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Abstract

The question of whether the dramatic slowing down of the dynamics
of glass-forming liquids near the structural glass transition is caused
by the growth of one or more correlation lengths has received much
attention in recent years. Several proposals have been made for both
static and dynamic length scales that may be responsible for the
growth of timescales as the glass transition is approached. These
proposals are critically examined with emphasis on the dynamic
length scale associated with spatial heterogeneity of local dynamics
and the static point-to-set or mosaic length scale of the random first-
order transition theory of equilibrium glass transition. Available
results for these length scales, obtained mostly from simulations,
are summarized, and the relation of the growth of timescales near
the glass transition with the growth of these length scales is exam-
ined. Some of the outstanding questions about length scales in
glass-forming liquids are discussed, and studies in which these ques-
tions may be addressed are suggested.
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1. INTRODUCTION

The behavior of glass-forming liquids as they are cooled or compressed toward the glass transition
is one of the most extensively studied but poorly understood problems in classical condensed
matter physics (1, 2). The most prominent feature of this behavior is a dramatic slowing down of
the dynamics. This is manifested in the temperature dependence of the shear viscosity h, the
diffusion coefficient D, and the structural relaxation time t as well as other measures of the
slowness of the dynamics. The slowing down of the dynamics in so-called fragile (3) liquids is well
described by the super-Arrhenius Vogel-Fulcher-Tammann (VFT) form (4–6)

XðTÞ} exp
�
CxT0=ðT � T0Þ

�
, 1:

whereX represents h,D�1, or t, and the fragility parameter Cx depends on the quantity being
considered. This form predicts a divergence of timescales at a nonzero temperature T0,
which typically turns out to be approximately 10% lower than the glass transition temperature
Tg, defined conventionally as the temperature at which the viscosity reaches the value of 1012

Pa.s. Because the liquid cannot be equilibrated (even in a restricted sense, excluding the re-
gions of phase space near the crystalline state, which is believed to be the true equilibrium state
at low temperatures) in experimentally achievable timescales at temperatures lower than Tg,
the validity of the VFT form, and hence of the conclusion that timescales would diverge at the
VFT temperature T0 if the liquid could be equilibrated at temperatures all the way down to T0,
rests on fitting the data at temperatures higher than Tg to the VFT form and extrapolation of
this fit to lower temperatures. Thus, the occurrence of a finite-temperature divergence of
timescales in glass-forming liquids cannot be established conclusively from experimental
observations. Other functional forms, which predict a divergence of timescales only at T¼ 0 or
indicate a different form of divergence at a nonzero temperature, have been proposed in the
literature (7), but the VFT form continues to be the most popular one among researchers in
this field.

Another interesting observation that relates the dynamics of glass-forming liquids to their
equilibrium properties is the so-called Kauzmann paradox (8), which involves the excess entropy
Sex(T), defined as the difference between the entropy of the supercooled liquid and that of the
equilibrium crystalline solid at the same temperature T. For a large number of glass-forming
liquids, Sex(T) is found to extrapolate to zero at a temperature TK (called the Kauzmann tem-
perature) that turns out to be close to the VFT temperature T0. This observation suggests a close
connection between the growth (and possible divergence) of timescales and the vanishing of the
excess entropy, quantitatively expressed by theAdam-Gibbs relation (9) between the viscosity and
the excess entropy:

hðTÞ} exp
h
C=

�
TSexðTÞ

�i
, 2:

where C may be thought to be related to a high-temperature-activation free energy. This re-
lation, proposed by Adam & Gibbs many years ago from heuristic arguments, is found to be
satisfied in experiments and simulations on a wide variety of glass-forming liquids (10 and
references therein). The validity of this relation suggests that the dramatic growth of relaxation
times is a consequence of a thermodynamic, entropy-vanishing transition that would take place at
T¼ T0¼ TK if equilibrium could be maintained down to this temperature. Another interesting and
universal feature of glassy dynamics is the nonexponential, multistep decay of time-dependent
density correlation functions, with well-defined short-time (b) and long-time (a) regimes. The
structural relaxation time t considered above refers to the long-time a-relaxation process.
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The experimental features summarized above strongly suggest the occurrence of cooperative
processes in glass-forming liquids, which, in turn, implies the presence of growing length scales that
describe the spatial extent of correlated or cooperatively rearranging regions, a term first used by
Adam&Gibbs (9) in their heuristic description of glassy dynamics. The expectation that the growth
of relaxation times should be related to a growing length scale arises partly from an analogy with
critical phenomena inwhich the divergence of a correlation length, defined from the spatial decay of
the equal-time correlation of the appropriate order-parameter field, at a continuous phase transition
leads to a divergence of the relaxation time (11). The critical slowing down at continuous phase
transitions usually obeys conventional dynamic scaling in which the relaxation time t grows as
a power of the correlation length j, which diverges at the transition point

t} jz, 3:

where z is the so-called dynamic critical exponent. The growth of the relaxation time near the
phase transition in certain disordered systems, such as the random-field Ising model (12), is
believed to follow a different form known as activated dynamic scaling:

t} expðAjz=TÞ, 4:

where A is a constant. The similarity of this scaling behavior with the VFT form of Equation 1,
where j} (T�T0)

�1/z, andwith theAdam-Gibbs formofEquation2,with j} S�1=z
ex , has prompted

the development of theories of the glass transition in which the vanishing of the excess entropy
coincides with the divergence of a suitably defined length scale, and this divergence of the length
scale leads to a divergence of timescales. More recently, it has been shown (13) that under fairly
general conditions, a divergence of t at a nonzero temperature and finite pressure must be ac-
companied by the divergence of a suitably defined length scale.

Although the arguments for the existence of one or more growing length scales in glass-forming
liquids are quite compelling, it is by no means obvious how such length scales should be defined
andmeasured. The glass transition is not accompanied by anyobvious change in structure because the
structure of the glassy state is quite similar to that of the liquid above the glass transition. It is not clear
whether the interesting features of glassy dynamics mentioned above arise from an underlying phase
transition, and there is no consensus on what order parameter should be used to describe such
a transition or whether it even exists. Therefore, the usual method of extracting correlation lengths
from appropriate correlation functions and related susceptibilities does not lead to a unique pre-
scription for defining length scales relevant to the glass transition. As a result, a wide variety of pro-
posals have beenmade in recent years for defining length scales thatmay be appropriate for describing
glassy dynamics. The objective of this article is to provide a critical review of these proposals and to
discuss the extent to which these proposals improve our understanding of the results of experiments
and simulations on glass-forming liquids. The basic questions addressed here are as follows:

1. Are the proposed length scales universal in the sense that they can be used to describe the
behavior of a wide variety of glass-forming liquids? How do they grow as temperature
decreases?

2. Are the different length scales proposed in the literature related to one another?
3. What is the relation (if any) between static and dynamic length scales?
4. Is any one of the proposed length scales causally related to the dramatic growth of

timescales near the glass transition?

Because most of the proposed length scales are derived from quantities that cannot be easily
measured in experiments, one has to rely mostly on simulations of model liquids in the quest
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for answers to these questions. For this reason, in this review we concentrate on the behavior
of atomistic glass-forming liquids with simple interactions that can be simulated using stan-
dard methods and equilibrated (in the restricted sense mentioned above) at temperatures and
densities for which some of the defining features of glassy dynamics mentioned above are
observed.We also examine possible connections between dynamic and equilibrium properties
of these systems. There exists a class of lattice-gas models with kinetic constraints (14) that
exhibit interesting dynamic behavior, such as rapid growth (and divergence in some cases) of
timescales and associated dynamical length scales, but trivial equilibrium behavior.We do not
consider these models here because a clear connection of these models with simple liquids of
interacting particles has not been established, although several interesting attempts have
recently been made (e.g., see 15). We also do not consider the athermal process of jamming
(16), which exhibits certain similarities with the glass transition. Length scales that emerge in
studying mechanical behavior of amorphous solids (17) are also not addressed in a systematic
way in this review. Interested readers are referred to existing review articles on these topics
(14, 16, 17).

This review is organized as follows. In Section 2, we describe different existing proposals for
growing length scales, with emphasis on the length scale associatedwith spatial heterogeneity of the
local dynamics and the mosaic length scale of the random first-order transition (RFOT) theory (18)
of equilibrium glass transition. Section 3 contains a summary of existing results (mostly numerical;
experimental in a few cases) for these length scales. The important issue of the relation of growing
timescales to these length scales isdiscussed inSection4, andweconclude inSection5withdiscussion
on the present state of affairs, outstanding questions, and suggestions for future work.

2. PROPOSALS FOR GROWING LENGTH SCALES

The proposals for growing length scales can be broadly classified into two categories: (a) dynamical
length scales extracted from finite-time behavior of time-dependent correlation functions and as-
sociated susceptibilities and (b) static length scales derived from equilibrium averages (in the re-
stricted sense mentioned above). We start this section with a description of a dynamic length scale
associated with spatial heterogeneity of the local dynamics. This is followed by descriptions of
various proposals for static length scales, with emphasis on the mosaic or point-to-set length scale.

2.1. Length Scale of Dynamic Heterogeneity

In studies of glassy dynamics, the termdynamic heterogeneity (DH) is used to describe the spatially
heterogeneous nature of the local dynamics. A variety of experimental (19, 20) and numerical (21)
studies have established the occurrence ofDH in liquids near the glass transition. The simplest way
of describing DH is to consider the distribution of the magnitudes of the displacements of the
particle in a liquid over some time interval. It has been found that at intermediate times, the
distribution of displacements in liquids becomes non-Gaussian, with the development of large tails
(22) at low temperatures. The non-Gaussian parameter a2, which quantifies the deviation of the
distribution from the Gaussian behavior expected in simple diffusion, is defined as

a2ðtÞ ¼ 2Ær4ðtÞæ
5Ær2ðtÞæ2

� 1, 5:

where r(t) is the magnitude of the displacement of a particle in time t. This parameter exhibits
a pronounced peak at a characteristic time t�. Using the value of a2 as a measure, the degree of
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heterogeneity ismaximumat t�, and some of the early analyses of dynamical heterogeneity focused
on behavior at time t ¼ t�. In this time window, the actual distribution can be compared to the
expectation for the given mean-squared displacement if the function is Gaussian. Such a com-
parison, shown in the left panel of Figure 1, indicates that a fraction of the particles move by
a larger distance than expected. Defining a cutoff r�, where the Gaussian reference and the actual
vanHove function intersect, particles that have moved by distances larger than r� are identified as
mobile or fast particles. These were found to be typically about 5% of the total population (23).

A very important observation is that particles with similar mobility tend to form clusters, in-
dicating that the localmobilities are spatially correlated. An example of such clusters is provided in
the right panel of Figure 1, which shows experimental results for the spatial distribution of fast
particles in a colloidal fluid near the glass transition (24). The presence of twowell-defined clusters
can be clearly seen in this figure. These clusters have finite lifetimes. Detailed simulations (25) have
shown that the clusters of cooperatively moving mobile particles have a string-like structure,
whereas clusters of mobile and immobile particles are more compact. These observations have led
to the development of the excitation chain theory of the glass transition (26). Starr et al. (27)
analyzed the geometry of string-like clusters and clusters of mobile and immobile particles,
significantly extending results available from earlier work (25, 28). Mobile and immobile particle
clusters have fractal dimensions in the range of 2�2.5, comparable to lattice animals and branched
polymers with screened excluded volume interactions, whereas strings have fractal dimensions in
the range of 5/3�2, i.e., spanned by the fractal dimension of self-avoiding random walks and of
simple random walks.

It is clear from these results that DH has one (or more) length scale(s) that characterize the
spatial correlations of local mobility. Roughly speaking, these length scales correspond to the
typical sizes of the clusters mentioned above. In practice, however, it is difficult to extract quan-
titative estimates of the length scale(s) of DH from studies of these clusters (27). These difficulties
arise from ambiguity in the definition of slow and fast particles, noncompact geometry of the
clusters, etc. Most quantitative studies of the length scale of DH have therefore been based on
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Figure 1

(a) Illustration of how the displacement cutoff r� is determined. Gs(r, t) is the self part of the van Hove
correlation function, and G0(r, t) is the Gaussian approximation with the same mean-square displacement.
Particles that have moved more than r� are considered to be mobile. Adapted from Reference 25. (b) Clusters
formed by “fast” particles in a colloidal fluid near the glass transition. Two large clusters are shown in red (69
particles) and light blue (50 particles). Adapted from Reference 24.
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multipoint correlation functions and associated susceptibilities defined from an analogy with
corresponding quantities in spin glasses (12). A four-point correlation function introduced in
Reference 29 has played a prominent role in these studies. This function is defined as

g4ðr, tÞ ¼ Ædrð0, 0Þdrð0, tÞdrðr, 0Þdrðr, tÞæ
�Ædrð0, 0Þdrð0, tÞæ Ædrðr, 0Þdrðr, tÞæ, 6:

wheredr(r, t) represents the deviation of the local density at point r at time t from its average value,
and Æ. . .æ represents a thermal or initial time average. This function quantifies the correlation of the
relaxation of density fluctuations at two points separated by distance r. A four-point susceptibility
may be defined as the k→0 value of the Fourier transform g4(k, t) of this function (30, 31). A
variant of this four-point function has been used extensively in numerical studies of DH because it
is easier to compute (32). This quantity is obtained from the overlap functionQ(t) defined as the
average of

~QðtÞ ¼
XN
i¼1

w
���rið0Þ � riðtÞ

���, 7:

where ri(t) is the position of particle i at time t,N is the total number of particles,w(r)¼ 1 if r� a0
and zero otherwise, and a0 is a short-distance cutoff chosen to be close to the distance at which the
root-mean-square displacement of the particles as a function of time exhibits a plateau [the precise
choice of the form of the window function w(r) or of the cutoff a0 turns out to be qualitatively
unimportant, but the dependence on the choice has been analyzed in some detail in References 33
and34]. This functionmay be viewed as the self part of the density correlation functionC(t), which
is the average of

~CðtÞ ¼
Z
drrðr, 0Þrðr, tÞ 8:

over initial times, with the window function w(r) used to treat particle positions separated by
distances smaller than a0, arising from small-amplitude vibrational motion in the cage formed by
neighboring particles, as indistinguishable. The fluctuations in this two-point function yield the
dynamical four-point susceptibility:

x4ðtÞ ¼
1
N

"
Æ ~Q2ðtÞæ� Æ ~QðtÞæ2

#
. 9:

A closely related four-point susceptibility, defined as the fluctuation of the self part of the in-
termediate scattering function Fs(k, t), where k is typically the value at the peak of the static
structure factor, has also been used in numerical studies of DH (35–37). The self part of the
intermediate scattering function is defined as the average of

~Fsðk, tÞ ¼
XN
i¼1

exp
h
k ×

�
riðtÞ � rið0Þ

�i
, 10:

over initial times.
The typical behavior ofx4(t) for a mixture of Lennard-Jones particles (38) is shown in Figure 2.

The four-point susceptibility reaches amaximumat time t4,which is proportional to the structural
relaxation time t, and the peak value of x4 increases with decreasing temperature. This behavior
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implies that DH is transient in time, reaching a maximum that is at times comparable to t, and
both the magnitude and the lifetime of DH increase as the glass transition is approached. The
growth of the peak value of x4(t), x

p
4 [ x4ðt4Þ, is analogous to the growth of the order-parameter

susceptibility as a continuous phase transition is approached, indicating the presence of a growing
correlation length. There is, however, an important difference: The length scale associated with
the growth of xp

4 must be classified as a dynamical length scale because it describes finite-time
behavior.

A variety of analytic results for x4 and a related three-point susceptibility have been obtained
from inhomogeneous mode coupling theory (MCT) (39, 40), a generalization of the well-known
MCT of glassy dynamics (41, 42) in spatially heterogeneous systems. In MCT, an approximate
treatment of nonlinearities in the equations for the dynamics of liquids leads to the prediction of
a structural arrest with a power-law divergence of the viscosity at an ideal glass transition
temperature, Tc. The predictions of MCT provide a fairly accurate account of the results of
experiments and simulations in the temperature range that covers the first few decades of the
growth of the viscosity. However, the value of Tc obtained from fits of higher-temperature data
to a power-law form turns out to be substantially higher thanTg, indicating a breakdown ofMCT
and a possible crossover in the dynamics. Inhomogeneous MCT predicts power-law diver-
gences of the four-point susceptibility x

p
4 and an associated dynamical correlation length, jd, at

temperature Tc:

x
p
4ðTÞ}

�
T � Tc

Tc

��g

, jdðTÞ}
�
T � Tc

Tc

��n

, 11:

where n ¼ 1/4 and g ¼ 1. It should be noted that although these predictions may be satisfied in
actual liquids at temperatures higher thanTc, they cannot be valid at temperatures close to or lower
than Tc because no structural arrest is actually observed at Tc. Also, even if the predicted power-
law growth of xp

4 and jd at temperatures higher than Tc is observed, the values of the exponents
g and n are likely to be different from themean-field values obtained in inhomogeneousMCT. The
similarity of the predictions of inhomogeneous MCT with the behavior near continuous phase
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Figure 2

The four-point susceptibility, x4(t), of a three-dimensional binary Lennard-Jones liquid as a function of time
t for different temperatures (T). The temperatures are given in reduced units. Adapted from Reference 38.
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transitions suggests that someof the numericalmethods developed in studies of critical phenomena
may be useful for obtaining quantitative information about the behavior of the length scale jd, at
least for temperatures higher than Tc.

The occurrence of DH also affects many other dynamic properties of supercooled liquids. The
wide distribution of local relaxation times implied by DH causes the relaxation of density fluc-
tuations to be nonexponential, leading to the stretched exponential decay of correlations found in
the a-relaxation regime. Another consequence of DH is the breakdown of the Stokes-Einstein
relation (see 43 and references therein) between the diffusion coefficient D and the viscosity
h:Dh/T¼ constant, or equivalently,Dt¼ constant. It is believed that this behavior, also referred toas
the decoupling ofD and t, is caused by the wide distribution of local relaxation times in supercooled
liquids: Because D and t reflect different moments of this distribution, their product does not
remain constant as T is changed. From a numerical study of the breakdown of the Stokes-Einstein
relation in a molecular liquid, Chong & Kob (44) have defined a characteristic length that may
be related to the length scale of DH. They consider the timescale t(k) obtained from the decay of the
self-intermediate scattering functionFs(k, t) for different values ofk and examinewhether the product
Dt(k) remains constant asT is changed.They find that for sufficiently small valuesofk,Dt(k) remains
constant over the temperature range considered, whereas for larger k, D decouples from t(k) at a
temperature that increases with increasing k. The value of k at which this decoupling occurs is then
used to define a characteristic length lonset (i.e., the onset length scale of Fickian diffusion) such that
the relaxation time t(k) decouples fromD if 2p/k< lonset. The length scale lonset is found to increase
with decreasing T, indicating that the length scale beyond which the system looks homogeneous
increases as T is decreased. The relation between this length scale and jd has not been investigated
in detail.

2.2. Mosaic Length Scale of Random First-Order Transition Theory and Point-to-Set
Length Scales

We now consider proposals for static length scales that may be relevant for understanding the
behavior of supercooled liquids. Themost extensively studied proposals in this category are based
on theRFOT theory originally proposedbyKirkpatrick et al. (45–52) and developed subsequently
by many others (18). This theory is based on an analogy of the behavior of glass-forming liquids
with that of mean-field Potts spin glass models and Ising spin glass models with multispin
interactions. Exact analytic studies of these spin glassmodelswith infinite-range interactions bring
out a remarkable correspondence between their behavior and that of supercooled liquids. These
models exhibit a dynamical transition to nonergodic behavior at T ¼ Td. The dynamics as T
approachesTd fromabove is described by the ideal version ofMCT.The thermodynamic behavior
for T < Td is governed by an exponentially large number of local minima of the free energy. A
thermodynamic transition occurs at Ts< Td in which the configurational entropy per spin arising
from the exponentially large number of free-energy minima goes to zero. These two temperatures
are identified for structural glasses as the MCT transition temperature Tc and the Kauzmann
temperature TK.

Motivated by this similarity, Kirkpatrick et al. (52) argued that for a liquid below the
MCT transition temperature Tc, there are an exponentially large number of metastable states
(local minima of the free energy) that are statistically similar to one another. They also argued
that the extensive configurational entropy arising from the presence of these metastable states
causes a typical state of the system to have a mosaic structure in which different patches of the
mosaic correspond to different metastable states. The mosaic length scale, defined as the typical
linear dimension of these patches, was estimated from an argument in which the extensive
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configurational entropy acts as a driving force for the nucleation of a droplet of a different
metastable state in the background of one of these metastable states. For a compact droplet of
size j, the entropy gain is given by sc(T)j

d, where sc is the configurational entropy per unit volume
andd is the spatial dimension. The increase in energy due to themismatch between the nucleating
state and the parent state is estimated to be Yju, where Y is a generalized surface tension and
u < (d � 1) is an exponent that describes the dependence of the surface energy on the size of
a droplet. The typical length of a nucleating droplet, obtained by equating these two con-
tributions to the free energy, is given by js ¼ (Y/Tsc(T))

1/(d�u). This length defines the mosaic
length scale of RFOT theory. It diverges as the configurational entropy sc goes to zero. A
connection with the dynamics is established by assuming that the relaxation time t corresponds
to the timescale for thermal activation over the free-energy barrier for the nucleation of a droplet.
This argument leads to a generalized Adam-Gibbs expression for the relation between the
relaxation time and the configurational entropy:

log t ¼ log t0 þ c
Y

kBT

�
Y

TscðTÞ
� u
d�u

, 12:

where c is a model-dependent constant. With the additional assumption that the configu-
rational entropy sc vanishes at temperature T0 and the dependence of sc on T near T0 is linear,
TSc(T) } (T � T0), one arrives at the following generalized VFT form for the temperature
dependence of t:

t ¼ t0 exp

"�
A

T � T0

� u
d�u

#
. 13:

Kirkpatrick et al. (52) presented a scaling argument that suggests that the surface tension exponent
u ¼ d/2, leading to the original VFT relation.

The main drawback of the above picture is the lack of a clear explanation of the entropic
driving force that leads to the nucleation of droplets. Bouchaud & Biroli (53) have presented
a reformulation of the original arguments that provides a clearer definition of the mosaic length j.
They consider one of the metastable states of the system, indexed by the label a, and assume that
themotion of all particles outside a region C of linear dimension j is frozen. They then consider the
thermodynamics of the inner region with the boundary condition imposed by the frozen outer
particles. This boundary condition is a perfect match when the particles in the inner region are in
the state a, and the energy is expected to be higher if the inner region is in some other state b� a.
This excess energy is assumed to have the same dependence on j (proportional to ju) as that of the
surface energy in the original argument. This increase in energy tends to prevent the particles in the
inner region from fluctuating into the other states. This is countered by the increase in entropy
(proportional to jd) thatwould occur if the particles in the inner region visit all the othermetastable
states. Given that u< d, the increase in energy is larger than the gain in entropy for small j, but the
entropy dominates for sufficiently large values of j. Thus, there is a characteristic length js such
that the inner region remains in state a for j < js but explores the other states b� a if j > js. The
dependence of js on sc and the other parameters is the same as that in the original argument of
Kirkpatrick et al. (52), but its physical interpretation is somewhat different. The length scale js in
this interpretation is the largest linear dimension of a volume of particles that can be restricted to
a single metastable state by the application of pinning boundary conditions. One can then argue
that a macroscopic system must break up into a mosaic of metastable states with typical patch
size given by js. If one further assumes that the energy barrier between different metastable states
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grows with the length scale j as a power law with exponent c, then the typical equilibration time
is obtained as

tðTÞ ¼ t0 exp

	
D0j

c
s

kBT



¼ t0 exp

"
D0

kBT

�
Y

TscðTÞ
�c
d�u

#
. 14:

The values of the exponents u and c are not known. As noted above, there exist heuristic
agreements that suggest that u ¼ c ¼ d/2 (52).

Theproceduredescribedabove toobtain themosaic length js is analogous to that used to define
the so-called point-to-set correlation functions in spin glasses (13). For this reason, the length scale
js obtained from the Bouchaud-Biroli construction is also referred to as the point-to-set length
scale. The term point-to-set is used to describe multipoint correlations determined by measuring
the effects of fixing the positions of a set of particles on the probability of finding one of the other
particles at a point. These correlations are expected to be very useful in the search for a static
correlation length in supercooled liquids and other disordered systems because their definition
does not rely on the assumption of any specific kind of structural order. In numerical studies of the
point-to-set length scale, a spherical region of radius R is chosen in the system and all particles
outside this region are frozen in one of the configurations obtained froman equilibrium simulation
for the whole system. The particles in the spherical inner region are then allowed to equilibrate in
the presence of the frozen outer region. For small values of the cavity size R, the particles in the
cavity are expected to remain close to their original positions, whereas they should decorrelate
from the initial state if R is sufficiently large. The length scale js at which this crossover occurs is
obtained bymeasuring the average overlap of the particle configurations generated at equilibrium
with the original one as a function of the cavity size R.

This method of obtaining the point-to-set correlation length has been generalized to include
studies of the effects of other geometries of confinement. One of these generalizations (54) is to
randomly choose a subset of the particles of a given equilibrium configuration and freeze their
positions while the other particles are allowed to equilibrate in the random potential produced by
the pinned particles. Kob et al. (55) have studied the effects of pinning the particles in the semi-
infinite space (z< 0) on the particles in the z> 0 region. This geometry has the advantage that both
dynamic and static effects induced by the frozen wall can be studied as a function of z. In Figure 3,
four different geometries for pinning the particles are shown schematically. The first one is the box
geometry, which is topologically identical to the spherical geometrymentioned before. The second
one is the sandwich geometry, in which the fluid is confined between two frozen walls. The third
one is the randompinning geometry, inwhich a fraction of particles are chosen randomly and their

a

2d
2l

z

2Δ

b c d

Figure 3

Schematic representation of four different geometries for extracting the point-to-set correlation length.
In panel a, 2d is the linear size of the box (indicated by the dashed square) that contains the mobile regions.
Similarly, 2D represents the distance between two frozen walls in panel b. In panel c, l represents the typical
distance between two frozen particles, and z in panel d represents the distance from the frozen wall to
the top. Adapted from Reference 56.
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positions are frozen. The last one is the semi-infinite wall geometry, inwhich one side of the system
is frozen and the effect of the wall is studied on the other side of the system. Results for js obtained
from such studies are described in detail in Section 3.2.

2.3. Length Scale of Local Structural Order

The importance of local structural order in understanding the properties of supercooled liquids
has been emphasized by Tanaka and coworkers (57–60) as well as by other researchers (61–63).
Local patches of crystalline or other (e.g., icosahedral) order in the supercooled liquid, charac-
terized by high bond-orientational order (64), led to the identification of a growing static length
scale upon cooling the liquid, which is argued to be the cause of the rapid rise of relaxation times
(58). In Figure 4, representative locally ordered regions (57) with high sixfold bond-orientational
order in a typical configuration of a two-dimensional liquid are circled. The right panel illustrates
the anticorrelation between bond-orientational order and the mean-square displacement of
particles at an intermediate time tb. This anticorrelation implies that the heterogeneity in local
dynamics is closely related to the local bond-orientational order. Results of similar studies in
three-dimensional systems are less conclusive (65). An interesting observation (59) in this context
is that the predominant local structural order in dense hard-sphere fluids in three dimensions has
crystalline (face-centered cubic) symmetry, not the icosahedral symmetry proposed in earlier
studies (64).

Although this description has several attractive features, there are reasons to believe that it is
not universal in the sense that it does not explain the behavior of generic glass-forming liquids.
There are several two-dimensionalmodel liquids (66) in which the pronounced bond-orientational
order shown in Figure 4 is not found, but the dynamics exhibit a rapid growth of relaxation times.
Also, the glass obtained by cooling or compressing a liquid with pronounced medium-range
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Figure 4

(a) Snapshot of a two-dimensional, polydisperse colloidal system at packing fraction w ¼ 0.631 and
polydispersity d ¼ 9%, with the color map indicating the magnitude of the orientational order parameterC6

averaged over the a-relaxation time. (b) Anticorrelation between bond-orientational order and the
mean-square displacement of particles at an intermediate time.
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crystalline order is expected to have a polycrystalline structure, not the amorphous structure found
for generic glass formers. Further studies of the applicability of this description to a variety of glass-
forming liquids would be most interesting.

2.4. Length Scale of Frustration-Limited Domains

Models that exhibit the formation of frustration-limited domains (67–71) were motivated by the
expectation (64) that glassy behavior of liquids made of spherical particles may be understood
from the tendency of these particles to form local icosahedral clusters, which leads to frustration at
long length scales because such clusters cannot fill space. The growth of domains driven by short-
range interactions are frustrated by the longer-range interactions, leading to frustration-limited
domains with a size that may be viewed as a relevant static length scale that grows but does not
diverge with decreasing temperature (67); the corresponding relaxation times show super-
Arrhenius, but nondiverging, temperature dependence. The observed temperature dependence
for many glass formers has been shown to be well described by the predicted form (68). The
main drawbacks of this approach are (a) the nature and origin of the frustration-limited order
that may develop in glass formers studied in experiments and simulations are not clearly un-
derstood, and (b) the observation that the local structural order in hard sphere–like systems in
three dimensions is crystalline, not icosahedral (59), which argues against the idea of long-range
frustrating interactions.

2.5. Patch Repetition Length

Another interesting proposal (72) for identifying and extracting a static length scale involves
searching for repetitions of local patterns in particle configurations. The frequency of occurrence
of patches of different sizes is proposed to be studied to identify a crossover length scale above
which the entropy associated with patch repetitions becomes subextensive, whereas below this
scale it is extensive. The authors of Reference 72 therefore propose a length scale associated
with amorphous order, which may exist on a scale that could diverge at an ideal glass transition.
These calculations have not been performed for any commonly studied model glass formers, and
therefore we do not discuss these ideas at any greater length here. We return to them below in the
context of discussing subextensive configurational entropies.

2.6. Length Scale Related to the Minimum Eigenvalue of the Hessian Matrix

Froman analysis of how an amorphous solid behaves under external shear, it has been argued (73)
that the density of vibrational states for an amorphous system exhibits an excess of low-frequency
localizedmodes that are not present in corresponding crystallinematerials. Thewell-knownboson
peak (74) in the vibrational spectrum of amorphous systems is supposed to be a manifestation of
these excess modes. These modes are believed to be responsible for structural relaxation in glassy
systems. In Reference 73, the vibrational spectrum in the harmonic approximation was obtained
from a calculation of the eigenvalues of the Hessian matrix at local minima of the potential energy
(the so-called inherent structures) of model glass formers. It was realized that the low-frequency
modes can bedivided into two families:One corresponds to theDebyemodel of an elastic solid and
the other is that of localizedmodes that are responsible for irreversible plastic events in the system.
These modes are referred to as plastic modes in the following discussion.

Themain idea behind the analysis is to estimate the number of these plastic modes in the system
at a given temperature to extract a density of disorder at that temperature. A characteristic static
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length scale can then be defined as the inverse of the cube root (square root) of the disorder density
for three-dimensional (two-dimensional) systems. As these considerations apply to the low-
frequency modes, the analysis was done for the lowest frequency in the spectrum, and it was
shown (73) that the lowest frequency is a scaling function of the underlying static length scale. A
detailed finite-size scaling analysis was performed to extract the static length scale for various
temperatures. The results obtained from this approach are described in detail in Section 3.2.

2.7. Length Scale of Nonaffine Deformations

On the basis of the nonequilibrium thermodynamic formulation of the glass transition (75, 76),
Mosayebi et al. (77) have proposed anotherway of extracting a static length scale. The idea behind
this method is to compare two inherent structures obtained by minimizing the potential energy
starting from two initial states related to each other by a static shear transformation. The nonaffine
part of the displacement field that measures the difference in particle positions at the two inherent
structures shows interesting spatial correlation. In Reference 77, a growing correlation length was
extracted from these correlations. The relation of this length scale with the others discussed above
is not clear at present.

2.8. Length Scale Related to the Extensivity of the Configurational Entropy

InReference38, the system-size dependence of the configurational entropy per particlewas used to
define a static length scale that characterizes the crossover from extensive to subextensive de-
pendence of the configurational entropy on system size. It was shown that this length scale
exhibits much weaker temperature dependence than the length scale of DH. The relationship of
this length scale with other static length scales is discussed in Section 3.

3. SUMMARY OF AVAILABLE RESULTS

In this section, we summarize the currently available results for the various dynamic and static
length scales discussed in the preceding section. Nearly all of these results are obtained from
numerical simulations because the procedures used for estimating most of the length scales
mentioned above are very difficult (if not impossible) to implement experimentally [some ex-
perimental results are available for a dynamic susceptibility closely related to the length scale of
DH (78, 79)]. Because simulations are restricted to relatively small length and timescales, it is
sometimes difficult to draw clear conclusions from the numerical results. As discussed below, these
limitations have hampered the development of a better understanding of length scales in
supercooled liquids.

3.1. Results for Dynamic Length Scales

Themost commonly studied dynamic length scale in supercooled liquid is that of DH. The earliest
studies of the length scale of DHwere carried out byHurley& Harrowell (80) and Yamamoto &
Onuki (81). Hurley &Harrowell measured a correlation length based on how the variance of the
block average relaxation times depends on the block size of averaging. Yamamoto & Onuki
labeled bonds that had broken after a specified elapsed time, constructed a structure factor for the
broken bonds and analyzed it by assuming an Ornstein-Zernike form, thus anticipating much
work in evaluating length scales that has been undertaken more recently.
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Similarly to thepair correlation function g(r), which is based on particle positions, a correlation
function of mobile particles gMM(r) can be defined. Numerical results for gMM(r), normalized with
the full g(r), are shown inFigure 5. This functionprovides information about spatial correlations of
mobile particles (23). It is apparent that such a correlation exists and grows upon lowering the
temperature. Poole et al. (82) defined an excess displacement-displacement correlation function
along the same lines, and assuming an exponential decay of correlations, they obtained a cor-
relation length that grows as the temperature is lowered.

As alreadymentioned, the four-point susceptibilityx4(t), the corresponding length scale jd, and
their relationship with structural relaxation times have been of central importance to many recent
studies (35–38, 40, 83). In this context, the use of finite-size scaling (38, 84) has been very useful in
estimating a heterogeneity length scale as well as in elucidating the finite-size dependence of
dynamics, which is of intrinsic interest. In the finite-size scaling method (85), with the assumption
of the existence of a characteristic length scale determining the properties of the system, quantities
of interest are measured in simulations for systems of several finite sizes. By assuming a scaling
form for the size dependence of the quantities, finite-size data is used to extract the characteristic
length scale at desired state points. This method has been used recently (38) to obtain definitive
results for the growth of jd in a simple model liquid (86). The left panel of Figure 6 shows the
temperature dependence and system-size dependence of xp

4, the peak value of x4(t). It is observed
thatxp

4 initially increaseswith system-sizeN for small values ofN and eventually saturates for large
N, as may be expected of a susceptibility in conventional critical phenomena. The susceptibility
per particle, xp

4, is expected to depend on N only if the linear size of the system, L } N1/d (d is
the spatial dimension), is comparable to or smaller than the relevant correlation length jd. Because
the N-dependence of xp

4 shown in the left panel of Figure 6 persists to larger values of N at
lower temperatures, these results imply the existence of a correlation length that increases as T is
decreased.
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Spatial correlation function of mobile particles, showing that correlations are present and grow
upon lowering the temperature. Inset: radial distribution functions gAmAm(r) and gAA(r) for the mobile
and bulk particles, respectively, for T ¼ 0.451. Main figure: Ratio between gAmAm(r) and gAA(r)
for T ¼ 0.550, T ¼ 0.480, and T ¼ 0.451 (temperatures are given in reduced units). Adapted from
Reference 23.
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According to the finite-size scaling hypothesis (85), the system-size dependence of x
p
4 is

expected to have the form

x
p
4ðT,NÞ ¼ x

p
4ðT,N→1Þgx

�
L=jdðTÞ

�
. 15:

Therefore, the data for all T and N should collapse to the same scaling curve in a plot of
x
p
4ðT,NÞ=xp

4ðT,N→1Þ versus L/jd(T) [or, equivalently, N=jddðTÞ] for the correct choice of the
values of jd(T) at different temperatures. A scaling collapse of the data for xp

4ðT,NÞ is shown in the
right panel of Figure 6. From this and a similar analysis of the data for the Binder cumulant (85)
obtained from the distribution of the overlap ~QðtÞ, it was found (38) that jd grows from ∼2 to ∼6
(in reduced units for Lennard-Jones systems) as the temperature is reduced from 0.7 to 0.45 (the
critical temperature Tc of MCT is 0.435 in this system).

Another method borrowed from studies of critical phenomena to estimate length scales
involves an analysis of the k-dependence of a four-point structure factor, S4(k, t4), defined as

S4ðk, t4Þ ¼
*�����

XN
i¼1

eik × rið0Þw
���rið0Þ � riðt4Þ

��������
2
+

. 16:

In systems with a large correlation length, jd, the k-dependence of this quantity for small k is
expected to follow the Ornstein-Zernike form given by

S4ðk, t4Þ ¼ x4ðt4Þ
1þ k2j2d

. 17:

Therefore, the value of jd may be obtained by fitting numerical data for S4(k, t4) to this form for
small k.

Although Ornstein-Zernike fits to the four-point structure factor have been used extensively,
reliable estimation of correlation lengths from this approach is difficult (87, 88). It was shown by
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(a) Variation of the four-point susceptibility, xp
4ðT,NÞ, of a three-dimensional binary Lennard-Jones system, with the system-size

N for different temperatures. (b) Scaling collapse of the data shown in panel a, using the dynamic length scale jd (T). Adapted from
Reference 38.
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Karmakar et al. (88, 89) that the estimates of the length scale were subject to large system-size
effects, and one needed to access rather small wave vector values in order to obtain accurate results
for the heterogeneity length scale.One reason for this is the intricate ensemble dependence (36, 40)
of the four-point susceptibility, which forms the q→0 limit of the four-point structure factor
S4(q, t): This limiting value may not be the same as the directly calculated S4(q ¼ 0, t) in certain
ensembles. The results obtained for jd from simulations of very large systems (89) were found to
be the same as those obtained earlier from finite-size scaling (38), thereby providing a reliable
estimate of jd forThigher than theMCTTc. Thevalueof the exponentn defined inEquation11was
found to be close to 2/3, which is quite different from the prediction n ¼ 1/4 of inhomogeneous
MCT (39, 40). Similar results for jd have been obtained in several other recent studies (35–37).

A different dynamic length scale has been obtained from a study of the effects of boundary
conditions on the local dynamics (55). The boundary considered in this work is shown in Figure
3d. The local dynamics are then studied as a function of the distance from the wall, and a length
scale is extracted from the observed exponential decay of the effect of the wall on the local dy-
namics. Surprisingly, it was found that this length scale grows with decreasing T for T > Tc but
saturates and eventually decreases as T is further reduced below Tc. A recent calculation (90) of
jd from S4(q, t) for a differentmodel systemdoes not showa similar nonmonotonic behavior of this
length scale near Tc. It appears that the length scale obtained in Reference 55 is different from jd.
The physical significance of this length scale is not clear at present.

3.2. Results for Static Length Scales

Most attempts to compute the mosaic or point-to-set length scale js have been based on the
Bouchaud-Biroli procedure described above. Themain problem in implementing this procedure is
that it is very difficult to equilibrate the particles in the spherical inner region at low temperatures
using standard molecular dynamics or Monte Carlo methods. This procedure was first imple-
mented byBiroli et al. (91) for a binarymixture interacting via an inverse power-lawpotential. The
numerical difficulty in equilibrating the particles in the inner region at low temperatures was
partially overcome by using aMonte Carlo swapping method developed in Reference 92. In order
to extract the static length scale, an overlap function qc(R) was calculated in the central part of the
spherical inner region of radiusR. To define qc(R), the simulation boxwas divided into small cells
of size l such that the probability of findingmore than one particle in a single cell is negligibly small.
The variable ni that denotes the number of particles in cell i then takes the value 0 or 1. In terms of
these variables, the overlap function is defined as

qcðRÞ ¼ 1
l3Nn

X
i2n

Æniðt0Þniðt0 þ1Þæ, 18:

where the sumrunsover all the cellswithin the volume n at the center of the sphere,Nn is the number
of such cells, l3Nn is the number of particles in the volume n, and Æ . . . æ represents both thermal
averaging and averaging over different realizations of the frozen boundary. The function is nor-
malized in such a way that two identical configurations have overlap equal to unity and two
uncorrelated random configurations have overlap close to q0 ¼ l3. In Figure 7a, qc(R) � q0 is
plotted as a function ofR for four different temperatures. One can see that at high temperatures, the
function decays nearly exponentially with R, but as the temperature is lowered, the decay becomes
slower and also the nature of the decay changes. This behavior was attributed to the growth of the
static length scale with decreasing temperature. As shown in the inset of the figure, qc(R) � q0
calculated for the whole sphere decaysmore slowly withR in comparison to that defined only in the
central region. This is due to strong boundary effects in the overlap calculated for the whole sphere.
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The dependence of qc(R)� q0 on R at low temperatures was found to be well described by the
compressed exponential form

qcðRÞ � q0 ¼ V exp
��ðR=jÞx�, 19:

where x� 1. It was argued that this behavior arises from fluctuations in the surface tension Y that
appears in theRFOT theory and the value of j obtained froma fit of the data to this formwas taken
to be the static length scale js. The value of jswas found to increase from ∼0.6 to ∼3.8 (in units of
average interparticle distance) in the temperature range considered in this work. The lowest
temperature considered in this study was below the MCT Tc.
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overlap decays more slowly with decreasing temperature, indicating the growth of a static length scale. Adapted from Reference 56.
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Subsequently, itwas realized that themethodused inReference91 to equilibrate the systemat low
temperature is not very general and cannot be used effectively forother glass-formingmodels.Hocky
et al. (93) have developed an improved Monte Carlo algorithm that can be used effectively for
different models to equilibrate the system in the spherical cavity geometry. Using this method, they
were able to calculate the length scale js for different glass-forming liquids and compare how this
length scale grows with decreasing temperature, as shown in Figure 7b. The change in the length
scales found here is smaller than that found in Reference 91 because the temperatures considered in
this study are higher than the MCT critical temperatures of the models considered.

Kob et al. (55) have considered a different geometry in which equilibration was not severely
hampered. They studied the effect of a wall (the geometry shown in Figure 3d) on the dynamic and
equilibrium behavior as a function of distance from the wall. An overlap function similar to that
defined above was used to extract a static length scale from the observed dependence on the
distance from the wall. In Figure 7c, the overlap is shown as a function of the distance z from the
wall for different temperatures. It is clear that the overlap decays more slowly with decreasing
temperature, indicating the growth of a static length scale. The other pinning geometries shown in
Figure 3 have also been considered in a recent study (56), where it was found that the static length
scale extracted from the data depends to some extent on the pinning geometry. The reason for this
dependence is not clear at present.

It was mentioned earlier that the point-to-set length scale can also be calculated using the
randompinning geometry shown in Figure 3c. This geometry has been used by Charbonneau and
coworkers (94, 95) to calculate the point-to-set length scale in binary hard-sphere systems. For
a systemwith a fraction c of particles pinned at their positions in an equilibrium configuration, an
overlap function was defined as follows:

QcðtÞ ¼ 1

ð1� cÞ2N

*X
i;j

wijð0, tÞ
+
, 20:

where wij(0, t)¼Q(a� jri(t)� rj(0)j),Q(x) is the Heaviside step function, and a¼ 0.30 in the unit
of particle diameter. The angular brackets represent equilibrium averaging, the overbar means
averaging over different ways of pinning a fraction c of the particles, and the sum runs over all the
unpinned particles. If the static length scale is larger (smaller) than the typical distance between two
pinned particles, then the asymptotic overlap Qcð1Þ ¼ Qcðt→1Þ should be large (small).
Therefore, the static length scale can be extracted from the crossover of the asymptotic overlap
Qc(1) as a function of the pinning fraction c.

In the left panel of Figure 8, the overlapQc(1) (after subtracting the value for two completely
uncorrelated configurations) is plotted as a function of the average distance between neighboring
pinned particles. One can see that as the density of the system increases, the crossover from high to
low values of the overlap occurs at a lower concentration of the pinned particles, indicating the
increase in the static length scale. In the right panel of Figure 8, the static length scale, defined
somewhat arbitrarily as the value of the average interpin distance atwhich the overlap difference is
equal to 0.4 (indicated by the dashed line in the left panel), has been plotted as a function of the
reducedpressure. The growth of the corresponding dynamic length scales is also shown in the same
figure. The dynamic length scale is found to grow more rapidly with increasing density than the
static length scale in this regime of density.

A very different method was used in Reference 38 to obtain a static length scale for the Kob-
Andersen model in three dimensions. It was found in that work that the configurational entropy
per particle (sc) of the collection of inherent structures exhibits a weak dependence on the system-
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sizeN [sc(T,N) increaseswith increasingN] for relatively small values ofN. According to the finite-
size scaling hypothesis (85), this N-dependence should be described by the scaling form

scðT,NÞ=scðT,N→1Þ ¼ gs
h
N=jdðTÞ

i
, 21:

where j(T) is a static length scale and gs is a scaling function. The data for sc(T,N) were found to be
consistent with this scaling form, with a choice of j(T) that increases slowly with decreasing
temperature.

Results for the static length scale obtained from the smallest eigenvalue of the Hessian matrix
areshowninFigure 9. These resultswere obtained for the three-dimensional Kob-Andersenmodel.
The left panel shows the ensemble average of the smallest eigenvalue rescaled by the corresponding
Debye value (square of the Debye frequency) as a function of an appropriate scaling variable (73)
for different temperatures. The right panel shows that good data collapse is obtained by ap-
propriately choosing the static length scale. The inset of the right panel shows the growth of this
static length scale with decreasing temperature. In Reference 73, it was also shown that the
temperature dependence of this length scale agrees very well with that of the length scale obtained
from a finite-size scaling analysis of the dependence of the configurational entropy on system size.

The static length scales obtained in all of the studies described above are quite small, on the
order of a few interparticle distances. Also, they grow only by a factor of ∼2 in the temperature
range accessible in simulations. All these studies, except for that found in Reference 91, have been
carried out at temperatures above the characteristic temperature Tc of MCT. The physics described
by the RFOT theory is expected to be relevant for temperatures close to and lower than Tc.
Therefore, it is perhaps not surprising that the values of the mosaic or point-to-set length scale js
are small in this temperature range. It would, of course, be very interesting to extend these studies
to lower temperatures to investigate the growth of js. Given the very limited range of the growth of
the static length scales in the studied temperature range, it is notmeaningful to inquirewhether this
growth is quantitatively described by one of the existing theories. It is, however, meaningful to ask
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whether different systems exhibit similar dependence of the static length scale on temperature. A
simpleway to address this question is to choose a suitable reference temperatureT0 for each system
using a physical criterion (e.g., T0 could be the temperature at which the length scale has the same
value for all of the considered systems) and thenplot the scaled length j(T)/j(T0) as a function of the
scaled temperature T/T0. If the plots for different systems collapse into the same curve, then it is
reasonable to conclude that the temperature dependences of j in the different systems are similar.
Figure 7b shows such a plot for three different systems. The data collapse indicates a degree of
universality in the growth of the length scale js with decreasing temperature.

Another important question is whether the different methods for estimating the static length
scale lead to results that agree with one another. An answer to this question is not yet available
because all the different methods for calculating the static length scale have not been applied to the
same model system. The Kob-Andersen model is the only system for which results for the static
length scale have been obtained using more than one method. The lowest eigenvalue method and
finite-size scalingof the configurational entropyyield (73) the same results in this system. There are
also indications (96) that the point-to-set length in this system is the same as these two length scales.

Thedependenceof the configurational entropy sc(T,N) on the system-sizeN for relatively small
values ofN poses the following potential problem in defining the mosaic length of RFOT theory.
The prescription used in RFOT theory to obtain the mosaic length assumes that the total con-
figurational entropy is extensive: The entropy of a droplet of size j is taken to be scj

d with sc
independent of j. If sc itself depends on the droplet size j, as would be the case if j is sufficiently
small, then the expression for the mosaic length js given in Section 2.2 must be corrected to take

into account this dependence. The corrected expression would be js ¼
�
Y=Tsc

�
T, jds

��1=ðd�uÞ
,

which appears to be a complicated implicit equation for js. However, if the dependence of the
configurational entropy on the system size is given by Equation 21, with j identified with the
mosaic scale js, then the simple expressions given in Section 2.2 would be recovered with Y

replacedbyY/G,withG[ gs (1) being a constant of order unity and sc(T)¼ sc(T,N→1). Thus, all
the predictions of RFOT theory would be correct if the mosaic length were the same as the length
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(a) The ensemble average of the smallest eigenvalue, rescaled by the correspondingDebye value (square of theDebye frequency), as a function
of an appropriate scaling variable (73) for different temperatures. (b) The data collapse obtained by appropriately choosing the static
length scale. The inset shows the growth of this static length scale with decreasing temperature. Adapted from Reference 73.
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scale that describes the dependence of sc on system size. As mentioned above, there is some
numerical evidence suggesting that these two length scales are indeed the same.

3.3. Relation Between Static and Dynamic Length Scales

A close relation between structure and dynamics exists in most condensed matter systems. It is,
therefore, natural to expect that the dynamic and static length scales in supercooled liquids should
be related to each other. Because the dynamic length scale that has received the most attention in
the literature is that of DH, it is important to understand whether there is a structural basis for the
occurrence of DH. This question has been addressed inmany studies, but a clear answer is still not
available. Several numerical (97–99) and experimental (100 and references therein) studies have
pointed out a close connection between the spatial structure of DH and that of the eigenvectors of
low-frequency eigenmodes of the dynamical matrix that describes the vibrational spectrum of the
system. However, quantitative information such as the existence of a characteristic (static) length
scale has not been extracted from the structure of these low-lying modes. A comparison of the
behavior of static and dynamic length scales calculated for the same system is expected to provide
valuable insights into this question.

Surprisingly, all existing studies (38, 55, 56, 93–95) in which both static and dynamic length
scales have been computed for the same system indicate that these length scales are not related to
each other. The dynamic length scale jd is larger than the static scale js, and it increases faster
with decreasing temperature in the temperature range in which numerical results are available
(see the right panel of Figure 8 for an example of this behavior). This is similar to the behavior
found by Franz &Montanari (101) in an analytic calculation of both the static (mosaic) length
scale and the dynamic length scale associatedwith the four-point density correlation function for
aKacmodelwith finite-range interactions. This calculation shows that both length scales exist at
all temperatures and are unrelated to each other. The dynamic length scale diverges at a dynamic
transition temperature Td, and the static length scale diverges at a lower temperature Ts,
meaning that the dynamic length scale is much larger than the static length scale at temperatures
close to Td. In real liquids, the dynamic transition at Td is supposed to be replaced by a crossover
at theMCT temperatureTc. Therefore, the dynamic length scale is expected to be the larger one at
temperatures close to Tc, with the possibility that the static length scale will become large
(perhaps larger than the dynamic one) as the temperature is decreased below Tc. This scenario is
consistent with the available results, but the behavior at temperatures substantially below Tc

remains unclear at this time.

4. RELATION BETWEEN LENGTH SCALES AND TIMESCALES

Because the rapid growth of timescales is the defining feature of glass transition, the most im-
portant question that should be addressed in studies of length scales is whether the growth of the
length scale being considered can explain the growth of timescales. Given that many different
timescales are present in glassy relaxation, it is necessary to decide which timescale should be
considered in this context. The a-relaxation time t extracted from the long-time decay of density
correlation functions, such as those defined in Equations 7, 8, and 10, is the most extensively
studied timescale in glassy dynamics. This timescale is proportional to the time at which the four-
point susceptibility x4(t) peaks, but it is different from (larger than) the time t� at which the non-
Gaussian parametera2(t) peaks (27). The strings formed by cooperativelymovingmobile particles
(see Section 2.1) reach maximum size on a timescale that is proportional to t�, and as recently
discussed by Starr et al. (27), t� is characteristic of diffusion, and it scales withD/T, whereD is the
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diffusion coefficient and T is the temperature. Mobile particle clusters are found (27, 102, 103) to
have the largest sizes at a timescale that is also proportional to t�, whereas immobile particle cluster
sizes peak at a time that is proportional to the a-relaxation time t. Thus, immobile particle clusters
are associated with structural relaxation, which occurs on a different (larger) timescale than
diffusion timescales that scale as t�. The timescale that characterizes the lifetimeof fluctuations (37)
of the overlap function ~QðtÞ is different from both t� and t. We concentrate here on the a-re-
laxation time t.

To establish a direct relation between t and a specific length scale j, it is necessary to measure
both t and j for different systems and to demonstrate that the relation between t and j changes in
a systematic and predictable way from one system to another. This is how the relation between the
relaxation time and the correlation length was established in standard critical phenomena.
However, the kind of universality observed in critical phenomena is not expected to be present in
the glass transition problem because the correlation lengths in supercooled liquids cannot be very
large in the temperature range that is accessible in experiments and simulations. This is a con-
sequence of the fact that the lowest temperature (’Tg orTc) at which the liquid can be equilibrated
in experiments or simulations is significantly higher than the temperature (T0 ’TK) of the putative
critical point. This makes it difficult to compare the relation between t and j obtained for systems
with different microscopic Hamiltonians. It is not clear how the differences in the microscopic
length scales and timescales in the systems being considered should be taken into account. The
method of finite-size scaling does not have this problem because the systems of different size
considered in this method have the same microscopic interactions. This method was used in
Reference 38 to investigatewhether the timescale t is causally related to the length scale jdofDH in
theKob-Andersenmodel. As discussed in Section 3.1, the system-size dependence of the four-point
susceptibility x

p
4 in this model was found to be well-described by the finite-size scaling form of
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Figure 10

(a) Relaxation times for different system sizes rescaled by the large system-size value are plotted versus the corresponding peak values
of the four-point susceptibility rescaled by the values in the large system-size limit for the three-dimensional Kob-Andersen model.
The scatter of the data implies that the length scalewhich governs the growth of the four-point susceptibility does not govern the growth of
the relaxation time. (b) Validation of the Adam-Gibbs relation. Relaxation times for different system sizes and temperatures fall on
amaster curvewhenplotted as a function of 1/(TSc), as in theAdam-Gibbs relation, Equation2. The top inset shows finite-size scaling data
collapse for the configurational entropy sc(T,N). The temperature dependence of the extracted static length scale and its comparisonwith
the dynamic length scale jd are shown in the bottom inset. Adapted from Reference 38.
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Equation 15. If the growth of t with decreasing temperature is also governed by the same length
scale jd and t exhibits normal dynamic scaling, then the system-size dependence of t(T,N) should
also be described by a similar scaling form with a different scaling function. This, in turn, implies
that a plot of t(T, N)/t(T, N → 1) versus xp

4ðT,NÞ=xp
4ðT,N→1Þ for different T and N would

collapse to a single master curve. It was shown in Reference 38 that such a scaling collapse of the
data does not occur. The dependence of t on N is qualitatively different from that of xp

4: The
timescale decreases with increasing N for small N, whereas the susceptibility is an increasing
function of N. As shown in the left panel of Figure 10, a plot of t(T, N)/t(T, N → 1) versus the
ratio x

p
4ðT,NÞ=xp

4ðT,N→1Þ does not show any sign of a scaling collapse.
This observation strongly suggests that the growth of the relaxation time t in the studied

temperature range is not determined primarily by theDH length scale jd that governs the behavior
of xp

4. This surprising conclusion has been corroborated in a recent study (93) that concluded that
growth of the relaxation time is not strongly correlated with that of the DH length scale.

It was also shown in Reference 38 that the data for the configurational entropy sc(T, N) and
t(T,N) satisfy theAdam-Gibbs relationofEquation2 for allTandN. This is shown in the right panel
of Figure 10. This observation implies that the growth of the relaxation time t is governed by the
static length scale obtained from the finite-size scaling of sc(T,N). The top inset of the right panel of
Figure 10 shows finite-size data collapse for the configurational entropy sc(T,N). The temperature
dependence of the extracted static length scale and its comparison with the dynamic length scale
jd are shown in the bottom inset.

As noted above, this static length scale has been found to be identical to that obtained from the
lowest eigenvalue of the Hessian matrix (104). The connection between t and this static length
scale js has been demonstrated explicitly in Reference 105 from a finite-size scaling analysis of t
itself.

In the left panel of Figure 11, the system-size dependence of the relaxation time t is shown for
several temperatures. One can clearly see that the system-size dependence of t becomes more
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(a) The system-size dependence of the relaxation time for different temperatures in the three-dimensional
Kob-Andersen model. Note the enhanced system-size dependence at lower temperatures. (b) The data
collapse obtained using the static length scale obtained from the finite-size scaling analysis of the minimum
eigenvalue of the Hessian matrix. Adapted from Reference 105.
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pronounced at lower temperatures. The right panel of this figure shows a scaling collapse of the
data into a single master curve using the length scale obtained from the finite-size scaling of the
minimumeigenvalue of theHessianmatrix. The relevanceof this static length scale in the growthof
t was demonstrated in another calculation (104) in which the random pinning geometry men-
tioned above was used. If a fraction rim of the particles are pinned at their positions in an
equilibrium configuration, then the typical distance between two neighboring pinned particles is
proportional to r

�1=d
im , where d is the spatial dimension. If the system has a relevant length scale js,

then the dependence of observables on the pin density rim should be governed by the dimensionless
scaling variable jsr

1=d
im or, equivalently, by jds rim. It has been shown in Reference 104 that the

dependence of t on T and rim is indeed well described by this scaling hypothesis, with js equal to
the length scale extracted from the minimum eigenvalue of the Hessian matrix.

Similar results for the importance of the static point-to-set length js in determining the re-
laxation time t have been reported in Reference 93. In the left panel of Figure 12, the relaxation
time is plotted as a function of the (scaled) point-to-set length scale for three different glass forming
models and on the right panel, a similar plot is shown for the length scale obtained from the
minimum eigenvalue scaling. The apparently universal behavior shown in these plots suggests
a universal dependence of the growing a-relaxation time on a growing static length scale. There is
some numerical evidence (96) that suggests that the point-to-set length scale is the same as that
obtained from the minimum eigenvalue of the Hessian matrix.

Thus, available numerical data suggest the rather counter-intuitive conclusion that the growth
of the a-relaxation time in simple glass-forming liquids is governed primarily by the growth of
a static length scale rather than that of the dynamic length scale of DH. One should, however,
exercise caution in drawing this conclusion because the scaling arguments used to derive this
conclusion are expected to work well only when the relevant length scales are substantially larger
than microscopic length scales (e.g., the average interparticle distance in a liquid), whereas the
values of the static length scales obtained in all existing studies are of the order of a few interparticle
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spacings. The conclusion about the lack of a causal connection between t and the dynamic length
scale jd seems to be more robust because the values of jd in the temperature range accessible in
simulations can be substantially larger than the interparticle spacing.

We close this sectionwith a discussion of what information can be obtained about the values of
theRFOTexponentsu andc (see Equations 12 and 14) from available numerical data. Because the
static length scale js grows only by a factor of ∼2 in the temperature range considered in these
studies, it is not possible to extract any information about the exponent u from the dependence of js
on sc. The apparently linear behavior seen in the plots in Figure 12 suggests that the exponent c is
close to unity. A similar conclusion has also been obtained inReferences 106 and 107. The validity
of the Adam-Gibbs relation in three and four (10) dimensions suggests that c/(d� u)¼ 1. If c¼ 1,
then this relation predicts that u¼ d� 1.However, if the spatial dimension d is equal to 3 or 4, this
violates an inequality,c� u, suggested by Fisher&Huse (108)many years ago. It has been argued
that this inequalitymay not be valid for systemswith extensive configurational entropy (106). The
originally proposed values u¼c¼ d/2 are consistent with the validity of the Adam-Gibbs relation,
but there is no clear numerical evidence for these values.

5. CONCLUSIONS AND DISCUSSION

The survey of results given above indicates that although substantial progress has been made in
recent years to understand the role of length scales in glass-forming liquids, many questions still
remain unanswered. The existence of a growing dynamical length scale, jd, associated with DH
is now well established, and its temperature dependence in the range between the onset tem-
perature Tonset [the temperature below which nontrivial features such as nonexponential
temporal decay of density correlations and super-Arrhenius growth of relaxation times are
found in the dynamics (109)] and the critical temperature Tc of MCT has been documented in
several studies. There is, however, some uncertainty about the temperature dependence of this
length scale below Tc. It is also clear that there is a growing static length scale js obtained from
the point-to-set construction, and there are indications that some of the other static length scales
proposed in the literature are in fact the same as this one. This length scale is smaller than jd in
the temperature range Tc < T < Tonset, and its growth with decreasing temperature is slower
than that of jd. There is increasing evidence that suggests that jd and js are two independent
length scales, and the growth of the a-relaxation time t is governed by js in the temperature
range between Tonset and Tc.

An important question in this context is whether this behavior is universal. There are, un-
doubtedly, many liquids in which local crystalline order plays an important role in determining
their static and dynamic behavior at low temperatures. We do not consider such liquids to be
generic glass formers. The question we address here is whether the order-agnostic measures of
spatial correlations (static or dynamic) considered above exhibit universal behavior in generic
glass-forming liquids that do not show pronounced local crystalline order. The degree of uni-
versality found in critical phenomena should not be expected here because the very nature of the
problem (the fact that the behavior of the liquid near the temperature at which a true phase
transition is expected cannot be studied in experiments) implies that a large correlation length,
which leads to universality in critical phenomena, cannot be realized in glass-forming liquids. The
necessity of using computer simulations to determine the relevant length scales further reduces
the temperature range and hence the range of length scales accessible in studies of glass-forming
liquids. Also, the presence of two apparently independent length scales (jd and js) with com-
parable magnitudes in the accessible temperature range makes it difficult to analyze the role of
these length scales in determining various physical properties of the liquid. Given these
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difficulties, the degree of universality found in the results shown in Figures 7b and 12, in which
a simple scaling procedure is used to compare the results for several model liquids, is en-
couraging. Clearly, extension of these results to temperatures lower than Tc (which will require
the development of efficient algorithms to equilibrate liquids at lower temperatures) would be
most desirable.

The available results for jd and js do not provide an answer to the often asked question of
whether there is a true glass transition. Although this is an interesting question, an answer is not
necessary for understanding the experimentally observed phenomenology of glass-forming liq-
uids. The results summarized above indicate that a growth of the relevant length scale (js in most
studies) by a factor of∼10would be adequate for explaining the experimentally observed increase
of the viscosity and the relaxation time. It is not necessary to knowwhether the length scale would
actually diverge at a putative phase transition at a lower temperature. For the same reason,
discussions of the values of the exponents that characterize the growth of the length scales are not
particularly meaningful. The range of length scales accessible in simulations and possible
experiments is too small for an accurate determination of the exponents.

We closewith a discussion of some of the questions raised by the results summarized above and
suggestions for future work that would address some of these questions:

1. The growth of the a-relaxation time in the temperature rangeTc<T<Tonset appears to
be governed primarily by the growth of the static length scale js, which, in turn, is
determined by the properties of the underlying (free) energy landscape (the configura-
tional entropy or the lowest eigenvalue of the dynamical matrix). This goes against the
expectation, based on analogies with spin-glass models, that the effects of activated
processes involving the properties of the energy landscape become important only at
temperatures close to and below Tc. This problem would not arise if the theoretically
calculated temperature of dynamic arrest inMCT (not theTcobtained fromapower-law
fit of the high-temperature data for t) were taken to be the temperature at which
a crossover to activated dynamics should occur, because this temperature is close to
Tonset (110). This choice, however, would mean that the predictions of MCT are not
observed in any temperature range because the dynamics for T > Tonset are trivial.
Clearly, a detailed investigation of how the predictions ofMCT are affected by activated
processes would be most interesting in sorting out these issues (111).

2. Most of the existing results for the length scale jd ofDHhave been obtained from studies
of multipoint correlations and susceptibilities. However, the clusters of fast and slow
particles, discussed in Section 2, provide a more physical picture of DH, and it would be
interesting to extract characteristic length and timescales of DH from the structure and
dynamics of these clusters. Some progress in this direction has been made recently in
Reference 27, where it was shown that clusters of slow particles are associated with
structural relaxation at timescale t, whereas clusters of fast particles are closely related to
particle diffusionwith a timescale proportional to t�, the time atwhich the non-Gaussian
parametera2(t) peaks. Itwould be interesting to try to extract the length scales associated
with these two timescales from the geometry of the clusters. Although the string length
identified inReference 27andpreviousworks is immune to the arbitrariness of definition
(inasmuchas it is identified as a small subset ofmobile particles thatmove cooperatively),
absolute sizes and statistics of mobile and immobile particle clusters are subject to
ambiguities arising from their definitions, which involve well-motivated but arbitrary
cutoffs. It would also be useful to identify and study the restructuring events that break
up these clusters.
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3. There exist intriguing connections between the length scales discussed above and the
properties of the low-frequency eigenvalues and eigenvectors of the Hessian matrix of
the inherent structures whose basins are visited by the system during the system’s time
evolution. The eigenvectors are strongly correlatedwith the spatial structure ofDH (and,
hence, to the dynamic length jd), whereas the static length scale js, which appears to
govern the growth of the structural relaxation time t (which is also the characteristic
lifetime of DH), is closely related to the smallest eigenvalue. It would be most interesting
to explore this connection further, with the objective of determining these length scales
from the properties of the Hessian matrix.

4. Although we have concentrated here on the a-relaxation time t, there are other
characteristic timescales in glassy relaxation. These include t�, the time at whicha2(t)
peaks, and tb, the timescale of the short-timeb relaxation. These timescales also grow as
T is decreased. It would be interesting to find out whether the growth of these timescales
is governed by one of the length scales discussed above. Inhomogeneous MCT (40)
predicts that the growth of tb is governed by the length scale jd of DH. Given that
activated processes are expected to be less important in short-time dynamics, this
prediction of inhomogeneous MCT is more likely to be satisfied in real liquids. A
few investigations of the length scale associated with b relaxation exist in the literature
(36, 87), but the results are inconclusive. Further work along this line would be useful.

5. Existing numerical results suggest that the point-to-set length, the mosaic length of
RFOT theory, the length obtained from the lowest eigenvalue of theHessianmatrix, and
the length that describes the system-size dependence of the configurational entropy are
all the same. The length scale obtained from a finite-size scaling analysis of the system-
size dependence of the configurational entropymeasures the system size belowwhich the
total configurational entropy becomes subextensive (the entropy per particle becomes
lower than the value for large systems). A naive interpretation of the proposal for
extracting a static length scale from the frequency of occurrence of patches of different
size suggests that the configurational entropy would become subextensive if the system
size were smaller than the patch repetition length. Thus, there are reasons to expect that
the static length scale js is also the patch repetition length. This is encouraging because if
this is true, then one does not have to deal with a plethora of static length scales. It is, of
course, necessary to checkwhether this equality of different static length scales continues
to remain valid at lower temperatures and for different model systems.
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