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Abstract

The physicist Ernest Rutherford said, “If your experiment needs statistics,
you ought to have done a better experiment.” Although this aphorism re-
mains true for much of today’s research in cell biology, a basic understanding
of statistics can be useful to cell biologists to help in monitoring the con-
duct of their experiments, in interpreting the results, in presenting them in
publications, and when critically evaluating research by others. However,
training in statistics is often focused on the sophisticated needs of clinical
researchers, psychologists, and epidemiologists, whose conclusions depend
wholly on statistics, rather than the practical needs of cell biologists, whose
experiments often provide evidence that is not statistical in nature. This
review describes some of the basic statistical principles that may be of use
to experimental biologists, but it does not cover the sophisticated statistics
needed for papers that contain evidence of no other kind.
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INTRODUCTION

Science is knowledge gained through repeated observation or experimentation. By convention,
when scientific research reveals some new knowledge, it is published in a journal as an article that
not only contains the conclusions but also includes the evidence that supports them.

We publish papers to publicize this new knowledge, to make a claim to its discovery, and to
convince the readers of the paper that it is true. The evidence supporting the conclusions might
be in the form of tables of data, graphs, or images.

In 2005, the statistician John Iaonnidis (2005) published a paper proving that most claimed
research findings are false. His paper focused mainly on medical research papers that formed
conclusions solely on the basis of results that were statistically significant as assessed by a p-value
of less than 0.05.

Although Iaonnidis’s claim was often dismissed as an exaggeration, in 2011 and 2012, papers
from pharmaceutical companies Bayer and Amgen reported that they were unable to replicate find-
ings reported by academic labs 65% and 89% of the time (Begley & Ellis 2012, Prinz et al. 2011).

These numbers are shockingly high, but in the absence of evidence to the contrary, they cannot
be dismissed. As roughly one million new publications are listed in PubMed each year, whether
Iaonnidis is right, and the conclusions of more than 500,000 are false, or the pharmaceutical
companies are right, and as many as 900,000 are irreproducible, there is clearly something going
wrong with how biomedical research is conducted. A large part of this problem may be due to
misuse of statistics. Even though many papers in experimental biology do not involve sophisticated
statistics, an understanding of basic statistics may help experimenters reduce the number of papers
with false conclusions, help readers identify those papers that are sound, and help interested
colleagues understand the reasons for reproducibility or lack of reproducibility in a given study.

THREE USES FOR STATISTICS IN CELL BIOLOGY

Just like a microscope, a computer, or a flow cytometer, statistics is a tool that can be used to provide
or process information that can be used in generating scientific knowledge. In experimental cell
biology, statistics can be used (a) before results are published to monitor the performance of an
experiment, (b) to help analyze and draw inferences from the data, and (c) in publications to help
readers understand and interpret the experiments.

Although all experiments must be repeated, or include multiple independent observations,
in experimental cell biology much of the evidence can be nonstatistical in nature. For example,
some experimental results involving Western blots, histology, coimmunoprecipitations, PCR,
flow cytometry, or electron microscopy can be convincing without the need for statistical analysis.
However, with advances in computers and big-data technologies, such as proteomics and next-
generation sequencing, the impact of statistics in cell biology is increasing.
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Cell biology papers typically contain multiple figures that each show the results of several
experiments, and these provide mechanistically different lines of evidence supporting the con-
clusions. In this way, cell biology papers are distinct from papers in epidemiology, psychology,
or clinical studies, which often describe the results of a single experiment and do not pick apart
the underlying biological mechanisms. Although this second group of papers depends entirely
on statistical evidence, most papers in experimental cell biology and molecular biology do not.
Nevertheless, an understanding of basic statistics can be useful to cell biologists when they are con-
ducting experiments, analyzing the results, and critically evaluating the results in papers published
by others.

Statistics to Monitor the Conduct of Experiments—Descriptive Statistics

The results of experiments in cell biology will vary not only because biological systems are complex
but also owing to the limits of the measuring instruments, sampling error, and observer error.
In addition, there may be variation in the results that may reflect accidents such as mislabeling
or equipment failure. Basic descriptive statistics can be used to help monitor experiments to alert
cell biologists to problems with their performance. The cell biologist must be able to distinguish
expected variation, such as that caused by sampling error or biological variation, from spurious
results owing to equipment failure or errors of data entry.

If, for example, you were performing a colony assay using bone marrow cells cultured in soft
agar, you might set up triplicate plates for each of the conditions. As triplicates are intended to be
as similar to each other as you can make them, you would expect each of the triplicate plates to
grow a similar number of colonies. If one of the cultures in a triplicate had ten times more or ten
times less colonies than the other two, you would be prompted to find out why. Perhaps the bone
marrow cells were not dispersed properly, and one of the triplicate cultures got a clump of cells;
perhaps the colonies are not bone marrow–derived white blood cells but are contaminating yeast
colonies; perhaps there was a blockage in the pipette when the cells were dispensed.

In some cases, it will be obvious that something has gone wrong, and a little investigation will
reveal the cause. At other times, it might be unclear whether the variation between the replicates
is within normal expectations. To make this judgment requires an understanding of the sources
of variation in the data and how the results are likely to be distributed.

Descriptive statistics can be used to show how broadly or narrowly the data are distributed and
can make it easier to discriminate between the expected amount of variation and something going
wrong during an experiment. The most commonly used descriptive statistics are the range and
the standard deviation (SD).

Range. The range is the interval from the lowest sample value to the highest sample value
(Figure 1). If you were measuring the white blood cell counts from several identically treated
mice, or doing replicate counts on a single sample, the range would show how the counts were
distributed: If they were all very similar, the range would be narrow; if there was a great deal of
variability, the range would be wide.

Although range is an easy descriptive statistic to understand and to calculate, it is not often
used because it is not a robust descriptive statistic. Consider if you had the white blood cell counts
from only two mice. Then the range would be the interval from one count to the other. If you
did a count on one more mouse, and its white blood cell count was between the other two, the
range interval would not change in size. However, if the white blood cell count was less than or
more than the other two, the range would get bigger. The more and more mice you examined,
the bigger and bigger the range interval would get. In other words, the range gets bigger as the
number of samples increases.
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Figure 1
Range and standard deviation (SD) error bars can describe how the data are distributed. White blood cell
counts (red dots) from three mice (left), showing the mean and range and mean ± SD. On the right are the
first three samples, plus samples from a further seven mice ( purple dots). As N increases, the range becomes
larger. The sample SD does not change in a consistent way as N increases, but it becomes a more and more
accurate estimate of the population SD.

Standard deviation. A much more commonly used descriptive statistic is the SD. SDs are calcu-
lated by taking the square root of the average of the squared differences between the samples and
the sample mean, so they can be thought of as the typical difference between the sample values
and the sample mean. It is a robust statistic because in a normal distribution, the mean ± the
SD interval encompasses approximately two-thirds of the data points, regardless of how many
samples there are. The SD of several samples is always the best estimate of the SD of the entire
population, just as the mean of the samples is always the best estimate of the mean of the entire
population.

The smaller the SD, the closer most of the sample values will be to the mean. Note, however,
that unless you are measuring the whole population, the summed squares of the (sample − mean)
values are divided by N − 1, rather than N, because this gives a more accurate estimate of the
population SD. Also, when N is very small (e.g., only three), the sample SD tends to underestimate
the SD of the population.

Although the mean and SD of the samples will always provide the best estimate of mean and
SD of the population, your confidence in the accuracy of the estimate will be greater the more
samples you have. If you have only two or three samples, the sample mean and SD could both be
very, very, different from the population mean and population SD.

Sources of variation. Suppose you were performing a cell death assay, and you had a set of three
replicate 4-mL cultures that, if you counted every cell in all three wells, had 1,000,000 cells, of
which 500,000 were alive and 500,000 were dead. There would be some differences in the number
of cells per well, as well as in the percentage of live and dead cells, owing to variability in pipetting
accuracy, and there would also be slight differences owing to variation in the distribution of heat
and humidity in the incubator. In addition, when you went to count the number of live and dead
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cells, you would also see variation in the results because of sampling error, the variation caused by
the random likelihood of a dead or a live cell entering the pipette.

Binomial distribution. If you were to analyze each of the wells by counting 100 cells from each
in a haemocytometer, using trypan blue exclusion to determine the percentage of cell death, there
would be some random variation in your measurements depending on whether a live or a dead cell
happened to be sucked into the pipette tip, or whether it came to rest over the haemocytometer
grid (Figure 2). Because each cell counted could be either alive or dead, the counts should fall
into a binomial distribution. The expected variance of a binomial distribution is N (the number
of cells counted; in this case, 100) × p (the fraction of cells that are alive; in this case 0.5) ×
(1 − p) (the fraction of cells that are dead); i.e., 100 × 0.5 × 0.5, or 25. The SD is the square
root of the variance, in this case, 5 (or 5% of 100 cells). Therefore, if you did counts on many
wells, approximately two-thirds of the time your counts would be between 45% and 55% live
cells (mean ± 1 SD), and approximately 95% of the time your counts would be between 40%
and 60% live cells (mean ± 2 SD). This variability is termed sampling error, and it can be seen
in Figure 2. If one of the counts showed zero live cells, you would be prompted to check to see
if there was something wrong with that culture.

In Figure 2, you can also see variability in the sample SDs, which are expected to be 5%.
Some of the SDs of the triplicates are smaller than this, and some are larger. In a real, rather
than a simulated, experiment, you would expect the SDs to be even larger, because the variation in
pipetting would be added to the variation owing to sampling. If the SD in a set of triplicate cultures
were very large, you should try to determine why. However, if the SDs of all of the triplicates
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Figure 2
Percentages of live (trypan blue negative) cells from triplicate samples (blue dots) with the mean ± standard
deviation (SD). In each of these 10 sets of triplicates, 100 cells were sampled from the same stock suspension
of cells that were 50% viable. Note how the sample mean and standard deviation vary. The expected mean is
50%, and the expected SD is 5%. (These data were created by performing a random coin toss 100 times for
each point. In a real experiment, the expected SDs would be larger, owing to variation in, for example,
pipetting accuracy or observer error, in addition to the sampling error.)

www.annualreviews.org • Basic Statistics in Cell Biology 27



CB30CH02-Vaux ARI 2 September 2014 7:23

Number of clones per well

W
e

ll
s 

w
it

h
 e

a
ch

 n
u

m
b

e
r 

o
f 

cl
o

n
e

s Mean ± SDMean ± SD

40

35

30

25

20

15

10

5

0
0 1 2 3 4 5 6 7 8

Figure 3
Number of hybridoma clones per well in a 96-well plate. In this case, 19 wells grew no hybridomas, and no
well had more than 5 hybridomas; the average number of hybridomas per well was 1.6, and the SD was 1.2.
The number of hybridomas per well should fit a Poisson distribution.

were the same, or all were much smaller than 5%, you should question those who performed the
experiment and who provided you with the results, as they might be biased.

If you did the same experiment, but this time analyzed cell viability by measuring uptake of
propidium iodide on a flow cytometer, counting 10,000 cells from each well, the expected mean
viability would still be 50%, but the SD of the three wells would be expected to be

√
[N × p ×

(1 − p)] = √
(10,000 × 0.5 × 0.5) = ± 50 cells, or 50% ± 0.5% viable cells. By sampling 100

times more cells, the SDs of the triplicate samples should be ten times smaller.

Poisson distribution. Another discrete distribution that frequently arises in cell biology is the
Poisson distribution, the distribution of the number of cells in a microscope field, the number
of colonies on a plate, or the number of hybridoma clones in each well at limit dilution. Poisson
distributions involve integer numbers and do not have values less than zero, and large numbers
can occur, at least in theory. Plotted out, a Poisson distribution looks like a binomial distribution
that has been squashed up against the y axis and has a long tail to the right (see Figure 3). For
example, if you performed a colony-forming assay by plating out bone marrow cells in soft agar
in the presence of CSFs, some plates might grow no colonies and some might have one or two, or
very many. A fact worth remembering about Poisson distributions is that the expected SD is the
square root of the mean. If someone in your lab presented results showing numbers of cells per
microscope field, and all the fields had one or two cells but none had zero or three, the SD would
appear too small for a Poisson distribution, and the results might be biased. You should ask more
questions about how the experiment was done.

Normal distribution. When p is close to 0.5, as N increases, a binomial distribution adopts a bell
shape that approximates a normal distribution. Unlike the binomial distribution, which is used for
discrete values, the normal distribution is used for continuous variables, e.g., for the weights of
mice, or the length of their tails. In a normal distribution, the top of the bell is the mean, and the
SDs are the points of inflection on the sides of the curve (Figure 4).
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Figure 4
The normal distribution curve. The mean is adjusted to zero, and the standard deviation (SD) = 1. The tails extend to infinity on both
the left and the right. The interval mean ± 1 SD covers approximately two-thirds of the data (light purple), and the interval mean ± 2
SD covers ∼95% (darker purple). According to the central limit theorem, because many biological parameters are the result of a large
number of variables, they very often fall on a normal distribution curve.

Using Statistics to Make Inferences

Once cell biologists are satisfied that they have performed the experiment well, and once they
are convinced that the results are reliable, they can get to the next step of analyzing the data,
to draw inferences from it, and to test the hypotheses they are interested in. Often they want to
answer questions such as, does this cell, gene, or molecule do something? Can I be sure that what
it appears to be doing is real, and not a spurious effect owing to coincidence? If it does have an
effect, what is the size of the effect, and what is its biological importance?

Sometimes the answers to these questions are obvious. For example, if you were trying to deter-
mine whether a mouse was transmitting a transgene that expressed green fluorescent protein, and
you had a picture of a litter of eight mice from a normal and a green fluorescent protein transgenic
parent, and three of them glowed bright green under ultraviolet light, you could conclude, with
a very high degree of confidence, that the transgene had been transmitted, without doing any
statistical tests at all. If you still had some doubts, you could take tissues from one of the green and
one of the nongreen littermates, extract the DNA, and look for the sequence of the transgene, or
you could extract the protein and perform a Western blot.

Where results are not obvious, inferential statistics can help you decide whether preliminary
results are worth repeating or following up with confirmatory experiments. The most commonly
used inferential statistics are standard error of the mean (SEM) and confidence intervals (CIs).

Suppose you were trying to see whether a gene (caudalin) had a role in determining tail size
in mice. You have ten wild-type (WT) mice and ten caudalin homozygous gene knockout mice,
all of the same sex and age. Figure 5a shows the lengths of the tails. In this case, there is a clear
difference between the lengths of the tails where the only difference between the sets of mice is
the presence or absence of the caudalin gene. It would be reasonable to infer that Caudalin was
necessary for tail development, and there would be no need to do any statistical analysis (or show
any in a published figure). These results would best be presented by plotting the data points, rather
than showing the results as a bar graph, as this allows readers to readily understand how many
mice were examined and see how much the tail lengths varied.

Now suppose you knocked out a different gene, holmin, and measured the lengths of the tails
of ten male WT mice and ten holmin knockouts of the same age, and you got the results shown in
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Figure 5a. Here it is not immediately obvious whether the differences in tail lengths between the
WT and holmin knockouts could just be due to chance, or whether differences of this size would
be unlikely if Holmin had no effect on tail length. To make this kind of judgment, you could use
an inferential statistic, such as the SEM, or increase the number of mice you sampled, but a much
better approach would be to carry out a different experiment, for example, crossing the caudalin−/−
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and holmin−/− mice to see if there is an epistatic effect, or measuring the size of other organs, or
looking at the levels of Holmin protein in the caudalin−/− mice.

SEM. The SEM is the sample SD divided by the square root of N, the number of independent
samples. If you took the same number of samples from a population multiple times and calculated
multiple sample means, these means would fall in a distribution with its own SD. That is why
SEM is sometimes referred to as the SD of the mean.

SEM is referred to as an inferential statistic because it can help you make inferences from the
data. For example, if the data are normally distributed, you can infer that the population mean will
be within the interval: sample mean ± 2 × SEM, approximately two-thirds of the time when N
is 3, and approximately 95% of the time when N is 10 or greater. Note that this does not tell you
where the population mean is, it only gives you an indication about where it is likely to be.

As the number of samples, N, increases, the SEMs get smaller (because they are the SD divided
by the square root of N), and the interval, sample mean ± SEM, gets narrower and narrower,
giving you a more and more precise estimate of where the population mean might lie. You can see
this in Figure 5 if you compare the size of the SEMs (red ) for N = 3 and N = 10. As the sample
size (N) increases, the sample SD will not change consistently but will converge on the population
SD, whereas the SEM will tend to get smaller and smaller and give a more precise indication of
where the population mean is likely to be.

SEMs can also be used to compare samples from two separate groups, e.g., control and drug-
treated mice, or WT and gene-deleted mice, when trying to judge whether the drug or gene
had some effect on the parameter being measured. Often, the researcher’s first question is, Am I
seeing an effect of the drug or gene deletion, or could the differences I have observed just be due
to chance? Put another way, this question is, What would be the likelihood of seeing differences
of the size I have observed if I forgot to administer the drug, or if the mice were mistyped and
were all actually WT?

In this case, you are using the means and SEMs of the control and experimental samples to infer
where the population means lie. If the estimated population means of the control and experimental
groups lie in nonoverlapping intervals, you can infer that the samples are likely to come from two
different populations. The more separation there is between the control samples’ mean ± SEM

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 5
The effects of gene deletion on tail length in mice. (a) The lengths of the tails of 10 wild-type (WT),
caudalin−/−, and holmin−/− mice were measured (blue dots). The standard deviation (SD) (black) and standard
error of the mean (SEM) (red ) of the first three of these mice are shown (N = 3), and then to the right, the
SD and SEM of all 10 mice (N = 10). p-values have been calculated comparing the WT and holmin−/− mice
for N = 3 and N = 10, using an unpaired two-tailed t-test. If only the first three mice were considered, the
differences between the tail lengths of the WT and holmin−/− mice would not be statistically significant
( p = 0.108), but if all 10 mice were included, the differences would be statistically significant ( p = 0.017).
(b) The result of repeating the simulation using the same mean values and SDs as in part a. In this case, the
differences in tail length between the WT and holmin−/− mice does not reach statistical significance, even
when 10 mice of each type are considered. A lab that carried out the experiment shown in a might come to a
different conclusion from a lab that carried out the experiment shown in b, even though they were both
sampling from the same populations of mice. It is clear from both experiments a and b that whether groups
of 10 or 3 mice are considered, deletion of caudalin does have an effect on mouse tail length, and this is clear
from plotting the data points; statistics are not necessary to demonstrate this. Even if you did find that
deletion of holmin had a statistically significant effect (as in part a), you should not stop there but perform
further experiments that confirm the effect in an independent way, and then consider the size of the effect, as
well as its biological importance.
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interval and the experimental samples’ mean ± SEM interval, the more confident you can be in
inferring that the drug or gene deletion (or whatever other experimental condition you are testing)
is having an effect.

Once you are confident that the differences you have seen are statistically significant (i.e., would
be very unlikely to have arisen if you were sampling from the same population), then you should
consider the size of the effect and whether it has any biological importance. You should also
plan what sort of experiment to perform to confirm (or disprove) your conclusion in some other,
independent way. The ability to confirm inferences by independent, mechanistically different
experiments is what distinguishes experimental cell biology from other biomedical research fields,
such as epidemiology or clinical research, which often rely wholly on statistical evidence.

When presenting your data (i.e., a figure showing the results of your initial experiment and,
ideally, a figure giving mechanistically independent confirmatory evidence), it is best to just plot
the data points and not show any error bars or statistics, especially if N is less than 10. If you do
wish to draw conclusions from your data using statistical arguments, then it might be appropriate
to show an inferential error bar, such as SEM or CI. You could, if you wished, show SDs, but this
would require the reader to do the calculations to estimate statistical significance. Of course, the
most important things are to mention what N is in the figure legend and, if you do show them,
describe what the error bars are.

Confidence intervals. CIs are an inferential statistic closely related to SEMs, and they can be
used to make inferences about data in much the same way. Formally, a 95% CI is defined as the
interval that, if generated 100 times by taking groups of samples from a population, would be likely
to encompass the population mean 95 times. CIs are calculated by multiplying the SEM by the
t-value, a statistic used by Gosset when testing batches of beer at the Guinness Brewery. When N is
only 3, t is approximately 4, and when N is 10 or more, t is approximately 2. So, as a rule of thumb,
95% CI intervals are roughly mean ± 4SEM (when N = 3) and mean ± 2SEM (when N =
10 or greater). Although they are commonly used in papers in clinical and psychology journals,
CIs rarely appear in cell biology papers, so they will not be discussed further here, but those who
want further detail can find it in Cumming’s (2012) book, Understanding the New Statistics.

p-values. p-values were developed by Ronald Fisher (1928) to help distinguish statistically sig-
nificant results (i.e., those that look promising enough to be worth verifying) from nonsignificant
ones (i.e., those could plausibly have arisen if you were just testing groups of controls). The p
stands for probability. It is the probability of obtaining the difference you observed (or larger)
if you were actually sampling from a single population. Put another way, it is the probability of
getting the result or larger if the null hypothesis were true (e.g., that the gene you altered or the
drug you tested had no effect). p-values are widely misunderstood and misused (Goodman 2008);
however, because cell biology research seldom relies wholly on statistical evidence, p-values are
rarely critical to the overall conclusions in cell biology papers. In this sense, much of experimental
cell and molecular biology remains like physics in Rutherford’s day. Statistics (and p-values) have
their main use in the design and conduct of experiments, before a manuscript is written, rather
than appearing in publications to provide the evidence upon which the conclusions rest.

Suppose you had a suspension of cells that were 50% live and 50% dead (as in Figure 2). If
you used trypan blue exclusion to measure the viability by counting multiple samples of 100 cells,
you would expect, on average, to count the same number of live cells as dead cells. Of course,
it would be very unlikely to always count exactly 50 live and 50 dead cells in each aliquot; you
would sometimes count 52 live and 48 dead, and sometimes 49 live and 51 dead. In fact, as this
is a binomial distribution, approximately two-thirds of the time your live cell counts would be
between 45 and 55, and approximately 95% of the time your counts would be between 40 and 60.
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Given that the cell suspension had exactly 50% live cells, the probability of any individual count
having 40 or less live cells is ∼2.5%.

If you had an identical cell suspension, except that you had added a cytotoxin that you were
testing, you could also do viability counts on these cells. If you counted 100 dead cells and zero
live cells, it would be reasonable to assume that the cytotoxin was active, because if it had no effect,
the probability of getting 100 dead cells from a 50% live, 50% dead population of cells would be
∼1 in 10−32. What if you counted 57 dead cells and 43 live cells? Could you confidently conclude
that the cytotoxin was active? If you assumed the null hypothesis, that is that the compound is
inert, and the viability of the population was still 50%, the probability of getting a dead cell count
of 57 or more is greater than 5%, so you could not confidently rule out the possibility that the
cytotoxin was inactive.

When you are calculating p-values, you are doing much the same thing. You calculate the
probability of getting the results you have obtained (or more extreme ones) if the null hypothesis
were true, i.e., that you were drawing all your samples from the same population. Suppose you
treated one group of mice with a drug and another group of mice with a placebo, and you observed
a difference in the means of their responses. The p-value is the probability of observing a difference
of the size you did or larger if you had given all of the mice the placebo.

In Figure 5, p-values have been calculated for the differences in average tail length between the
WT and holmin−/− mice, for the first three mice and then for all ten mice of each type. For both
Figure 5a and 5b, if only three mice were compared, the p-values would be greater than 0.05.
You would interpret this to mean that with these data you could not reject the null hypothesis, as
differences of this size could arise by chance even if the holmin gene had no effect on tail length.
However, you could not conclude that the holmin gene did not have an effect on tail length
either.

If you still wished to test your hunch that the holmin gene affected tail length, you could test
it further by examining more mice, or by doing some other type of experiment. Now consider
the p-values when groups of ten mice are examined. In Figure 5a, the p-value is 0.017, indicating
a significant difference. If you were to find this in your experiments, you should not stop there.
Firstly, it is important to note the size of the effect. In this case, deleting the holmin gene apparently
increased tail length by approximately 15%, and the biological importance of this finding, if any,
must be considered. Secondly, in describing testing for statistical significance, Fisher (1926, p. 504)
wrote, “Personally, the writer prefers to set a low standard of significance at the 5 per cent point,
and ignore entirely all results which fail to reach this level. A scientific fact should be regarded
as experimentally established only if a properly designed experiment rarely fails to give this level
of significance.” This implies that the properly designed experiment would have to be confirmed
multiple times and almost always have given a p-value of <0.05. In other words, if you find
a result that is statistically significant, you still have to confirm your observation. Statistically
significant results from one experiment should be considered in the context of the results of other
experiments, what has previously been published, and the plausibility of the proposed model.
Even then, the conclusions should be confirmed by an additional experiment that verifies them in
a mechanistically different way.

In experimental cell biology, readers are rarely interested in a single observation and usually
want to know the size of the effect, as well as evidence of mechanism or causation. If you saw a
statistically significant effect of a drug on an enzyme, for example, it would be more convincing to
follow up with experiments determining the binding affinity of the drug or showing that a point
mutant form of the enzyme that could not bind the drug was no longer inhibited.

Figure 5b shows the results of repeating the same simulation as in Figure 5a, using the same
means, SDs, and distributions. Unlike in Figure 5a, in 5b the difference in tail lengths between the
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10 WT and 10 holmin−/− mice is not statistically significant ( p = 0.077). Together, Figure 5a
and b show that the 0.05 significance level is arbitrary, and the same experiment can give
statistically significant results ( p < 0.05) or nonsignificant results ( p > 0.05). It also illustrates
the folly of relying on tests for statistical significance when N is as small as 10, and that when N
is only 3, basing conclusions on statistical grounds is reckless.

Statistics in Figures

When you are preparing figures from your data for publication, your goal should be to present
them in such a way that the readers can make their own interpretations of the data, and if they were
sufficient to convince you, they should be sufficient to convince them. It is therefore important
to include as much of the data as possible and not to be biased by presenting only data that fits
a preconceived idea. If you have repeated an experiment several times, you should include all
the results, and certainly not just the results of a single representative experiment. Of course,
for data that are not numerical, such as Western blots or photomicrographs, it is fine to show a
representative image. However, if you wish to use them to make quantitative claims, e.g., you have
performed densitometry on several Western blots, you must show all of the independent results.

Sometimes it can be difficult to determine whether data are replicate (and cannot be used to test
your hypothesis) or whether they are independent repeats (and can be used to test your hypothesis)
(Vaux et al. 2012). If the distinction is not immediately clear, two questions to keep in mind are
the hypothesis you are testing and the population you are sampling from.

Suppose an archaeologist was trying to determine the age of two layers of sediment by radio-
metric dating. She might take one sample from the upper layer and one from the lower layer,
divide each of them in three, and run the first set of three through the counter, followed by the
second set. In this case, although she would have produced six counts in total, these were two
sets of triplicate counts, and she performed only one comparison, so N = 1, and she could not
generalize about each layer of sediment. However, the triplicate counts might be useful in showing
how reliable the dating equipment was.

If, however, she took three independent samples from different parts of the upper layer and
three independent samples from across the lower sediment layer, and she performed radiometric
dating on them, then she would have information from two sets of three independent samples,
and she could draw inferences that could be generalized across those sedimentary layers.

When you have small numbers of results to graph, it is better to simply plot the data points
than to create bar graphs showing the means and error bars. Figure 6 illustrates some different
ways data could be presented. You should choose the way that you think is easiest to understand.

Looking critically at others’ papers. When looking at the figures in a paper, it should be
clear from the figure and the legend what experiment was performed. Except for nonquantitative
representative results (such as photomicrographs, blots, or flow cytometry plots), the number of
independent samples (N ) should be stated. If error bars are shown, the legend should describe
what they represent. If the figures in a paper do not include such essential information, move on
to another paper. If the authors show p-values or error bars or draw inferences from replicates,
rather than independent data, be highly skeptical.

Make your own estimate of statistical significance. Even if p-values are provided, try to judge
from the data or the error bars whether the differences that the authors claim to be statistically
significant are indeed so. To estimate statistical significance, you need inferential error bars, so if
a figure shows SDs, convert them into SEMs by dividing by the square root of N, the number of
independent samples.
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Figure 6
Three white blood cell (WBC) counts can be graphed in several ways. The clearest and simplest way is just
to plot the data points. Many people plot the mean ± standard error of the mean (SEM), but this loses
information and requires reading the legend to see if the error bars are SEM, SD, or something else. The
middle option shows both the data points and the mean ± SEM. The fourth option, a column, shows what
the mean WBC count was but provides no further information. The column with SEM error bars on the
right provides more information, but it is still less clear than if the actual values were plotted. The figure
legend should state whether the WBC counts are independent samples or replicates. If they are replicate
counts, statistics and error bars should not be shown, because readers might wrongly assume the size of the
error bars was relevant to the hypothesis being tested, rather than merely reflecting the reproducibility of the
pipetting and counting. If the samples are independent, and N is only 3, I recommend simply plotting the
three data points, as on the left.

As a rule of thumb, if the lower SEM bar from one set of samples overlaps the upper SEM bar
from another set of samples, p is >0.05, and the differences cannot be statistically significant. If
there is a gap separating twice the lower SEM bar from one set of samples (2SEM) from twice the
upper SEM bar from the other set of samples, so that the gap between the means is greater than
4SEM, p is <0.05, and the differences must be statistically significant (Figure 7).

While you are looking at the error bars, think about how plausible they are. Be suspicious if
the SD are all small {especially in discrete distributions if they are consistently less than expected
from sampling error, i.e., <

√
[N × p × (1 − p)] for binomial distributions, <

√
(mean) for Poisson

distributions}.
It was by analysis of sampling errors that John Maddox, James Randi, and Walter Stewart

showed that the claims by Jacques Benveniste (Davenas et al. 1988) in support of homeopathy
were “a delusion” (Maddox et al. 1988). Benveniste’s paper showed the mean ± SEM of basophils
counted in a haemocytometer in triplicates. In this case, you would expect the counts to fit a Poisson
distribution, with the expected SEMs being the square root (mean/3), but the SEMs reported were
consistently far smaller than that. This provided very strong evidence that the reported counts
were biased.
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p = 0.051

Figure 7
Estimating statistical significance from error bars. Graphs show mean ± standard error of the mean (SEM)
where N = 3 independent counts for each of two groups of three mice. The gap between the top of the SEM
bars on the left and the bottom of the SEM bars on the right is approximately double the size of the SEMs
(so that there are approximately four SEMs between the two means). This suggests p is close to 0.05. Note
that when N = 3, estimates of the means, SEMs, and p-values is extremely imprecise. If p > 0.05, differences
of similar size or greater could have arisen even if all the blood samples came from the same group of mice.
Even if p < 0.05, no conclusions should be made unless there is supporting evidence in the other figures.

SUMMARY POINTS

1. Statistics can be useful in cell biology to (a) monitor the conduct of experiments to make
sure they were performed well, (b) analyze data when deciding which experiments are
worth following up, and (c) present and interpret results in publications.

2. If you have statistically significant results, consider the effect size and biological signifi-
cance, and try to confirm them by mechanistically different experiments. If your results
are not statistically significant, try to design a better experiment, rather than just increas-
ing the sample numbers.

3. If statistics (error bars, p-values) are shown in figures, they must be described in the
figure legends, and N, the number of independent data points, must be stated. If you are
reading a paper that shows error bars but does not say what they are in the figure legends
or Materials and Methods, throw it away; it has not been carefully read by the authors,
reviewers, or editors.

4. Consider whether the data distribution and error bars look plausible, taking into account
sampling error, type of experiment, and instruments used. In binomial and Poisson distri-
butions, if the SDs are consistently less than expected, be suspicious. Do your estimates of
statistical significance correspond with the authors’ conclusions and p-values (if stated)?
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5. Statistics from replicates should be used only to monitor the conduct of experiments and
should not be used to compare experimental groups or draw conclusions, which require
independent data.

6. If you are unclear whether data are replicate results or independent results, think about
what hypothesis is being tested and what population is being sampled.

7. If N is less than 10, plot the data points, and consider not showing any statistics.

8. Representative results should be shown only for nonnumerical data (e.g., photomicro-
graphs, flow cytometry plots, Western blots) and not for numerical data or graphs, which
should include the results of all relevant experiments. If there is quantitation of Western
blot bands with error bars, the legends should make clear how many blots were measured
and how the results were processed.
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