradation products are recycled to the cytosol by lysosomal transporters. (Top left) During nutrient-replete
conditions, mTOR (mammalian target of rapamycin) is activated, and autophagy is inhibited through repression of ULK (unc-51-like
autophagy activating kinase) 1 and 2 [ATG (autophagy-related) 1]. Upon nutrient depletion, the ULK1–2 complex is activated and can
promote autophagy initiation. ULK1–2 is also activated at low energy states by phosphorylation via AMPK (5′ AMP-activated protein
kinase), as well as by repression of mTORC1 activity. New inhibitors of ULK1 and ULK2 include MRT68921, MRT67307 (Petherick
et al. 2015), and SBI-0206965 (Egan et al. 2015). Autophagy initiation is also regulated by the production of phosphatidylinositol-
3-phosphate (PI3P) by the class III PI3K complex composed of VPS34, ATG14, ATG6 (Beclin 1), and p150 (Vps15). Inhibitors of
VPS34 include VPS34-In1 (Bago et al. 2014), PIK-III (Dowdle et al. 2014), SAR405 (Ronan et al. 2014), compound 31 (Pasquier et al.
2014), and Spautin-1 (Liu et al. 2011). ATG9-containing vesicles contribute membrane to the growing autophagosome. (Top middle)
Pro-LC3B (one of seven mammalian ATG8 homologs) is converted to LC3B-I by ATG4B, a potential therapeutic target. LC3B-I is
subsequently conjugated to phosphatidylethanolamine (PE) via a ubiquitin conjugation–like E1-E2-E3 series of enzymes [ATG7 (a
potential therapeutic target), ATG3, and the ATG12-ATG5-ATG16L1 complex]. This produces the lipidated LC3B-II form that then
associates with autophagosomal membranes and has roles in autophagosome membrane elongation. LC3B-II is present on the outer
and inner surfaces of the autophagosome (blue circle with orange PE moiety). Of note, membrane-associated LC3B-II is converted back
to the cytosolic LC3B-I form via the action of the ATG4B enzyme (not shown) for repeated use in autophagosome formation.
Autophagosome maturation/lysosomal inhibitors include hydroxychloroquine, Lys05, and VATG-027.

set of more than 30 different Atg genes, of which many are conserved in higher eukaryotes (Kabeya
2000, Mizushima et al. 1998). The process of autophagy can be broken into several discrete steps:
(a) initiation and nucleation of the pre-autophagosomal membrane (phagophore), (b) autophago-
some closure, (c) maturation via autophagosome–lysosome fusion, and (d ) degradation via
lysosomal enzymes (Figure 1). The canonical autophagy initiation pathway is controlled by
multiple signaling complexes, including those that interpret the cellular energy or oxidation levels
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[5′ AMP-activated protein kinase (AMPK)] (Hardie et al. 2012) and nutrient or amino acid
levels [mammalian target of rapamycin (mTOR)] (Galluzzi et al. 2014, Jung et al. 2010). These
pathways converge on the unc-51-like autophagy activating kinase 1 (ULK1) (Atg1 ortholog)
complex that mediates autophagy induction (Egan et al. 2011, Kim et al. 2011a). There are
also noncanonical modes of autophagy activation not involving ULK1 or other core autophagy
machinery that reflect the diverse mechanisms by which the autophagy program can be initiated
(Cheong et al. 2011, Nishida et al. 2009, Scherz-Shouval et al. 2007). The mechanisms for
autophagy activation in cancer cells and whether they are conserved are unclear, but recent studies
in pancreatic cancer cell lines have identified distinct modes for promoting high basal levels of
autophagy. Pancreatic ductal adenocarcinoma (PDAC) cell lines, in part, activate basal autophagy
via protein phosphatase 2A–B55α activity toward ULK1, thereby stimulating ULK1-dependent
autophagy (Wong et al. 2015). Human PDAC cells can also induce autophagy via a MiT/TFE
transcriptional program that increases not only autophagy but also lysosome biogenesis (Perera
et al. 2015). Further work is required to clarify the upstream pathways that lead to increased basal
autophagy in distinct cancer types.

Following autophagy induction, the class III phosphatidylinositol 3-kinase [PI(3)KCIII]
complex, consisting of VPS34, p150, ATG14, and Beclin 1 [BECN1 (Atg6 ortholog)], nucleates
autophagosome formation (Figure 1). Subsequently, the ATG9 transmembrane protein mediates
the trafficking of source membrane—including from the endoplasmic reticulum, Golgi complex,
mitochondria, endosome, and plasma membrane—for autophagosome elongation (Papinski et al.
2014). Two ubiquitin-like conjugation systems (described below) participate in autophagosome
closure, maturation, and the recruitment of additional autophagy machinery (Noda & Inagaki
2015).

2.2. Role of ATG8s in Autophagosome Maturation and Selective Autophagy

The primary component of the autophagosome maturation apparatus is the ubiquitin-like protein
lipidation system that conjugates phosphatidylethanolamine to the C terminus of ATG8, thereby
facilitating incorporation of ATG8 proteins into growing autophagosomal membranes (Klionsky
& Schulman 2014, Slobodkin & Elazar 2013). ATG7 acts as an E1 enzyme and ATG10 as an E2 to
conjugate the ubiquitin-like ATG12 protein to ATG5. This ATG12–ATG5 conjugate then acts in
an E3-like complex with ATG16L1 to facilitate ATG8 lipidation. ATG8s are synthesized in a pro-
ATG8 form that is cleaved by ATG4B, leaving a C-terminal glycine residue. In concert, ATG7
(E1), ATG3 (E2), and the ATG12–ATG5–ATG16L1 (E3) complex catalyze the conjugation of
phosphatidylethanolamine to the C-terminal glycine of ATG8s (Figure 1) (Noda & Inagaki 2015).
This lipidated form of ATG8 is tightly associated with autophagosomal membranes.

Numerous studies have indicated that ATG8 proteins can function as adaptors to recruit fur-
ther regulatory proteins important for autophagosomal maturation and as adaptors for selective
autophagy receptors (Behrends et al. 2010, Slobodkin & Elazar 2013) that physically link their
cargo to the forming autophagosomal membrane for lysosomal degradation. Although yeast con-
tain a single ATG8 protein, mammals have seven ATG8 proteins in two structurally related
subfamilies [MAP1LC3A, B or B2, and C and GABARAP, GABARAPL1, and GABARAPL2
(also known as GATE-16)], suggesting a complex diversification of their functions (Slobodkin &
Elazar 2013). Selective autophagic pathways are generally named for the cargo destined for degra-
dation and include mitophagy (mitochondria), aggrephagy (protein aggregates), ferritinophagy
(ferritin), ER-phagy (endoplasmic reticulum), and xenophagy (pathogens, including bacteria),
among many (Khaminets et al. 2015b, Mancias et al. 2014, Melser et al. 2015, Sorbara & Girardin
2015, Svenning & Johansen 2013). For an in-depth review of the subject, including the growing
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understanding of the role of selective autophagy in cancer, readers are referred to recent reviews
(Khaminets et al. 2015a, Mancias & Kimmelman 2016).

3. AUTOPHAGY IN TUMOR SUPPRESSION

Autophagy was initially considered a tumor suppressive mechanism based on indirect evidence
from oncogene and tumor suppressor gene alteration studies. Gain-of-function mutations or am-
plifications in PI3K, or AKT or PTEN loss or silencing, which all activate mTOR and, thereby,
inhibit autophagy, are common oncogenic alterations, suggesting a potential importance of sup-
pressing autophagy during tumor initiation (Kimmelman 2011, Maiuri et al. 2009).

The tumor suppressor p53 appears to have opposing roles in autophagy based on its subcel-
lular localization (Tang et al. 2015b). Nuclear p53 has been proposed to activate autophagy via
a number of transcriptional mechanisms. Indeed, a comprehensive high-throughput chromatin
immunoprecipitation sequencing study revealed a large number of autophagy genes as direct
p53 target genes and that autophagy assists in p53-dependent apoptosis and cancer suppression
(Kenzelmann Broz et al. 2013). With the loss of functional p53 seen in many tumors, the expec-
tation is that this would lead to a decrease in autophagy, which would be consistent with a role
for autophagy as constraining tumor initiation. In contrast to the role of nuclear p53 in activating
autophagy, cytoplasmic p53 can inhibit autophagy, mainly via protein–protein interactions with
autophagic machinery (Tang et al. 2015b).

More direct evidence of a role for autophagy in suppressing tumor initiation comes from
mouse genetic studies of autophagic machinery, including Atg7, Atg5, and Becn1, showing that
when autophagy is impaired, there is an increase in tumor initiation (Qu et al. 2003, Takamura
et al. 2011, Yue et al. 2003). Interestingly, tumors that develop in models in which autophagy
is completely ablated are benign (Takamura et al. 2011). One exception is the studies on Becn1
heterozygous mice in which the authors found that tumors developed and, in many cases, were
able to progress to malignant lesions. This may reflect the fact that these mice, although autophagy
impaired, still were autophagy competent (Qu et al. 2003). Taken together, the data suggest that
even though autophagy loss may predispose to tumor initiation, active autophagy also supports
the progression to invasive cancers. Although the initial studies on BECN1 showed that many
ovarian and breast cancers have a monoallelic loss of this gene, recent, large-scale, human tumor
sequencing studies have suggested that this may be a passenger alteration, given the proximity to
BRCA1 on chromosome 17q21 and the lack of any BECN1-only mutation or loss in cancers (Laddha
et al. 2014, Lebovitz et al. 2015). However, a study of BECN1 messenger RNA expression patterns
in breast cancers suggested an association between low BECN1 expression and poor prognosis
in Her2, basal-like, and p53-mutant cancers, which may indicate an additional mechanism of
downregulation in certain cancers (Tang et al. 2015a).

From a mechanistic standpoint, the inhibition of autophagy leads to excess ROS, increases
in DNA damage, and impaired mitochondria, all potentially protumorigenic (Figure 2) (White
2015). Indeed, studies by the White lab (Karantza-Wadsworth et al. 2007, Mathew et al. 2007)
and others have shown that the loss of autophagy leads to genomic instability and aneuploidy.
Interestingly, beyond protumorigenic intrinsic effects, autophagy loss in vivo can also trig-
ger tumor cell extrinsic effects, including a protumorigenic inflammatory microenvironment
(Degenhardt et al. 2006). Studies on the selective autophagy receptor p62 (SQSTM1) and tu-
morigenesis have suggested a potential mechanistic link between tumor suppression and selective
autophagy. In mouse models with defective autophagy, p62 ablation decreases tumorigenesis, sug-
gesting that p62 accumulation upon autophagy loss can contribute to tumorigenesis (Duran et al.
2008, Inami et al. 2011). Indeed, p62 overexpression promotes oxidative stress and tumor growth
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Figure 2
Role of autophagy in tumors and cancer metabolism. (a) In normal tissue, autophagy performs homeostatic functions, such as protein
and organelle quality control. (b) If autophagy is suppressed in tissues, normal homeostasis is disrupted, leading to increased DNA
damage (genomic instability and aneuploidy), reactive oxygen species (ROS), and inflammation. Together, these changes can promote
tumor initiation and lead to early tumorigenesis. (c) Cancer-directed therapies, including ionizing radiation (IR), chemotherapy, and
various targeted agents, can induce a cytoprotective autophagy that contributes to therapeutic resistance. (d ) Activated autophagy can
promote tumor growth and progression in established tumors by allowing tumor cells to keep up with their metabolic demand as well
as regulate oxidative stress. Specifically, recycled breakdown products, such as amino acids (AA), can fuel the tricarboxylic acid (TCA)
cycle [producing adenosine triphosphate (ATP)]; building blocks for fatty acid (FA) synthesis can also fuel the TCA cycle; and recycled
nucleotides can be used for DNA synthesis and repair (contributing to reduced DNA damage), as well as for the nonoxidative arm of
the pentose phosphate pathway (PPP) that supports glycolysis. Targeting damaged mitochondria for autophagic degradation
(mitophagy) can also regulate ROS levels in the tumor. Overall, autophagy acts in multiple ways to support a protumorigenic
phenotype in a cell-autonomous manner. (e) Autophagy also acts in a nonautonomous manner in the tumor host to support tumor
growth and progression. Autophagy activation in nontumor cells, such as tumor stroma, can provide tumors with critical metabolic
support. Furthermore, autophagy may have a role in producing an environment favorable for tumor progression.

(Mathew et al. 2009). Interestingly, amplification of chromosome 5q, where p62 resides, and
thereby of p62 expression, is associated with the development of clear cell renal cell carcinoma
(Li et al. 2013, Moscat & Diaz-Meco 2009).

Another potential mechanism by which autophagy acts as a tumor suppressor is via its require-
ment in cellular senescence, a program of permanent cell division arrest that can be induced in
response to oncogenic stress to avoid malignant transformation (Pérez-Mancera et al. 2014). Re-
cent reports have shown a potential role for selective autophagy in this process (Dou et al. 2015,
Kang et al. 2015).

4. AUTOPHAGY IN TUMOR PROMOTION

Although autophagy can act as a suppressor of early tumorigenesis through a number of mecha-
nisms (White 2015), work from many groups has also shown that autophagy can support tumor
growth in multiple tumor types (Guo et al. 2013b, Kimmelman 2011, White 2015), as well as
promote resistance to a variety of therapies (Amaravadi et al. 2007). This apparent dual role of
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autophagy can be explained, in part, because the same elements that promote tumorigenesis at
initial stages (ROS, inflammation, DNA damage) can be deleterious at later stages (Imlay & Linn
1988, Poillet-Perez et al. 2015). Indeed, under stress conditions, such as hypoxia or nutrient de-
privation, autophagy is a prosurvival mechanism that eliminates unfolded proteins and provides
substrates for adenosine triphosphate (ATP) production by rapidly degrading endogenous sub-
strates (Figure 2) (Kuma et al. 2004, Singh & Cuervo 2011). Therefore, in a tumor’s hypoxic
regions, autophagy is usually elevated and promotes cell survival (Degenhardt et al. 2006).

In addition, autophagy is also highly activated across a wide variety of cancer types (Lazova et al.
2012), including KRAS- and BRAF-driven tumors (Guo et al. 2011, Lock et al. 2011, Yang et al.
2011). The latter rely on autophagy even under basal conditions for the proper functioning of or-
ganelles and to meet their metabolic demands. In fact, autophagy has been shown to be important
for RAS transformation. Breast epithelial cells transformed with KRASV12 upregulated expression
of various ATG genes through a ROS/JNK-dependent mechanism, leading to the increased for-
mation of autophagosomes (Kim et al. 2011b). Autophagy induction alone was not sufficient to
promote transformation, but it was required for KRAS-induced tumorigenesis (Kim et al. 2011b).
Furthermore, mouse embryonic fibroblasts isolated from a Fip200 (Atg17 ortholog)-null model
transformed with HRASV12 showed reduced proliferation (Wei et al. 2011). In agreement with
this concept, autophagy is required to support adhesion-independent transformation by mutant
RAS (Kim et al. 2011b, Lock et al. 2011).

Consistent with the requirement for autophagy in KRAS tumors, our laboratory has described
an increase in basal autophagy in human PDAC, a tumor that nearly universally possesses ac-
tivating KRAS mutations (Biankin et al. 2012, Jones et al. 2008). Indeed, autophagy inhibition
by RNA interference or chloroquine (CQ) treatment [an inhibitor of lysosomal acidification and
autophagosomal degradation (Rubinsztein et al. 2012)] decreased growth and colony formation in
vitro, as well as tumor growth in vivo (Yang et al. 2011). Similar results have been obtained in the
White laboratory (Guo et al. 2011), in a study in which RAS transformation induced an increase
in basal autophagy while autophagy inhibition impaired cell viability in starvation conditions as
well as tumor growth in vivo (Guo et al. 2011).

Although there is significant evidence that autophagy is required for the tumorigenic growth
of multiple cancer types, a recent study concluded that it is dispensable in KRAS-mutant tumor
cell lines, and it also questioned whether the antitumor effects of CQ and its derivative, hydroxy-
chloroquine (HCQ), are due to autophagy inhibition (Eng et al. 2016). There are several reasons
for the apparent discrepancy between this and a large number of prior studies. One issue is that
although autophagy inhibition has been shown to be inhibitory in multiple KRAS-mutant tumors,
the in vitro effects in short-term, two-dimensional (2D) growth assays in complete media are
typically cytostatic and more modest than those in vivo. Most in vitro effects are seen predom-
inantly in tumorigenesis assays, such as soft agar and low-density clonogenic assays, since these
assays are themselves stresses, similar to in vivo tumor growth, and autophagy is a critical stress
response. Another potential issue involves the use of gene editing to delete autophagy genes (Eng
et al. 2016). Although this approach provides a true knockout phenotype, it can be susceptible
to selective pressures and the generation of resistant clones. Such studies may be informative for
understanding the resistance that may ultimately develop to autophagy inhibitors, but they do not
exclude the initial requirement for autophagy in those cell lines. Indeed, autophagy gene knockout
studies in PDAC mouse models have demonstrated that although tumor formation is decreased,
those tumors that do manage to form no longer require autophagy (Yang et al. 2014). Perhaps
most importantly, some of the most robust tumor responses to autophagy loss have been seen
in autochthonous models with homotypic tumor–stromal interactions and an intact immune sys-
tem (discussed below) (Guo et al. 2013a, Karsli-Uzunbas et al. 2014, Rao et al. 2014), suggesting
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additional non-cell-autonomous factors for which autophagy is critical, which cannot be assessed in
cell culture and standard xenograft studies. Ongoing and future studies will explore these possibil-
ities, including the role of the immune system and other features of the tumor microenvironment.

In regard to the effects of CQ and HCQ, it is well accepted that they inhibit autophagy. Al-
though these drugs do inhibit the lysosome and can affect other lysosomal pathways, studies have
shown that at certain dose ranges, the antitumor effects of HCQ are likely to occur through au-
tophagy inhibition (Amaravadi et al. 2007). Despite the possible clinical activity of HCQ (discussed
below), the therapeutic validation of autophagy inhibition will benefit from the development of
more potent and specific inhibitors.

4.1. Autophagy Regulates Energy Homeostasis and Cell Metabolism

Highly proliferating tumor cells require lipids, carbohydrates, amino acids, and nucleotides as
substrates for biosynthesis and energy production. Autophagy can generate all of these metabolic
intermediates to support the increased metabolic demand of proliferating tumors (Figure 2).
Glycogen can be hydrolyzed to carbohydrates that can feed glycolysis, and protein degradation
provides amino acids that feed the tricarboxylic acid (TCA) cycle at different points or that can
be used for protein synthesis. Nucleotides can be degraded to obtain ribose-phosphate, which can
either be converted to glycolytic intermediates in the nonoxidative pentose phosphate pathway to
generate ATP or be used anabolically for DNA replication and repair (Rabinowitz & White 2010).

Autophagy can also target substrates selectively (Mancias & Kimmelman 2016, Mizushima
& Komatsu 2011), in some cases with important metabolic consequences. Mitophagy selectively
degrades defective mitochondria to prevent oxidative stress (Mizushima & Komatsu 2011) and to
maintain mitochondrial metabolic processes, such as fatty acid oxidation (Guo et al. 2013a). Lipid
requirements are elevated in tumor cells, either for ATP production or membrane synthesis. Lipid
stores or lipid droplets can be degraded by autophagy in a selective process known as lipophagy
(Kaur & Debnath 2015), releasing free fatty acids that support fatty acid β-oxidation and the TCA
cycle (Singh et al. 2009). In fact, autophagy blockade by liver-specific Atg7 knockout leads to the
accumulation of lipid droplets even in the absence of nutrient deprivation, showing that lipophagy
is an essential mechanism for cell metabolism (Singh et al. 2009).

These studies strongly suggest a role for autophagy in tumor metabolism and that modula-
tion, either genetically or pharmacologically, would impact tumor growth. Indeed, Debnath and
colleagues (Lock et al. 2011) showed that autophagy inhibition decreased anchorage-independent
growth, proliferation, and glucose metabolism in Ras-transformed mouse embryonic fibroblasts.
Similar results regarding decreased glycolysis have been observed after deletion of Fip200 in a
conditional model of mammary tumors (Wei et al. 2011). One of the most important metabolic
effects observed throughout many studies is that autophagy inhibition decreases mitochondrial
respiration and ATP production by reducing protein turnover and the supply of intermediates
to the TCA cycle (Guo et al. 2011, 2013a; Rao et al. 2014; Strohecker et al. 2013; Yang et al.
2011, 2014). In fact, KRAS-driven tumors increase autophagic flux and lysosomal degradation
of extracellular scavenged proteins by macropinocytosis to maintain intracellular pools of amino
acids (Perera et al. 2015). The role of autophagy in fatty acid β-oxidation seems to be more
heterogeneous. Although autophagy is important for fatty acid catabolism in a mouse model of
KrasG12D non-small-cell lung carcinoma (NSCLC) (Guo et al. 2013a), this effect is not observed in
BrafV600E-driven lung tumors (Strohecker et al. 2013), suggesting differential fatty acid catabolism
in lung cancer depending on oncogene activation.

In summary, autophagy facilitates tumor growth by multiple mechanisms, including provid-
ing intermediates that support oxidative metabolism or anabolic pathways. Further studies are
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necessary to identify whether and how the selectivity of autophagic cargo is programmed in a
cancer-specific manner to support tumor metabolism.

4.2. Autophagy and Therapeutic Resistance

Autophagy activation in response to internal and external stressors is a well-known mechanism for
cell survival. Accordingly, autophagy activation has been shown to be a mediator of therapeutic
resistance in a variety of situations, including genotoxic and metabolic stresses, as well as those
that inhibit proliferation and replication. Many studies have shown an induction of autophagy in
response to cytotoxic chemotherapeutics (e.g., cisplatin, doxorubicin, temozolomide, etoposide),
including an early study by Amaravadi et al. (2007) in which alkylating agents were shown to
induce autophagy. Notably, autophagy inhibition synergized with alkylating agents, showing that
autophagy inhibition can be a means for overcoming autophagy-induced therapeutic resistance
(Ding et al. 2011, Kanzawa et al. 2004, Zhang et al. 2012). Ionizing radiation induces autophagy
in a wide array of cancer cell lines (as well as in normal nontumor cell lines), and autophagy
inhibition can increase radiosensitization in a subset of these cell lines (Apel et al. 2008, Ito et al.
2005). However, there are some conflicting data in the literature showing that in some cases
radiosensitization is seen with autophagy activation (Ondrej et al. 2016). Autophagy has also been
shown to cause therapeutic resistance to targeted agents such as histone deacetylase inhibitors
(Carew et al. 2007), AKT inhibition (Degtyarev et al. 2008), and tyrosine kinase inhibitors, such
as imatinib (Ertmer et al. 2007), to name a few.

In some instances, the molecular mechanisms of autophagy activation in response to the cancer-
directed therapies discussed above have been determined; however, further work is necessary to
understand whether there are other context-specific activation pathways. Furthermore, it is unclear
in most instances whether the autophagy that is activated in response to cancer-directed therapies
is more targeted to specific substrates or to handle specific aspects of stress. It is important to
note that despite the many situations in which autophagy acts a resistance mechanism, there are
circumstances whereby autophagy inhibition can decrease the efficacy of a particular therapy (Levy
& Thorburn 2011). Therefore, therapeutic combinations should be carefully vetted, in particular
by using robust, genetically engineered mouse models of cancer.

4.3. Autophagy in Genetically Engineered Mouse Models of Cancer

The data discussed above support the protumorigenic role of autophagy in multiple tumor types.
To more thoroughly evaluate the role of autophagy in cancer, genetically engineered mouse
models (GEMMs) of a variety of cancers are being used to identify the mechanisms by which au-
tophagy contributes to tumor growth. In general, GEMMs have many advantages over xenograft
tumor models or 2D cancer cell line experiments. These models allow the study of spontaneous
tumor growth in situ in the corresponding tissue of origin and with the appropriate tumor–
microenvironment interactions. Importantly, given the role of autophagy in modulating the im-
mune system (discussed below), GEMMs allow for the study of tumors in an immune-competent
host. Because of the context and stage-dependent role of autophagy, highly representative models
are indispensable for understanding the potential clinical use of autophagy inhibitors. To that end,
several laboratories have developed mouse models to address important issues, such as the effects
of autophagy inhibition in premalignant or malignant lesions and the consequences of inhibiting
autophagy in either a cancer cell–specific or systemic manner (Table 1).

In a KrasG12D GEMM of NSCLC, tumor-specific Atg7 deletion, regardless of p53 status,
decreased proliferation and led to the formation of oncocytomas, a benign tumor type that
accumulates dysfunctional mitochondria (Guo et al. 2013a). Atg 7−/−, p53−/− tumor-derived
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Table 1 Genetically engineered mouse models for studying autophagy deficiency in cancer

Cancer
type Genotype

Autophagy
gene deleted Initiation

Progression
or tumor
growth

Metabolic
consequences Reference

Pancreas Pdx1Cre;
lslKrasG12D/+;
Trp53flox/+

Atg5 Increased Decreased Decreased OCR Yang et al. 2014

Pancreas Pdx1Cre;
lslKrasG12D/+

Atg5
Atg7

Increased Decreased ND Rosenfeldt et al.
2013

Pancreas Pdx1Cre;
lslKrasG12D/+;
Trp53flox/flox

Atg5
Atg7

Increased Increased Increased
glycolysis and
PPP

Rosenfeldt et al.
2013

Lung lslKrasG12D/+ Atg7 ND Decreased ND Guo et al. 2013a

Lung lslKrasG12D/+;
Trp53flox/flox

Atg7 ND Decreased Decreased FAO;
increased
glycolysis

Guo et al. 2013a

Lung lslKrasG12D Atg5 Increased Decreased Decreased OCR Rao et al. 2014

Lung lslKrasG12D;
Trp53flox/flox

Atg5 No difference No difference ND Rao et al. 2014

Lung BrafV600E; Tp53flox/flox Atg7 Increased Decreased Decreased OCR Strohecker et al.
2013

Lung fsfKrasG12D; Tp53frt/frt Atg7 No difference Decreased ND Karsli-Uzunbas
et al. 2014

Breast MMTV-PyMT FIP200 Decreased Decreased Decreased
glycolysis

Wei et al. 2011

Breast Palb2 flox/flox; Wap-cre Becn1 ND Decreased ND Huo et al. 2013

Breast Palb2flox/flox; Trp53
flox/flox; Wap-cre

Becn1 ND No difference ND Huo et al. 2013

Melanoma TgTyr-cre/ERT2/+;
Lsl-BrafV600E/+;
Ptenflox/+

Atg7 Decreased Decreased ND Xie et al. 2015

Prostate Nkx3.1CreERT2/+;
Ptenflox/flox

Atg7 No difference Decreased ND Santanam et al.
2016

Colon VilCre-ERT2 Apcflox/+ Atg7 Decreased Decreased ND Lévy et al. 2015

Abbreviations: Atg, autophagy-related; Becn, Beclin; FAO, fatty acid oxidation; flox, conditional allele using the Cre-Lox system; frt, conditional allele
using FLP-FRT system; fsf, frt-stop-frt; lsl, lox-stop-lox; ND, not determined; OCR, oxygen consumption rate; PPP, pentose phosphate pathway.

TDCL:
tumor-derived cell line

LOH: loss of
heterozygosity

cell lines (TDCLs) accumulated lipids and decreased mitochondrial respiration, making them
sensitive to nutrient starvation due to defects in fatty acid β-oxidation and decreased production
of substrates for the TCA cycle (Guo et al. 2013a). Interestingly, a similar study using Atg5-null
lung tumors showed that p53 deletion impacted the response to autophagy loss (Rao et al. 2014),
which may indicate a distinct role for Atg5 versus Atg7 or may be due to technical reasons, such
as mouse strain differences.

To study another Kras-driven cancer, our group used a conditional Atg5 knockout in the
context of a PDAC GEMM [Kras mutation and p53 loss of heterozygosity (LOH)] (Yang et al.
2014). Autophagy loss decreased PDAC formation, thereby prolonging survival. Consistent with
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an initial role in tumor suppression, the Atg5 homozygous deletion increased the number of
premalignant pancreatic intraepithelial neoplasia, but significantly impaired the progression to
invasive PDAC. The tumors that did form in the Atg5-null mice showed impaired proliferation
in vivo, and in TDCLs, there was increased cell death and DNA damage. Interestingly, a second
study using a similar model confirmed that autophagy loss prevented tumor progression in the
KrasG12D PDAC model (Rosenfeldt et al. 2013). However, when a p53 homozygous deletion was
incorporated, the results were paradoxical, with decreased survival. Differences in the mouse
models explain these apparently contradictory results, given that p53 homozygous deletion in
the pancreas during embryogenesis is distinct from heterozygous deletion and subsequent p53
loss via LOH (analogous to the situation in human tumors). Indeed, CQ treatment in patient-
derived pancreatic cancer xenografts impaired tumor growth independently of p53 status (Yang
et al. 2014). Furthermore, CQ treatment or RNA interference–mediated Atg5 or Atg7 depletion
decreased colony formation and oxidative phosphorylation in a panel of mouse PDAC cell lines
with varying p53 statuses, consistent with results from the p53 heterozygous GEMM. Thus, in the
physiological situation in which p53 is lost via LOH, autophagy is required for PDAC progression
and growth. The results from mice with homozygous p53 embryonic deletion likely indicate an
important biological role for p53 in directing an intact autophagy program, as has been shown
previously (Kenzelmann Broz et al. 2013).

Because KrasG12D-driven models appear to depend on autophagy, an interesting question was
whether the same was true for tumors with constitutive activation of Braf, a downstream effector
of Kras. BRAF mutations have been described in lung adenocarcinoma, melanoma, ovarian can-
cer, and colorectal cancer (Davies et al. 2002). A study in a BrafV600E-driven lung cancer GEMM
with either p53 intact or co-deleted showed that Atg7 deletion extended survival (Strohecker et al.
2013). The decreased tumor growth was a consequence of a metabolic crisis resulting from limited
nutrient supply to the TCA cycle. Indeed glutamine, a major anaplerotic fuel source for cancer
cells in culture, was able to rescue starvation-induced death in Atg7-null TDCLs (Strohecker
et al. 2013). In contrast to KrasG12D-induced tumors, autophagy ablation did not lead to an accu-
mulation of lipids or induce inflammation (Guo et al. 2013a), suggesting differential regulation
of mitochondrial metabolism according to the driver oncogene. Similarly, in an Atg7-deficient
melanoma GEMM driven by BrafV600E with or without Pten deletion, autophagy loss also induced
the accumulation of defective mitochondria, oxidative stress, and DNA damage as well as in-
creased survival (Xie et al. 2015). In addition to Ras- and Raf-driven tumors, autophagy has been
shown to have a role in a multitude of tumor types in a variety of GEMMs. For instance, in a
polyomavirus middle T antigen (PyMT) model of breast cancer, autophagy inhibition by condi-
tional Fip200 (Atg17 ortholog) deletion suppressed tumor initiation, progression, and metastasis
(Wei et al. 2011). In another model of hereditary breast cancer driven by Palb2 deletion, autophagy
inhibition by single allelic loss of Becn1 in the mouse mammary gland decreased tumorigenesis
in a p53-dependent manner (Huo et al. 2013). Additionally, in mouse models of prostate cancer
(driven by Pten loss) (Santanam et al. 2016) and colon cancer (Apc+/−) (Lévy et al. 2015), genetic
inhibition of autophagy showed significant antitumor responses.

Interestingly, the mechanisms by which autophagy contributes to tumorigenicity might be dif-
ferent according to tumor type. Previous studies in lung cancer models have shown that autophagy
inhibition attenuated tumor growth by inducing the accumulation of dysfunctional mitochondria
(Guo et al. 2013a). However, in the prostate cancer model mentioned above, Atg7-deficient tumors
accumulated swollen ER, which is indicative of ER stress, suggesting a critical role for autophagy
in these tumors for eliminating the ER and regulating the accumulation of unfolded proteins
(Santanam et al. 2016). Similar results have been seen in a colon cancer model with Atg5 defi-
ciency (Sakitani et al. 2015).
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CAF:
cancer-associated
fibroblast

The use of GEMMs is helping to clarify the temporal and tissue-dependent role of autophagy.
These models show how the modulation of autophagy has significant cell-autonomous effects in
tumor metabolism and regulation of the DNA damage response. Importantly, these effects can
vary among tumor types and even for the same tumor type, depending on the activation of different
oncogenes.

4.4. Nontumor Cell-Autonomous Effects of Autophagy

Because any autophagy inhibitor that will be used in patients will impact autophagy in the entire
patient, it is essential to differentiate between cell-autonomous and non-cell-autonomous effects.
Indeed, many of the aforementioned studies have analyzed the role of autophagy from only the
tumor cell perspective. However, recent data have begun to address this question genetically, and
the data suggest that the impact of systemic autophagy inhibition may be more profound than just
the inhibition of autophagy in tumor cells.

To assess the impact of systemic autophagy loss in an adult mouse and to model autophagy
inhibitor treatment in a patient, Karsli-Uzunbas et al. (2014) ablated Atg7 systemically in adult
mice. Remarkably, Atg7−/− mice survived for more than two months without active autophagy.
Ultimately, the majority of the mice succumbed to neurodegeneration (Karsli-Uzunbas et al.
2014), a known sequelae of autophagy loss. The authors then used this Atg7 mouse model in
combination with a dual recombinase system (Cre-Lox and FLP-Frt) to generate fully formed
lung tumors (KrasG12D, p53-null), after which acute ablation of Atg7 systemically was induced. This
model showed dramatic reductions in tumor size. This study illustrates several key points. First, it
demonstrates that tumors rely on autophagy more than the host initially, indicating that there may
be a therapeutic index for autophagy inhibition in the clinic. Clearly, potential central nervous
system effects will have to be accounted for in any therapeutic strategy of long-term autophagy
inhibition, either through intermittent dosing strategies or by restricting central nervous system
penetration. Second, because the antitumor response was more profound when autophagy was
deleted in the whole host (tumor and mouse) than in prior studies when it was deleted only in the
tumor, this indicates that there are significant host factors that contribute to the antitumor effects.
Importantly, despite the fact that autophagy may be important for various aspects of the immune
response (Dengjel et al. 2005, Hubbard et al. 2010, Jacquel et al. 2012, Kondylis et al. 2013, Lee
et al. 2010, Pua et al. 2007, Ushio et al. 2011, Willinger & Flavell 2012), these data indicate that
systemic autophagy inhibition does not compromise and, in fact, enhances the antitumor response.

The tumor stroma is a complex system composed of the extracellular matrix, cells [immune
cells, fibroblasts, myofibroblasts, and cancer-associated fibroblasts (CAFs)], cytokines, and blood
and lymph vessels (Kalluri & Zeisberg 2006) that support tumor proliferation, progression, and
metastasis (Maes et al. 2013). Although little is known about the specific mechanisms that mediate
communication between the stroma and the epithelial compartment, recent work has described a
model in which tumor-mediated inactivation of p62 in fibroblasts led to activation of CAFs. This
induced a metabolic reprogramming through mTORC1/c-MYC inactivation that ultimately led
to the production of interleukin (IL)-6, an inflammatory cytokine that enhances the proliferation
and invasion of tumor cells (Valencia et al. 2014). These results suggest a link between the ac-
tivation of autophagy in the stromal compartment and inflammation that would enhance tumor
development and, conversely, suggest that autophagy inhibition in the stroma may provide an
antitumor effect. Work from our lab has also demonstrated the importance of autophagy in the
stromal compartment, as the inhibition of autophagy specifically in CAFs decreased PDAC tumor
growth in an orthotopic transplant model. Moreover, this protumorigenic role of autophagy in
the stroma is due to an autophagy-dependent metabolic cross-talk. In this case, CAFs degrade
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IFN: interferon

proteins via autophagy, which leads to the secretion of amino acids that can be taken up by the
tumor cells to fuel various metabolic pathways (Sousa et al. 2016).

Another mechanism by which autophagy may promote tumor growth, in a non-cell-
autonomous manner, is by contributing to the secretion of proteins that are not secreted by
conventional pathways (Ponpuak et al. 2015). In one example, autophagy-dependent secretion
can mediate the release of IL-6 in the tumor microenvironment of HRAS-transformed cells, con-
tributing to RAS-driven invasion (Lock et al. 2014). Further work is necessary to elucidate the
mechanisms that differentiate degradative from secretory autophagy and the role of autophagy-
dependent secretion in other cancers.

From a therapeutic perspective, autophagy inhibition in the tumor cell may modulate the im-
mune response, thereby regulating cancer progression. Previous work from the White laboratory
(Degenhardt et al. 2006) has shown that when apoptosis and autophagy are inhibited, necrosis
induces an inflammatory response characterized by NF-κB and IL-6 secretion and macrophage
infiltration. These results are in line with other studies in which autophagy inhibition by Atg7
deletion in NSCLC precipitated an inflammatory response (Guo et al. 2013a, Karsli-Uzunbas
et al. 2014). Consistent with these findings, the antitumor effects of autophagy inhibition on both
Apc+/- colon GEMMs (Lévy et al. 2015) and the PyMT breast cancer model (Wei et al. 2011)
have been shown to depend, at least in part, on intact T cell responses.

In fact, CD8+ T cell depletion accelerated mammary tumor initiation in the Fip200-null mice,
suggesting that autophagy contributes to increased tumorigenesis by suppressing the antitumor
immune response (Wei et al. 2011). Similar results have been obtained in an Apc+/−, Atg7−/−

model of colon cancer, which showed increased secretion of IL-12 and increased infiltration
of CD45+ and CD11c+ cells, as well as T regulatory and CD8 interferon (IFN)-γ T cells.
Strikingly, autophagy-deficient mice had more bacterial burden, and antibiotics limited the
antitumor response, reinforcing the antitumoral role of the gut microbiota when autophagy is
inhibited. Further work needs to be performed to elucidate the mechanisms by which autophagy
can regulate the IFN pathway and other antitumoral immune responses. In this sense, a recent
paper (Mathew et al. 2014) has shown that starvation-induced autophagy can selectively degrade
proteins in the RIG-I pathway, which are involved in inflammatory processes, thus inhibiting the
innate immune response. In a clinical context, it will be important not only to evaluate the effects
on the tumor-induced immune response but also to determine the consequences of systemic
autophagy ablation treatment on the immune system, given the known role of autophagy in
various immune cell types (Michaud et al. 2011).

5. AUTOPHAGY AS A THERAPEUTIC TARGET

Because autophagy can support tumor growth and preclinical evidence has demonstrated the role
of autophagy inhibition as a promising therapeutic strategy, there are now numerous ongoing
clinical trials (http://www.cancer.gov/clinicaltrials) assessing the efficacy of the lysosomal in-
hibitor HCQ. Like CQ, HCQ is a weak basic tertiary amine that can accumulate in the acidic
lysosome where it is protonated, thereby inhibiting diffusion out of the lysosome. This results
in an increase in the pH of the lysosome, which inhibits lysosomal function (Homewood et al.
1972) and autophagy in the process. Early studies have refined the appropriate doses of lysosomal
inhibitors and shown potential efficacy with regard to tumor response. Although most of these
trials are ongoing, there have been encouraging results from several Phase I and Phase II trials
(Rebecca & Amaravadi 2016, Wang et al. 2016). The majority of the trials have used a combination
of HCQ and other antineoplastic regimens, including chemotherapy, targeted therapy, and radia-
tion therapy, given the multiple studies showing that autophagy is activated as a survival response

www.annualreviews.org • The Role of Autophagy in Cancer 31

http://www.cancer.gov/clinicaltrials


CA01CH02-Kimmelman ARI 7 January 2017 12:5

to antineoplastic therapy (discussed above) (Kimmelman 2011). Examples of completed studies
include a Phase I trial combining HCQ with bortezomib (a proteasome inhibitor) in relapsed or
refractory multiple myeloma in which an improved effect was noted in comparison with historical
use of bortezomib alone (Vogl et al. 2014). A trial with temozolomide and HCQ for patients pri-
marily with metastatic melanoma showed a 41% partial response or stable disease (Rangwala et al.
2014). However, a Phase II trial of HCQ, temozolomide, and radiation in glioblastoma patients
showed a median survival of 15.6 months, which was not significantly improved compared with
historical controls (Rosenfeld et al. 2014, Stupp et al. 2005). Notably, the mean tolerated dose
of HCQ in this trial was 600 mg/day and at that dose autophagy inhibition was not consistently
achieved. Larger studies are necessary to determine the utility of HCQ as an anticancer therapy,
and several are ongoing.

Based on work from our laboratory and others, clinical trials using HCQ as part of a PDAC
therapeutic regimen have been initiated. Although HCQ as monotherapy in a Phase II trial
of PDAC patients with metastatic disease who had progressed through multiple lines of ther-
apy showed no objective responses, this may have been a result of the fact that these patients
were a heavily pretreated population and did not remain on HCQ for a long period and,
thus, may have not achieved therapeutic doses (Wolpin et al. 2014). Alternatively, it may re-
flect the need for combination therapy in this highly treatment-refractory disease. More re-
cent studies of HCQ-mediated autophagy inhibition in PDAC have been promising, including a
Phase I and II study of preoperative HCQ and gemcitabine therapy that showed CA19-9 tumor
marker response and improvement in overall survival compared with historical controls (Boone
et al. 2015). Based on these data, a randomized Phase II trial has opened, combining HCQ
with gemcitabine and nab-paclitaxel (nanoparticle albumin-bound paclitaxel) in the neoadjuvant
setting.

There are many unanswered questions with regard to the use of autophagy inhibition as a
cancer therapeutic. Understanding which patients will respond to autophagy inhibition a priori
is an ongoing challenge (Mancias & Kimmelman 2011). Whereas GEMM studies suggest a re-
liance of autophagy in Ras-driven cancers, this bears further testing, as preclinical data suggest
that this might not be a sufficient biomarker for selecting patients (Morgan et al. 2014). Interest-
ingly, other tumor-driver mutations may predict responsiveness to autophagy inhibition, including
the BRAFV600E mutation. Indeed, a pediatric patient with a brainstem ganglioglioma harboring
a V600E mutation had a significant and sustained response to a combination of CQ and RAF
inhibition with vemurafenib (Levy et al. 2014). More generally, it is possible that tumors that have
a high basal level of autophagy may respond best to autophagy inhibition. Unfortunately, our
methods for assessing autophagy levels in vivo or the pharmacodynamic response to autophagy
inhibition are limited to monitoring LC3-II levels and LC3 puncta or using electron micrographs
to detect autophagosomes. Therefore, better biomarkers and methods require further develop-
ment (Kimmelman 2011, Mancias & Kimmelman 2011). Although CQ and HCQ are effective
inhibitors of autophagy in vitro, it is unclear whether the doses used in clinical trials effectively
inhibit autophagy in vivo. Another issue with HCQ is that the pharmacokinetics are unfavorable,
with long periods of time required for adequate micromolar dose levels to be reached (Munster
et al. 2002, Tett et al. 1993). Therefore, there is an intensive effort to identify not only new
analogs of CQ, such as Lys05, but also drugs targeting other aspects of the autophagic pathway
(Solomon et al. 2010). Although many of the efforts have sought to target the canonical autophagic
pathway, this may miss the noncanonical pathways, such as LC3-associated phagocytosis (Kim &
Overholtzer 2013), that cancer cells may depend upon. Both canonical and noncanonical au-
tophagic pathways, as well as macropinocytosis, an extracellular scavenging mechanism used by
some cancers to support metabolism (Commisso et al. 2013), converge on the lysosome; therefore,
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it may be that the lysosome is the best target. To that end, Lys05 is being tested preclinically,
and additional antimalarial analogs are being actively studied, such as VATG-027, which disrupts
lysosomal processes (Goodall et al. 2014).

There are multiple additional components of the autophagic process that are potentially targets
for therapeutic intervention. Given the success with targeting kinases, multiple pharmaceutical
companies have designed specific inhibitors of VPS34 (Figure 1) (Dowdle et al. 2014). Many of
these are highly specific and avoid cross-reactivity with others of the class I and class II PI3Ks;
however, there remain concerns with regard to altering endosomal trafficking, given the role of
VPS34 in multiple trafficking events (Rebecca & Amaravadi 2016, Wang et al. 2016). BECN1
is a binding partner of VPS34 and has an important regulatory role in the PI(3)KCIII complex
(Figure 1) and, therefore, has been identified as a target for autophagy inhibition. Spautin-1 has
been shown to stimulate degradation of the BECN1–VPS34 complex by inhibiting two ubiquitin-
specific proteases that regulate the stability of the complex. Spautin-1 has been shown in preclinical
studies to enhance cancer cell death in the setting of nutrient deprivation when autophagy would
generally act as a survival mechanism. Spautin-1 has also been shown to have other activities,
including roles in activating nucleotide excision repair, highlighting the need for more specific
inhibitors of BECN1–VPS34 as a means of autophagy inhibition (Liu et al. 2011).

Because ULK1–2 is an integral component of the autophagy initiation machinery, it is an
obvious target for autophagy inhibitors (Figure 1). To date, groups have attempted to directly
inhibit ULK1–2 kinase activity through various small molecule inhibitors, including MRT68921,
MRT67307, and SBI-0206965. Off-target inhibitory effects on other kinases may limit the utility
of these compounds for autophagy-specific inhibition (Egan et al. 2015, Petherick et al. 2015).
Additionally, ULK1-independent autophagy has been described (Cheong et al. 2011). Initial ef-
forts toward developing inhibitors against ATG4B (Figure 1) are in the preclinical phase, but they
show promise with regard to inhibiting ATG8 processing (Akin et al. 2014). Likewise, targeting
the downstream ubiquitin-like conjugation machinery, such as the ATG7 enzyme (Figure 1), may
represent a viable therapeutic strategy.

Whichever approach is taken to inhibit autophagy, the balance between potency and toxicity
must be considered, as autophagy clearly has a key role in normal tissue homeostasis. Novel
inhibitors and combination therapies should be critically evaluated in GEMMs to assess both the
efficacy and effects on normal tissues.

6. FUTURE PERSPECTIVES

The role of autophagy in cancer is complex, with the data supporting its role in constraining cancer
initiation and, later, in a protumorigenic process. The tumor-promoting roles of autophagy sup-
port tumor growth by providing necessary nutrients and managing ROS. Furthermore, autophagy
can support therapeutic resistance to cytotoxic chemotherapy, molecularly targeted agents, and
radiotherapy. There are many questions that are the focus of ongoing work in the field of au-
tophagy in cancer. Most fundamentally, the molecular events that tumor cells employ to switch
on higher basal levels of autophagy have only begun to be elucidated (Perera et al. 2015, Wong
et al. 2015). Also unclear at this time is whether there are particular cargos that are selectively
degraded in tumors to support growth. Some proteomic studies have begun to address this issue
(Mancias et al. 2014, Mathew et al. 2014). Given the complexity of the tumor–microenvironment
interaction, further in vivo studies are required to understand how the microenvironment may
modulate the dependence of tumors on autophagy. Although there have been advances in using
organotypic cultures, these studies will most likely have to be performed in vivo and will require
advanced mouse models with genetic manipulation of autophagy activity. These studies will also
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improve our understanding of the effects of autophagy inhibition in the tumor and microenviron-
ment, and inform our understanding of the relative contribution of the tumor cell-autonomous
versus nonautonomous effects of autophagy inhibition on tumor efficacy studies. A great deal of
preclinical data support autophagy inhibition as an anticancer strategy. Much work is required
to understand the subset of tumors that would benefit most from autophagy inhibition. In part,
this will depend on developing more robust biomarkers of the basal autophagy level in tumors.
These biomarkers will also be useful in ongoing clinical trials of autophagy inhibition as a cancer
therapeutic.
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