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Abstract

We discuss recent research on quantum transport in complex materials, from
photosynthetic light-harvesting complexes to photonic circuits. We identify
finite, disordered networks as the underlying backbone and as a versatile
framework to gain insight into the specific potential of nontrivial quantum
dynamical effects to characterize and control transport on complex struc-
tures. We discriminate authentic quantum properties from classical aspects
of complexity and briefly address the impact of interactions, nonlinearities,
and noise. We stress the relevance of what we call the nonasymptotic realm,
physical situations in which neither the relevant time- and length-scales, the
number of degrees of freedom, or constituents tend to very small or very
large values, nor do global symmetries or disorder fully govern the dynam-
ics. Although largely uncharted territory, we argue that novel, intriguing and
nontrivial questions for experimental and theoretical work emerge, with the
prospect of a unified understanding of complex quantum transport phenom-
ena in diverse physical settings.
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1. INTRODUCTION

“Quantum transport” expresses a specific view on the world of quantum phenomena, which orig-
inates in condensed matter physics, and, to some extent, physical chemistry: An excitation, an
electron or a quasiparticle is to be shipped from input to output of a physical sample to be charac-
terized, possibly by macroscopic quantifiers like its resistivity (1), or to be transferred from some
donor to some acceptor molecular unit, typically over mesoscopic scales, to trigger chemical re-
actions (2, 3). As is immediately apparent when defining input and output states asymptotically,
this view is intimately related to scattering theory (with the transmission of a plane wave through
a potential barrier as the elementary textbook example). In an alternative perspective, by its very
construction, this view defines one of the standard scenarios for nonequilibrium quantum physics.
Although historically (and anthropomorphically) set in the spatial degree of freedom, transport
can, of course, likewise occur in arbitrary directions of phase space, as well as on the energy axis.
Often, however, a change of stage implies a change of research community and jargon: Quantum
transport on the energy axis (often the momentum axis in disguise) is witnessed and controlled,
e.g., in the physics of light-matter interaction (from strong to feeble electromagnetic fields), and
often comes under the alternative label quantum dynamics (4, 5). When decomposable into finite
numbers of two-level systems or elementary excitations, at a manageable level of complication,
“quantum simulation” as a specific brand of “quantum information” sets out to mimic elementary
quantum transport phenomena (6, 7).

The elementary ingredient of quantum transport is incarnated by Young’s double slit when
taken to the granular level of the self-interference of a single particle: Although this phenomenon
is now well understood since Feynman (8), from the underlying dynamics to the emergence of the
interference pattern upon integration over single-particle events (9), it gives rise to a panoply of
rather dramatic and not-yet-common-sense quantum interference phenomena once the number
of interfering amplitudes (and, possibly, particles) is increased. In particular, when we enter the
realm of multiple scattering1 phenomena (again, possibly, but not necessarily, in configuration
space), quantum interference effects can prevail, even after averaging over a broad range of ran-
domly chosen physical realizations of the scattering potential,2 which, on a first glance, appears
very counterintuitive when contemplating the fate of Young’s double-slit interference pattern
upon independent averaging over the slits’ positions. Yet the most prominent disorder-induced
interference effects, weak (10), strong or Anderson (11), and, in a Hamiltonian setting, dynamical
(12) localization bear tangible macroscopic manifestations, from enhanced back-scattering signals
[first observed on Saturn’s rings (13)] to by now well-defined and well-controlled metal-insulator
quantum phase transitions (see the sidebar Weak and Strong Localization) (10, 12, 14–35).

Most importantly, the truly amazing improvement of experimental diagnostic tools and of the
experimental control on composite, hybrid quantum systems nowadays allows, arguably for the first
time, systematic exploration of the controlled transition from many- to single-particle quantum
transport and dynamical phenomena (36–40) on potential landscapes that interpolate, possibly on
a hierarchy of scales, between perfect symmetries and disorder (41–46). Beyond the experimental
mimicry of well-established theoretical models for extended solids or fields, the truly innovative
potential of this rather recent experimental progress lies in charting the largely unknown territory
between single-particle quantum dynamics and the thermodynamic limit (39, 47–50), which can
be safely predicted to offer plenty of original research questions and surprising answers. Apart

1Of a single particle on a complicated potential landscape, and/or of many particles.
2Defined, in an actual experiment, e.g., by different, macroscopically identically prepared samples; by slow drifts of the
microscopic sample structure or of externally applied fields; by variations of the input state or channels; etc.
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WEAK AND STRONG LOCALIZATION

Weak and strong localization are well-defined concepts in condensed matter and mesoscopic transport theory
(1, 42). They describe the impact of disorder-induced quantum interference effects on the transmission probability
across disordered potential landscapes, which survive the disorder average and can be rather dramatic. Often it
is difficult to properly distinguish interference-induced (weak or strong) localization from other mechanisms that
impede transport, such as, e.g., (partial) phase space barriers or the somewhat trivial confinement of an eigenstate
to one or few local potential minima. Consequently, the terminology tends to be used in a rather fuzzy manner in
the literature beyond condensed matter and mesoscopics.

Weak Localization Phenomena

Weak localization consists in a reduction of the diffusion constant, and hence of the transmission probability, due
to an enhanced return probability to a given point within the sample. The latter is a consequence of the interference
of time-reversed multiple scattering paths and also leads to (enhanced) coherent backscattering of the injected
probability flux. Weak localization is often considered to be a precursor of strong localization, in the regime of
weak disorder, i.e., for �k � 1, where � is the scattering mean free path and k is the transported particle’s wave vector.

Strong Localization Phenomena

Strong or Anderson localization consists in the vanishing of the diffusion constant as a consequence of complete,
destructive interference upon transmission. It manifests differently in one, two, and three dimensions and is as-
sociated with a quantum phase transition from delocalized to exponentially localized eigenstates on 3D disorder
potentials, at �k � 1. An analogous phenomenon in light-matter interaction at high spectral densities, dubbed “dy-
namical localization”, leads to a suppression of the effective energy transfer from the driving to the matter degree
of freedom.

Control of Localization Phenomena

Due to the dramatic impact of localization phenomena on dynamical and spectral features, efforts are being made
to exploit or manipulate these effects for the purpose of quantum control, e.g., by tailoring inter-site couplings or
by injecting nonlinearities (45, 94).

LED: light emitting
diode

PV: photovoltaic

from offering novel ways to control (quantum) transport properties that ultimately define the
efficiency of technological devices (51) [e.g., for light energy conversion, such as light emitting
diodes (LEDs) or photovoltaics (PVs)], such endeavors certainly stand to qualitatively improve
our understanding of the quantum-to-classical transition (38, 52, 53) as one of the fundamental
open issues of quantum theory (and of its interpretation) to date.

A useful and versatile scenario for the study of quantum dynamics in what we here call the
nonasymptotic range is a finite network or graph of variable topology, which can mediate transport
of one or more particles (54–61). On the one hand, the network’s topology allows a flexible
transition from order to disorder, and, on the other hand, it offers a broad choice of observables to
characterize single- or many-particle transport. The network can be connected to leads (supporting
continua of scattering states), to define a bona fide scattering problem (57, 62–64), and/or, locally
or globally interfaced with incoherent environments, to incorporate dynamical rather than static
disorder—vulgo noise (which, on sufficiently long timescales, kills quantum interference; see the
sidebar Static Versus Dynamical Noise) (65).
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STATIC VERSUS DYNAMICAL NOISE

There is an important distinction between disorder and noise: Disorder expresses our lack of knowledge of the precise
realization, e.g., of a potential landscape. Disordered systems evolve unitarily, but to obtain descriptions that are
robust against variations of the microscopic hardwiring of the generating Hamiltonian, a disorder average has to
be performed. This in general leads to dephasing (or inhomogeneous broadening, in spectroscopy jargon), which,
however, can in principle be compensated for by spin echo techniques. In contrast, noise stems from uncontrolled
temporal fluctuations of the generating Hamiltonian on timescales that are shorter than the timescales of interest
and need to be averaged over. This leads to an irreversible loss of information that cannot be recovered, and, in
particular, induces decoherence.

ATP: adenosine
triphosphate

LHII: photosynthetic
antenna protein

FMO:
Fenna-Matthews-
Olson light-harvesting
complex

PC645:
phycocyanin 645

The network’s topology (beyond, simply, its dimension) can be employed to control the prob-
ability of particle encounter and, thus, through the particles’ indistinguishability and/or their
interaction strength, the structure of the quantum interference terms that control its transport
properties (43, 66). Furthermore, a network can be considered the natural backbone of a multitude
of physical transport problems, from regular or disordered lattices in one, two, or three dimen-
sions, in configuration, phase, or energy space (54, 67–70), to molecular aggregates in functional
materials or biological substrates (58, 71–73), quantum algorithms (74), photonic circuits (75,
76), electromagnetic transmission lines, or multiple scattering media—e.g., cold atomic clouds
and Rydberg gases (50, 77, 78)—with slowly (with respect to a single, multiple-scattering event)
drifting conformations, and many more. This review exploits this versatility to illustrate the rich
phenomenology of quantum interference effects in the nonasymptotic range, between symmetry
and disorder, coherence and noise, and distinguishability and discernability. We import concrete
examples from recent scientific debates on the role of quantum coherence in biophysical contexts
and on controlled many-particle interference in photonic circuits, but we also touch on de facto
closely related, though apparently distinct, quantum transport phenomena in other (sub)fields.

2. EXCITATION TRANSPORT ON NETWORKS
WITH CONSTRAINED DISORDER

We start out with a paradigmatic single-particle transport problem on finite networks, which has
received renewed interest in the interpretation of spectroscopic data of unprecedented quality, on
photosynthetic functional units of plants, algae, and photosynthetic bacteria (79, 80), as well as on
PV blends useful, e.g., for organic PV devices (81, 82). In the photosynthetic scenario, the energy
carried by an incoming photon is transformed into an electronic excitation, forming an exciton
(83, 84), which then needs to be transported to what is known as the reaction center, a molecular
structure in which the organism uses that incoming energy to create free charges that then feed
the reservoir of adenosine triphosphate (ATP) as the chemical energy currency. The excitation
transport from the absorbing molecular site to the reaction center is mediated by supramolecular
structures, which come in different architectures and variable (but always clearly finite, in the
sense of being far from the thermodynamic limit) size in different species, with a coexistence of
symmetric and disordered structures on different (energy, length-, and time-) scales, e.g., in the
photosynthetic antenna protein LHII of purple bacteria, or rather as completely disordered three-
dimensional (3D) structures without apparent symmetries, e.g., in the Fenna-Matthews-Olson
light-harvesting complex (FMO) of green sulfur bacteria, or in the cryptophyte phycocyanin 645
(PC645) complex of marine algae (85). In general, these supramolecular structures are relatively
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QUANTUM THEORY AND PHOTOSYNTHESIS

Ultrafast nonlinear spectroscopy (87) on molecular aggregates such as the FMO complex has revealed signatures
of coherent coupling among excitonic states, on transient timescales and at ambient temperatures. This triggered
an intense debate on the potential role of nontrivial quantum effects (i.e., quantum phenomena that go beyond
defining effective rates that can then be absorbed into effective evolution equations) for the respective biological
function. Current candidate scenarios are photosynthesis (79), avian navigation in Earth’s magnetic field (88) and
olfaction (89), but conclusive evidence for any functional relevance is missing to date.

stiff and exhibit drifts only on timescales much longer than the typical times required for the
excitation transport to the reaction center. However, because these are transport phenomena in
living organisms, they occur at finite temperature and are certainly subject to some sort of noise,
as well as, possibly, to quasi-deterministic (and hitherto very poorly understood) reconformations
related to their functional role on larger (time- and length-) scales (see the sidebar Quantum
Theory and Photosynthesis) (86).

By now quite firmly consolidated experimental evidence shows that, notwithstanding (or,
probably, because of ) their intricate architectures and their embedding in a clearly very noisy
macrostructure, these supramolecular transport units indeed can sustain coherent superpositions
of vibrationally dressed excitonic eigenstates (90),3 even at ambient temperatures, on transient
timescales under laboratory conditions (81, 90–93). What remains, however, a completely open
question is whether such quantum superpositions, and the generically associated quantum inter-
ference effects, actually do occur in vivo and whether they may be used (whether by nature or
by—quantum—engineers) to foster the supramolecular structure’s functional purpose.

There are essentially two fundamental reasons why this undeniably highly intriguing question
has so far not been answered: On the one hand, given the intrinsic complexity of the object under
study, experimentalists have so far been unable to conceive tools of deliberate intervention to
enhance or suppress coherences in the supramolecular dynamics, and to unambiguously probe the
impact thereof on macroscopic indicators of the transport efficiency, such as, e.g., the quantum
efficiency, i.e., the number of charges generated in the reaction center, per incoming photon. Note
that such intervention to control radiation transport in complex materials is at least in principle
within reach, as has been experimentally demonstrated with photonic nanostructures (94). On
the other hand, theory is so far unable to come up with quantitative predictions that are amenable
to direct verification by state-of-the-art experiments and distinctive enough to discriminate
different transport scenarios. Some approaches, based on very advanced computational physics
(or chemistry) with considerable computational overhead, succeed in consistently reproducing
experimental data (2, 3, 73), such as to extract effective rates, etc.; however, they neither
offer quantitative predictions that could be falsified by experiment nor help us gain a better
understanding of the decisive structural elements that guarantee the functional properties of the
molecular machines of interest. Another philosophy attempts to grasp these essential structural or
dynamical features, often with simple, strongly reductionist quantum dynamical models (69, 71,
72, 95, 96). Although this in principle allows us to define specific and, possibly, mutually exclusive
transport scenarios, these models often lack sufficient detail to match realistic experimental

3The strength of the coupling between excitonic and vibrational degrees of freedom is, again, widely variable from species to
species. The debate on the prevalence of excitonic or vibrational coherence has, however, converged to some sort of consensus
that neither one can be completely neglected and that one thus often witnesses vibronic coherences.
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conditions, such that experimental data do not allow unambiguous discrimination between them.
Hence, what is needed are more refined tools for targeted experimental intervention and more
faithful, yet minimalistic, theoretical models that allow integration of the diverse time-, length-,
and energy scales that must be orchestrated to achieve and quantify certain functional properties.

Nonetheless, the diverse theoretical approaches currently on the market already account for a
good part of the basic ingredients that determine the transport efficiency across the light harvesting
unit:

� Coherent transport on short, transient timescales (58, 60, 69, 95–97);
� Dominantly incoherent transport on asymptotic, long timescales (the traditional view in

chemical physics) (98);
� Nonnegligible coupling between excitonic and vibrational degrees of freedom (90), or, to

some extent equivalently;
� Structured spectral densities of the environmental degrees of freedom coupled to the exci-

tonic manifold (99, 100); and
� statistical variations of transport efficiencies upon sampling over different conformational

realizations (58, 96, 97, 101).

Let us now describe an elementary network model that can accommodate these diverse features,
inspired by the phenomenology of the FMO unit.

2.1. Transport Efficiencies Across Random Networks

According to currently available structure data, the FMO is a three-dimensional molecular network
composed of seven or eight molecular sites defined by the locations of its constituent chlorophyll
units (85). In the desire to faithfully represent the FMO’s excitonic spectrum (which mediates
the excitation transport), the chlorophylls are modeled as dipolar molecules with two electronic
(ground and excited) states, which are coupled to each other through dipole-dipole interactions.
The relative positions and orientations of the constituent molecular dipoles, the on-site electronic
energy levels, and the inter-site coupling strengths are tabulated in the literature (102, 103). Slight
variations between different references and the always relatively large error bars that garnish the
tabulated numerical values are an expression of the fact that these are, and, given the complexity of
the object of interest, ought to be, effective descriptions, which imply strong coarse graining, i.e.,
an effective average over the many unresolved degrees of freedom of the supramolecular struc-
ture. Indeed, these available effective descriptions are deduced by careful deduction of coupling
strengths, etc., from experimental data as well as from state-of-the-art structure calculations. In
particular, in an interdisciplinary context and discourse it is crucial to fully appreciate this rather
fundamental distinction between the experimental and theoretical analysis of quantum dynamics
in a physical chemistry or biophysics setting in contrast to the, by their very construction, highly
controlled and engineered objects of quantum optical experiments and theory.4 Furthermore,
note that, though the chlorophyll molecules that define the network’s sites are a priori identical,
the on-site energies of the tabulated effective FMO Hamiltonians are not; i.e., they exhibit some
nontrivial potential landscape, which is due to the individual chlorophylls’ “local environments”
(102, 103). In biophysics jargon, this refers to shifts of the electronic eigenenergies through local
couplings to background degrees of freedom that, e.g., span the supramolecular conformation
space.

4Hamiltonians are engineered as naked as they stand, with excellent control on the errors incurred by neglect of weakly
coupled, well-defined degrees of freedom (104).
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Hence, quantum transport of a single excitation across the FMO molecular network is generated
by an effective N-site Hamiltonian operating on an N-dimensional Hilbert space. At present,
consensus is that it is extremely unlikely that more than one excitation at a time is injected into
the network, which also eases dynamical simulations considerably (also see Section 3 below).5

Given the above, a natural and popular approach to modeling excitation transport on the FMO
network is by quantum dynamical simulation, which essentially propagates a suitably chosen initial
condition over relevant timescales (107). In general, this is done by numerical solution of some
effective evolution equation for the open system quantum dynamics of the FMO Hamiltonian
coupled to some environment with possibly structured spectral density (71–73). The structured
part of the environment’s spectral density accounts for the possibly strong coupling to selected
environmental degrees of freedom, which may give rise to non-Markovian memory effects (108)
in the open system time evolution (99). An alternative to the description by a non-Markovian
environment consists in incorporating the prominent environmental degrees of freedom (which
cause the structured component of the spectral density) into the system Hamiltonian [then no more
a strictly excitonic Hamiltonian representing one single effective degree of freedom, but “dressed”
by a background, e.g., vibrational coordinate, in close analogy to dressed state descriptions of
light-matter interaction, e.g., in quantum optics (104) and strong field physics (109)], which then
interacts with a Markovian (structure-less) bath (65). Finally, the environment coupling may also
incorporate the irreversible dissipation into a sink attached to a specific network site; this accounts
for the desired delivery of the excitation to the reaction center (110, 111).

Such a quantum dynamical approach is indeed capable of qualitatively reproducing most ex-
perimentally observed features—long-lived coherences among excitonic states, which manifest,
e.g., in a damped beating signal of suitably defined correlation functions, non-Markovian effects
induced by a structured (vibrational) environment, noise-induced transport across a disordered
network with excitonic eigenstates that are localized on a finite subset of the molecular sites,
and coherent transport mediated by vibrational dressing of the excitonic manifold. If excitation
transport units like the FMO compound have been optimized by evolution, e.g., for rapid and
complete excitation transfer, this picture suggests a carefully tuned interplay of coherent, inco-
herent, and dissipative couplings to delocalize excitonic transport, bridge energy gaps, and induce
directionality toward the reaction center. However, this is a conclusion based on the simulated
dynamics generated by an averaged, effective Hamiltonian, whereas individual complexes differ in
their microscopic structures, giving rise to measurably different (91) dynamical evolutions. One
needs to remember then that, in general, the quantum dynamics on disordered systems is not
self-averaging, i.e.,

〈e−i tH 〉disorder �= e−i t〈H 〉disorder , 1.

such that the above optimization argument ultimately hinges on the ambient noise overriding
the Hamiltonian structure to induce efficient diffusive, classical transport (112). This is in line
with the traditional view that, at ambient temperatures, all transport must ultimately be driven
by stochastic activation. Whether classical diffusive transport is compatible with experimentally
observed timescales remains a matter of controversial debate in the literature (113–115).

Another approach to revealing the potential of nontrivial quantum effects to enhance
the functionality of molecular networks à la FMO is statistical rather than dynamical in spirit.
According to the above, the object of interest is the statistical distribution of transport coefficients,
as generated by e−i tH when sampling over the different physical realizations of H as present in

5This observation is also relevant for the discussion on whether coherence effects can play a role in vivo, when the sample is
excited by sunlight, i.e., an incoherent source, rather than by coherent laser radiation (105, 106).
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the given organism. The underlying intuition stems from the quantum transport theory of finite,
disordered systems: Because disorder-induced quantum interference effects as Anderson local-
ization are a consequence of destructive multipath interference upon transmission, characteristic
transport coefficients will exhibit strong fluctuations from realization to realization (because each
realization defines a different interference condition), for a finite sample length (116). Indeed, in
the Anderson case these fluctuations are exponentially large and define an unambiguous hallmark
of quantum interference (117). Consequently, in disordered, finite networks there must be finite
probability for strongly interference-enhanced transmission probabilities. At least on transient
timescales (on which, in a noisy environment, quantum coherence can at best survive), this
picture will be qualitatively unaffected by the ambient noise, which, however, will dominate on
asymptotic timescales (111).

Although dipole-coupled networks as realized by the molecular aggregates we are here inter-
ested in do not give rise to Anderson localization in a strict sense [because this type of inter-site
coupling does not induce exponentially localized eigenstates (78)], they still give rise to multipath
interference, with relative phases that must sensibly depend on the specific conformation of the
network. If we model the network Hamiltonian as

H =
N∑

i �= j=1

vi, j | j 〉〈i |, 2.

where the sum runs over all pairs of distinct N network sites6 and the inter-site dipole-dipole
coupling vi, j is determined by distance and relative dipole orientation, different conformations
will lead to different realizations of the Hamiltonian. Such Hamiltonians (Equation 2) generate
excitonic dynamics on a fully connected random network, where an excitation is destroyed at site
i and created at site j , mediated by the coupling strength vi, j . Energy is transferred across the
network like a quasiparticle.

In contrast to the above quantum dynamical point of view, which considers the average
Hamiltonian structure as the actual structure generating the dynamics, one can now adopt the
somewhat complementary point of view and assume that the complex’s conformations are ran-
domly distributed, e.g., within a sphere where input (where the photon is absorbed) and output
(where the excitation is eventually delivered to the reaction center) sites are fixed at the north and
south poles, respectively. Thus, random positioning of the intermediate chlorophyll sites induces
a random distribution of the coupling matrix elements in Equation 2, through vi, j ∝ r−3

i, j [if the
relative dipole orientations are neglected, which does not change the qualitative picture (58)], and
thus gives rise to conformation-dependent transport coefficients. If the latter are defined by what
has been baptized the “transfer efficiency” (69),

PH = max
t∈[0,TR)

∣∣〈out|e−iHt
∣∣φ(0)

〉∣∣2
,
∣∣φ(0)

〉 = |in〉, 3.

with TR a suitably defined benchmark time (see below), then PH must exhibit strong fluctuations
under random changes of the network conformation, according to the above intuition, and this is
confirmed by numerical simulations as displayed in Figure 1.

What becomes evident from these results is that, whereas the average transfer efficiency over
the entire statistical sample of Hamiltonians (Equation 2) is indeed low (∼5%), as expected from
common sense expectations on the localization properties of excitonic eigenstates on random
structures, there does exist a nonnegligible subset of Hamiltonian realizations that give rise to

6This includes the input and output sites, |in〉 = |1〉 and |out〉 = |N 〉.
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Random realization

1.0

0.8

0.6

0.4

0.2

0

PH

Figure 1
Excitation transfer efficiencies PH , as defined by Equation 3, across random realizations of an N = 7 site
random network (69). The latter is described by Equation 2, with TR = π/20|V |, V = vin,out, input and
output sites located at the north and south pole of a sphere, and the intermediate sites, N = 2, . . . , 6,
randomly distributed within the sphere, to randomize the coupling matrix elements vi, j in Equation 2.
Although the majority of network realizations gives rise to rather moderate transfer efficiencies PH � 5%,
there is a finite subset of realizations that generate significantly more efficient transport, up to values not too
far from unity. Because the dynamics is purely coherent, this is a result of constructive multipath interference
between the different transmission amplitudes connecting input to output.

transfer efficiencies much above average, and in some cases close to unity (somewhere between
50% and 100%). Because, under conditions of strictly unitary transport as here assumed, the
transfer efficiency is essentially given by the spectral decomposition of the unitary generated by H,

|〈out|U (t)|in〉|2 = |
∑

j

〈out|η j 〉〈η j |in〉 exp(−i E j t/�)|2; 4.

such high transfer efficiencies imply the existence of at least one excitonic eigenstate |η j 〉 that
exhibits an appreciable overlap with both |in〉 and |out〉.

2.2. Constraints to Optimize Transport Across Disordered Networks

It now immediately comes to mind to optimize a given random Hamiltonian with respect to the
transfer efficiency, and, indeed, genetic algorithms (118) seeded with any one of the Hamiltonians
that give rise to typical transfer efficiencies in Figure 1 rapidly converge into strictly optimal
Hamiltonians, which quickly depopulate the input site and coherently feed all population into
the output site (see Figure 2) (58). But which are the specific features that render such Hamil-
tonians optimal? When inspecting their spatial structure, no apparent symmetries stand out, and
in this sense the problem is somewhat reminiscent of the optimal pulse shapes generated by ge-
netic algorithms (119) or other optimization strategies (120) for optimal coherent control: Also
there, the generated optimal pulse shapes reveal generally little about which underlying principle
defines the optimal superposition of paths in state space to optimize the given target functional.
However, the time dependence of the different sites’ populations as displayed in Figure 2 exhibits
such sought-for symmetry, with the additional prominent feature that the input and output sites’
populations largely dominate over those of the intermediate sites (which, nonetheless, and impor-
tantly, remain nonnegligible). A sufficient condition to generate such symmetry on the time axis is
the centrosymmetry (121) of the underlying Hamiltonian, i.e., the property that H be symmetric
under mirroring with respect to its center, for some labelling of the network sites. More formally
speaking, this is tantamount to the commutation relation JH = HJ, with the exchange operator
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Figure 2
Populations of input, output, and bulk sites, as a function of time (in units of the benchmark time TR), for an
N = 7 network optimized by a generic algorithm seeded with a typical low-efficiency configuration as
represented by low values of PH in Figure 1 (58). Because the dynamics is purely coherent, the observed
time evolution must be quasi-periodic. Strikingly, the populations are indeed periodic, and (approximately)
mirror-symmetric with respect to a time t∗/2; i.e., |〈i | φ(t)〉|2 � |〈Ji | φ(t∗/2 − t)〉|2. The time evolution of
input and output sites is strongly reminiscent of the dynamics of a wave packet in a double well potential.
The mirror symmetry on the time axis is suggestive of a centrosymmetric structure of the underlying
Hamiltonian, whereas the effective double well dynamics is indicative of a dominant doublet in the spectral
structure, with a weight α (see Equation 6) that is determined by the relative amplitudes of the input and
output site populations as compared with that of the bulk states.

Ji, j = δi,N − j+1, together with |in〉 = J|out〉. A possible measure of centrosymmetry is then given
by

ε = 1
N

min
σ

||H − J−1HJ||, 5.

where minimization is performed over permutations σ of the intermediate sites 2, . . . , N −1, ||.||
denotes the Hilbert-Schmidt-norm, and small values of ε correspond to pronounced centrosym-
metry and vice versa. Equation 5 now allows inspection of the correlation between centrosymmetry
and transfer efficiency, as shown in Figure 3: Indeed, the correlation is unambiguous and shows
that centrosymmetry of H is a design principle that is very favorable to improve the transport
properties of the network. Yet it is not sufficient, as the distribution of transfer efficiencies for
given ε still almost covers the entire interval [0, 1].

Here helps the second observation from above: Not only are the populations of the network’s
sites symmetric on the time axis but also the populations of the input and output sites dominate
over the intermediate sites’ populations, at almost all times (except t � t∗/2; see Figure 2).
Furthermore, if taken alone, the time evolution of input and output site populations is almost a
textbook example of the time evolution of the populations of a double well’s right and left sites
when initiated, e.g., on the left. Therefore, what we are facing in the case of optimal transport
is effective double well dynamics—in chemical jargon, connecting the donor and the acceptor
site—with the intermediate sites simply adjusting the tunneling barrier. Consequently, the
eigenvectors

∣∣η̃ j
〉

of H are expected to exhibit a dominant doublet |±̃〉 with weight

α = |〈±̃|±〉|2 � |〈η̃ j |±〉|2 , ∀η̃ j �= ±̃, 6.

where |±〉 = (|in〉 ± |out〉)/√2. Equation 6 defines a “second design principle,” beyond the above
centrosymmetry.

232 Walschaers et al.



CO07CH10-Buchleitner ARI 10 February 2016 13:49

Optimized
configuration

Relative frequency

–1

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

–2

–3

–4

–5

–6

–7

–8

–9

–2.5 –2.0 –1.5 –0.5–1.0 0

log Є

lo
g 
P

H

1.00.5 1.5 2.0 2.5

Figure 3
Correlation between the network’s centrosymmetry quantified by ε, as defined by Equation 5 (the smaller ε,
the more centrosymmetric the network) and its transfer efficiency PH, as defined by Equation 3, in a double
logarithmic plot. The correlation is unambiguous and confirms that centrosymmetry favors the probability
of efficient excitation transfer. Yet centrosymmetry does not allow for a safe bet. An additional design
principle is needed. The observed correlation is a consequence of quantum interference upon transmission
across the network and fades away under noise (97). The white dot on the top left of the plot represents the
optimized network configuration that generates the time evolution displayed in Figure 2.

GOE: Gaussian
orthogonal ensemble

RMT: random matrix
theory

With this intuition gained from the simulation of excitation transport across random networks
of the type defined in Equation 2, one can now formulate a transport theory for finite-size random
Hamiltonians with a structure constrained by the above design principles (61). To ease a (still rather
nontrivial) analytical treatment, we abandon the geometrical construction of random Hamiltonians
via randomized relative positions ri, j within a sphere and rather employ N ×N Hamiltonians from
the Gaussian orthogonal ensemble (GOE) (122) of random matrix theory (RMT).

For each realization, |in〉 and |out〉, fulfilling the constraint |in〉 = J|out〉, are associated
with those sites i and N − i + 1 that exhibit the weakest direct coupling matrix element
V = mini |H i,N −i+1|. A thus generated random Hamiltonian constrained by centrosymmetry and
the presence of a dominant doublet has the general structure

H =

⎛
⎜⎜⎜⎝

E + V
〈V+∣∣∣∣V+〉
H+

s ub

E − V
〈V−∣∣∣∣V−〉
H−

s ub

⎞
⎟⎟⎟⎠, 7.

with 〈±|H |±〉 = E ± V , and
∣∣V±〉

random vectors with Gaussian distributed entries, which
mediate the coupling between the dominant doublet and the eigenstates of the GOE sub-matrices
H ±

s ub . The Hamiltonian’s specific block-diagonal structure is inherited from its representation in
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the centrosymmetry eigenbasis: Because HJ = JH , these operators share a joint set of eigenstates,
and the degeneracy of J thus induces the block-diagonal structure of H . Phrased differently, the
centrosymmetry introduces parity as a quantum number. Note that the upper block of Equation 7,
indicated by “+”, represents the even parity eigenstates of the network, whereas the block labeled
by “−” depicts the odd parity subspace. The representation in the centrosymmetry (or parity)
eigenbasis is crucial for these structures to emerge.

Because the dominant doublet weight α needs to be close to unity, by its very definition, the
coupling to the random states associated with the randomly coupled intermediate molecular sites
is weak and can be accounted for perturbatively. Despite being weakly coupled, the collective
effect of the intermediate sites amounts to a shift of the doublet states that, if garnished with
the proper sign, can enormously enhance the unperturbed, direct tunnel splitting V, even in the
limit of vanishing direct coupling. Because the tunneling time is just the inverse of the effective
tunneling splitting, this amounts to a potentially strongly accelerated tunneling process, which
possibly allows it to prevail over the timescales of competing loss processes (e.g., recombination
of the excitation, which is not incorporated in the above Hamiltonian), and, thus, to achieve what
quantum opticians dub strong coupling (104). Note that this scenario is an incidence of what
has been conceived as chaos-assisted tunneling (CAT) (123) in the quantum chaos literature: If
direct tunneling between the potential wells of a symmetric double well in one degree of freedom is
strongly suppressed, the nonlinear coupling to a second degree of freedom may generate “chaotic”
eigenstates (124), which sensibly depend on a control parameter and are themselves weakly coupled
to the original tunneling doublet. The resulting effective tunneling rate between the wells can
then be shown to exhibit strong fluctuations under changes of the control parameter, and may be
enhanced by orders of magnitude, through the weak coupling to the chaotic states. In our present
example, the random positioning of the intermediate sites, modeled by GOE matrices, mimics the
chaoticity induced by the coupling to the additional degree of freedom in the CAT scenario, which
is perfectly adequate in view of the, to date, well verified Bohigas-Giannoni-Schmidt conjecture
(125). Indeed, as discussed earlier, statistical scatter of the entries of the effective Hamiltonians
of FMO-like complexes is due to changes of the local environment as defined by the molecular
complexes’ conformational structures, which amounts to nothing else but the coupling to other
degrees of freedom (e.g., of vibrational character). This statistical scatter is in the present statistical
model generated by random sampling over the GOE ensemble.

Given Equation 7, it is possible to generalize the random matrix theory of CAT for our present
purposes and to derive the distribution of excitation transfer times and efficiencies, as well as the
scaling behavior thereof with the size of the network (either at fixed spectral density or at fixed
direct tunneling coupling V ) (61). Here we only illustrate the effect of the above design principles
on the distribution of transfer efficiencies, in Figure 4.

Whereas an unconstrained GOE random network generates a broad distribution of transfer
efficiencies with rather unsatisfactory average performance, centrosymmetry shifts this distribution
to larger average values, though without much narrowing. The dominant doublet requirement,
however, induces a dramatic sharpening of the distribution, which is sharply peaked above PH >

2α−1, thus leading to an almost deterministic transport from input to output site, without precise
knowledge of the positioning of the intermediate sites. Only coarse grained quantities fix this
dynamical behavior: The average level density of the bulk states (essentially controlled by the
packing of the molecular sites), the average coupling strength of input and output sites to the bulk,
and the dominant doublet strength α. Note that, though it may appear obvious that a doublet
structure can guarantee deterministic transport from donor to acceptor, the mechanism described
above allows embedding such a structure into a random network of N sites, without appreciable
change of the relevant properties of the doublet’s eigenvectors while strongly shortening the
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Figure 4
Control of the distribution of transfer efficiencies (with T R = π/2|V |) of N = 8 site random networks
sampled from the Gaussian orthogonal ensemble (GOE) matrices, through additional constraints. Whereas
the unconstrained GOE ensemble gives rise to a broad distribution of transfer efficiencies with its center in
the vicinity of 20%, the centrosymmetry constraint (as quantified by Equation 5) generates the
centrosymmetric GOE (csGOE) ensemble with a still broad distribution of efficiencies, though with a
maximum clearly shifted to appreciable values around 80%. When those centrosymmetric networks are
post-selected, which on top exhibit a dominant doublet with weight α = 0.9 (see Equation 6), the distribution
narrows down dramatically and allows for almost deterministic delivery of the excitation at the output site,
without control of the microscopic positioning of the bulk sites. Only the average density of states in the
bulk, the number of network sites, and the average coupling strength between bulk and input and output
sites suffice to fix the distribution. A random matrix theory (RMT) treatment (61, 96) allows prediction of a
lower bound for the maximum of the dominant doublet distribution, here marked by an arrow.

transfer times. No detailed knowledge on the microscopic hardwiring of the entire structure is
needed, except for the centrosymmetry requirement. In particular, this mechanism allows for a
robust implementation of interference-induced enhancement of the transfer efficiency, because
only the above-mentioned coarse grained parameters must be under control.

Let us stress that the above CAT-inspired transport optimization scheme strictly relies on
constructive multipath quantum interference upon transmission across the network, and it cannot
be reproduced by classically diffusive transport. This can be qualitatively verified by adding, e.g.,
dephasing noise locally at each molecular site. Once the noise is strong enough to induce approx-
imately one incoherent event per coherent transfer time across the sample, the above correlation
between centrosymmetry and transfer efficiency fades away, and the coherent tunneling between
donor and acceptor starts to be corrupted (97). Owing to its strictly coherent character, CAT opti-
mization furthermore only induces rapid oscillations of the excitation between donor and acceptor,
and delivery to the sink—e.g., through connection to a lead—is not incorporated into the model.
However, it can be shown that weak coupling to a sink does not qualitatively alter the dynamics but
simply turns the system’s excitonic eigenstates into resonances with small decay rates, the latter
then feeding the reaction center through the sink (58, 111). This is a well-established scenario in
mesoscopic physics and light-matter interaction, in which weak coupling to a continuum allows
for probing the bound state dynamics without much perturbing it (126). Yet it is currently not well
documented how excitations are fed into and extracted from FMO-like molecular networks. One
may think of slow, directional leakage (occurring over many near-coherent oscillations between
donor and acceptor), which is easy to implement because it only requires weak coupling between,
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STED: stimulated
emission depletion

e.g., the output site and the reaction center, as well as, at least in principle, of precisely timed
extraction by molecular reconformation when the excitation arrives at the output site. The latter
would require a much higher level of orchestration of excitonic and conformational dynamics than
the former, but given the stunningly high degree of specialization of these biological functional
units, it may be premature to fully exclude such a scenario.

2.3. State of Affairs and Directions to Follow

Where do we stand? Beating signals from nonlinear spectroscopy on photosynthetic light-
harvesting units gave us new, intriguing reasons to think anew about the interplay of disorder,
interference, and noise when it comes to describing and controlling quantum transport on finite
size networks embedded in noisy environments. As far as the transport of single excitations is
concerned, it is now clear that constrained disorder allows rather impressive and robust control of
transport efficiencies on short timescales, whereas noise takes over on long timescales and over-
writes the underlying Hamiltonian structures (by mixing the associated eigenstates). If constraints
like the ones suggested above are relevant for the observed transfer efficiencies, then characteristic
traits thereof must emerge from spectroscopic data even upon averaging over different realizations
of the microscopic network structure, and some recent experimental findings could possibly be
interpreted in favor of such a hypothesis, because certain transition frequencies are robust against
disorder averaging in recent spectroscopic data (92). In addition, statistical spread of coherent
transfer timescales has been unambiguously observed in single molecule experiments (91) and,
thus, appears to favor the relevance of the distribution of microscopic Hamiltonian structures
rather than noise enhanced transport on the averaged structure. However, producing large statis-
tical data sets on biological samples is a truly difficult experimental challenge, and a comparison
between theory and experiment is therefore uncertain.7 Furthermore, given the immense variety
of light-harvesting units implemented by nature, it appears at our present state of knowledge
inappropriate to discard any currently proposed mechanism, be it classical, i.e., noise-induced, or
quantum, i.e., interference-induced.

Still, neither one of these models is so far able to come up with distinctive and experimentally
verifiable predictions. On the experimental side, this is due to so far suboptimal control of
initial conditions, the lack of tools for selective intervention [such as controlled, locally induced
nonlinearities (94) or a controlled admixture of noise (127)], and limitations in resolution [note,
however, stimulated emission depletion (STED) (128), even given that its current version requires
light intensities that would damage the samples here under study]. Somewhat worse, on the
theoretical side, it is clear that purely dynamical approaches are unfit for obtaining a qualitative
understanding of the working principles of biological functional units, simply owing to the
underlying complexity and the concomitant statistical variation. Statistical and dynamical tools
will need to be merged. Furthermore, models such as the ones sketched above must be enlarged to
explicitly incorporate those structures that feed the absorbed photon’s energy into the molecular
network, as well as the connection to and the charge separation within the reaction center. This
could define a first model of sufficient complexity to assess, perhaps even quantitatively, one of
the decisive, experimentally accessible figures of merit, the quantum efficiency, i.e., the number of
charges produced per incoming photon. In addition, such modeling would mimic transport and
conversion dynamics on broadly distributed timescales (from femtoseconds to nanoseconds), with
quantum effects certainly confined to the shorter ones. Because much of the excitement about

7But a comparison may be in reach (R. Cogdell, private communication).
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excitation transport in light-harvesting machines stems from the possible functional relevance
of nontrivial quantum effects, this is likely to be the ultimate challenge, as one needs to establish
that the macroscopically observed quantum efficiency sensibly depends on a quantum coherent
feature on microscopic length- and timescales. At our present state of knowledge, quantum
speedup of excitation transfer on the scale of molecular transport complexes like FMO, as, e.g.,
provided by the above CAT mechanism, would on large length- and timescales just define a
distribution of effective transfer rates, with the distribution itself being truly quantum [because it
is brought about by quantum interference, which is somewhat similar to mesoscopic conductance
fluctuations (129) or Ericson fluctuations (130)]. However, it must then be shown that such a
specific (quantum) type of distribution hard wires a functional advantage on large scales.

Finally, there are certain more or less tacit assumptions which await clarification. One relevant
and actually also fundamentally interesting issue is the difference between photons coming from
the Sun as compared with those coming from a laser source in the lab (101, 105, 106, 113, 114, 131).
When analyzing the steady state of an FMO-like structure under solar irradiation it is relatively
straightforward to see that coherences cannot be sustained. However, it is also clear that, if these
molecular complexes process excitations one by one, we are not talking about characterizing a
nonequilibrium steady state, but rather about coherences on transient timescales. Whether such
transient coherences can be induced by the absorption of a single photon remains to be analyzed
in detail (though all the technical tools are available to do so). Another interesting issue, for
the understanding but possibly also for control of the debated transport processes, is the role
of nonlinearities, due, e.g., to double excitations (132). Can such events, even if rare, affect the
transport efficiency, and can deliberately induced double excitations be used as an experimental
diagnostic tool?8

3. MANY-PARTICLE TRANSPORT ON RANDOM NETWORKS

Above, we inspected quantum transport of a single excitation across a finite, disordered network and
analyzed the impact of additional constraints on the statistics of a characteristic transport quantifier.
In closing, we also remarked that one of the open questions to be addressed is the influence of
nonlinearities on the transport properties. One possibility for creating nonlinearities is by feeding
more than one excitation or particle into the network. Indeed, the quantum dynamics of interacting
many-particle systems, on regular or disordered lattices, is a long-standing, multifaceted, and
highly nontrivial research area (135–138). It recently enjoys some renewed interest, not least
owing to the availability of experimentally controlled many-particle systems of diverse natures
(139–145). Depending on the system’s size and on the physical nature of its constituents, different
theoretical toolboxes are employed and blended in the different communities’ jargon. However,
in substance, the relevant unsolved questions remain:

� How do many-particle interactions or nonlinearities affect quantum transport phenomena
(49) on regular as well as on disordered lattices?9

� How do statistically robust, macroscopic observables emerge from the microscopic descrip-
tion of many-particle quantum systems of increasing complexity, in equilibrium and out of
equilibrium? What is, eventually, the specific role of interactions/nonlinearities (48, 52)?

8Compare, e.g., Coulomb and Rydberg blockade effects in mesoscopics (133) and quantum optics (134).
9Note that, on the level of the fundamental equations, nonlinearities in interacting cold matter systems have many similarities
to well-known phenomena in nonlinear optics, and that nonlinearities affect (actually in a similar, maybe universal manner)
quantum transport in a priori very distinct physical settings, from light-matter interaction over condensed, possibly soft matter
and mesoscopic physics to quantum simulations!
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� What is the potential of controlled nonlinearities as a means to control quantum transport
(94), in particular in complex structures?

Rather than follow this line of thought, which arguably merits an independent review, we here
take one step back and acknowledge another feature that automatically comes into play when
injecting more than one particle, which is fundamentally quantum in its very nature—rather than
the perfectly classical notion of interactions—and prevails also in the absence of the latter: the
indistinguishability of identical particles. Even in the absence of particle-particle interaction the
indistinguishability multiplies the alternatives that mediate transport from input to output of
some device or network. Consequently, the amplitudes associated with these alternatives must be
summed up coherently to infer the probability of a certain transmission event. In other words,
now Young’s double slit is no more the only elementary building block, as in the previous section,
because not only do single-particle amplitudes interfere with each other, but so do many-particle
amplitudes. This generates some rather unexpected effects, even in the absence of interactions, for
relatively small particle numbers and on small, regular networks (37, 38, 43, 146–148). Further-
more, the number of interfering alternatives grows rapidly with the particle number and, thus,
defines an interesting incident of indistinguishability-induced “complexity” (148, 149).

3.1. Mapping Many-Particle Input on Many-Particle Output States

Let us consider our transport problem under a slightly different perspective now, in second quan-
tized form. The network can be described by a unitary matrix U that maps input channels i on
output channels o , via

a†
i →

∑
o

Ui,ob †
o , 8.

where the physical nature of the indistinguishable particles (fermions or bosons) is implied through
the (anti-)commutation relations of the creation and annihilation operators a†

i , b †
o and ai , bo ,

respectively. The symmetries and/or irregularities of the network are determined by the complex-
valued entries of U . If we prepare an input state |in〉 by distributing N particles over M ≥ N
input channels, such that at most one particle is injected into a channel (this allows for a direct
comparison of fermionic and bosonic transport), i.e.,

|in〉 = a†
i1 . . . a

†
iN

|
〉 , i j �= ik∀ j �= k, 9.

with |
〉 being the M-channel vacuum state, then, by virtue of Equation 8, the M-channel output
state reads as

|out〉 = U |in〉 =
M∑

o1...o N =1

U i1,o1 b †
o1
. . .U iN ,o N b †

o N
|
〉. 10.

This also defines U , the unitary operator on Fock space, which implements the map (Equation 8).
For the minimal scenario where M = N = 2 and U represents a balanced beam splitter,

a†
1 → (b †

1 + b †
2)/

√
2, a†

2 → (b †
1 − b †

2)/
√

2, 11.

with one photon (thus, bosonic commutation rules) injected into each of the input modes, this
induces the following mapping from input to output state:

|1, 1〉 = a†
1a†

2|
〉 → 1
2

[
(b †

1)2 − b †
1b †

2 + b †
2b †

1 − (b †
2)2

]
= 1

2

[
(b †

1)2 − (b †
2)2

]
= 1

2
(|2, 0〉 − |0, 2〉), 12.

with vanishing probability for the coincident output event |out〉 = |1, 1〉, where one photon is
detected in each output mode. This is a consequence of the destructive interference of the two
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HOM:
Hong-Ou-Mandel or
Shih-Alley effect

MANY-PARTICLE INTERFERENCE WITH/OUT DISTINCTIVE DEGREES
OF FREEDOM

Additional degrees of freedom can be added by structuring the single-particle Hilbert space H = Hmodes ⊗Hinternal,
where Hmodes represents the mode structure of the main text and Hinternal represents all additional degrees of
freedom. To correctly populate Fock space, one defines new, nonorthogonal, creation and annihilation operators:
[ai (φ), a†

j (ψ)] = 〈φ | ψ〉δi j , where |φ〉, |ψ〉 ∈ Hinternal, and i and j label the modes. Because these additional degrees
of freedom are assumed to be untouched by the propagation through the network, applying this to the HOM setup
results in

a†
1(φ) →

[
b †

1(φ) + b †
2(φ)

]
/
√

2 , a†
2(ψ) →

[
b †

1(ψ) − b †
2(ψ)

]
/
√

2. 13.

When performing a measurement, one typically does not consider the internal degrees of freedom, and, therefore,
the probability P1,1 to measure the particles in different modes is given by

P1,1 = 1
4

∑
k,l

∣∣∣∣〈
|b1(ηk)b2(ηl )
[

b †
1(φ) + b †

2(φ)
][

b †
1(ψ) − b †

2(ψ)
]
|
〉

∣∣∣∣
2

= 1
2

(
1 − |〈φ | ψ〉|2

)
, 14.

where {ηi } form a basis of Hinternal. The result for distinguishable particles is recovered whenever |〈φ | ψ〉|2 = 0.
By contrast, when the particles cannot be distinguished by this internal degree of freedom, we obtain the result for
pure, indistinguishable bosons.

two-particle transmission amplitudes a†
1a†

2 → b †
1b †

2 and a†
1a†

2 → b †
2b †

1 in Equation 12, known as
the Hong-Ou-Mandel (HOM) (or Shih-Alley) effect (150, 151), and is the second fundamental
building block that complements Young’s double slit when considering many-particle transport.

Note that the prediction of Equation 12 differs dramatically from the prediction for distin-
guishable (classical) particles, in which the coincident output event would occur with a probability
of 1/2. Also note that, despite this completely different probability distribution for two-particle
output events, the single-mode particle density expectation values 〈b †

o bo 〉 are identical (unity) for
classical particles or bosons. This highlights the fact that many-particle interference effects can-
not be witnessed on the level of single-channel observables but require a correlation measurement
(such as the measurement of the coincident event’s probability) between distinct output ports
(147).10 Consequently, we expect that, for a general unitary U and arbitrary M ≥ N , quantum
transport across the sample represented by U will exhibit dramatic signatures of the particles’ in-
distinguishability, in multichannel correlation functions measured on output. Mutatis mutandis,
as the particles lose their indistinguishability, e.g., by adding an additional degree of freedom
that allows for the distinction of sub-groups of particles (in the language of decoherence theory,
this is tantamount to providing Welcher Weg information, now in the space of many-particle
trajectories), these signatures of many-particle interferences must fade away. This has indeed
been demonstrated experimentally, though with the further subtlety that many-particle inter-
ference signals do in general exhibit a nonmonotonous distinguishability transition if the latter
is controlled by a single continuous parameter (38) (see the sidebar Many-Particle Interference
With/Out Distinctive Degrees of Freedom).

10Nowadays, HOM has become a diagnostic tool in photonics when the indistinguishability of photons needs to be certified.
The vanishing of the coincident event probability is a sensitive—interference-based—test of the precision of the two-photon
state’s preparation.
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Figure 5
Many-particle transport scenario across a random network represented by a unitary random matrix U
sampled over the Haar measure. Particles of variable quantum statistical nature—distinguishable, fermionic,
bosonic—are prepared in the input state |in〉, defined by Equation 9, and injected at the red input sites, with
no more than one particle per site (to allow for a direct comparison of fermionic and bosonic transport
properties). Because the computational overhead may grow exponentially with the number of particles and
the size of the system, an exhaustive characterization of the many-particle output state is in general
prohibitive. For a statistical characterization, two-point correlation functions (Equation 18) among all pairs
of distinct output sites are sampled, to build the C-data set, which then can be characterized by its lower
statistical moments (Equation 19).

3.2. Many-Particle Transport Across Large, Disordered Networks

This brings us back to our overarching theme of disordered networks. When injecting an indis-
tinguishable many-particle state as defined in Equation 9 into a disordered network described by
a unitary U (see Figure 5), we expect strong signatures of many-particle interference on output,
according to our above considerations. At first glance, this is reminiscent of the interference-
induced transmission fluctuations, which we described in the previous Section 2, because the
larger the network, the larger the number of interfering transmission amplitudes. In the present
multi-particle case, however, a severe additional problem kicks in: Not only does the number
of transmission amplitudes proliferate but now the dimension of the space of output states also
increases exponentially with the particle number. Indeed, the computational effort to evaluate
the transition probability between some many-particle input state |in〉 and another many-particle
output state |out〉 amounts to evaluating the following:

� The permanent of a real matrix, for distinguishable particles;
� the determinant of a complex matrix, for fermions; and
� the permanent of a complex matrix, for bosons.

Although efficient algorithms (in the sense of algorithmic complexity theory) are able to efficiently
simulate distinguishable particles and fermions, simulation of the bosonic case is considered to be
computationally hard (149) (see the sidebar Boson Sampling).

In other words, the exhaustive quantitative characterization of |out〉 very quickly exhausts any
computational device, as well as a dedicated experimentalist, and thus renders a statistical treatment
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BOSON SAMPLING

Complexity is a widely used term that is attributed somewhat different—community-dependent—flavors. In the
natural sciences, complexity is associated with chaos, disorder, pattern formation, and the (computational or ex-
perimental) overhead to fully characterize a complex system’s state. In computer sciences, it is the complexity of
algorithms that is assessed. Though rather distinct fields, the physics of complex systems and computational com-
plexity theory recently met in the boson sampling problem: It is shown that sampling from the output probability
distribution, as generated via complex transport (scattering) of noninteracting bosons through a random medium,
is computationally hard; i.e., a full characterization of the output state requires an experimental overhead that
increases exponentially with the system size. Consequently, the efficient simulation of many-boson interference im-
plies a collapse of the polynomial hierarchy to the third level (149), which challenges many well-established aspects
of algorithmic complexity theory. In turn, under the perspective of many-particle transport theory, boson sampling
sheds light on rather fundamental aspects of the quantum statistical implications for many-particle dynamics.

imperative, much as in the case of classical thermodynamics: We must identify statistically robust
signatures of the many-particle transport, which can be read off from experimental observables
with a measurement overhead that scales in a benign way with the size of the problem. Note that
this also defines a somewhat paradigmatic incident of quantum simulation and of the associated
certification problem (152–158): A photonic circuit that implements U and prepares |in〉 can
produce output states that cannot be generated computationally, and, in this sense, simulates a
problem out of reach for computers. However, for the same reason, it is virtually impossible to
certify that the device constructed by the experimentalist does indeed implement U and operates
on |in〉, at least if the only way of certification consisted in the—experimental or computational—
verification of the complete output state.

Depending on the unitary U to be implemented, and on the input state |in〉 to be prepared,
the certification problem can have different concretizations. If U exhibits some symmetries, these
in general (also see our earlier considerations in this review) must manifest themselves in suitably
chosen transport quantifiers. Furthermore, to fully characterize the sample, a single input state
in general does not suffice, owing to the weights 〈E j |in〉 (see Equation 4), where

∣∣E j
〉

are the
eigenvectors of U , which (implicitly) enter Equation 10. Thereby, only that part of the spectrum
of U is probed that has been selected by the local density of states |〈E j |in〉|2.11 Consequently, one
needs to seek certification on the basis of quantities that are obtained by taking averages over
the realization of U (and hence of U ) and/or over |in〉. In the following, we elaborate on the case
of random U taken from the Haar measure (see the sidebar Haar Measure), such as to mimic a
completely unstructured random network, and input states as specified by Equation 9.

We seek to certify the specific dynamical signature of the injected particles’ quantum statistics
by characteristic interference structures in the many-body transmission signal. As we saw above
at the elementary example of the HOM setup, the quantum statistical nature already has a strong
impact on the level of two-point correlation functions. We assume that M and N are significantly

11Only if a “generic” input state, i.e., a state sufficiently different from an eigenstate of U and not too close to the edge of the
spectrum, has an essentially flat local density of states will a single input state suffice (under a suitable average). This condition
is largely equivalent to requiring that U be generated by a random Hamiltonian chosen from a random matrix ensemble or
that an underlying classical phase space exhibit strictly hyperbolic structure. More recently, this property is being rediscussed
under the keyword “eigenstate thermalization” (159).
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HAAR MEASURE

Probability measures occur in many forms and with many structures; some are more natural than others. Perhaps
the most natural of all is the uniform distribution that appoints the same weight to all elements in the set under
consideration. A type of set that is often treated in measure theory and has particular relevance in physics is compact
topological groups. It can be shown (160) that, for any compact topological group G, there exists a unique measure
μ, called the Haar measure, with the following properties:

μ(G) = 1,
μ(O) > 0 for every nonempty open set O ⊂ G,

μ(gM) = μ(Mg) = μ(M) for all g ∈ G and every measurable set M ⊂ G.
As a result of the last property, this measure can be interpreted as the uniform distribution on such groups. In
quantum transport theory and quantum chaos, one often considers the group of all N × N unitary matrices, U (N ),
on which a Haar measure can be constructed. In RMT, the set of unitary matrices equipped with its Haar measure
is also referred to as the circular unitary ensemble (122).

larger than two in our present case and build a statistical data set from two-point correlation
functions evaluated on |out〉. Beyond the intuition gained from HOM, another reason why this
can be expected to bear a clear signature of the interfering particles’ nature (with the interfering
amplitudes defined by the specific choice of U ) is the different order number of interfering many-
particle amplitudes for different particle species, as expressed by the abovementioned, distinct
mathematical structures of the transition probabilities from |in〉 to |out〉: The number of interfer-
ence terms is largest in the bosonic case, and this should, in a sense to be quantified, produce the
“most structured” transmission signal. Our statistical quantity to sample is thus chosen to be the
truncated two-point correlation function

Ci, j = 〈ni n j 〉 − 〈ni 〉〈n j 〉 , i �= j ∈ [1; M ] , ni = b †
i bi , 15.

to provide us with the C-data set. Given M, N, and a realization of U, Equation 18 as well as its
lower statistical moments can be evaluated analytically to finally obtain closed expressions (slightly
bulky, but trivially evaluable rational functions of N and M ) for the normalized mean NM, the
coefficient of variation CV, and the skewness S of the C-data set, defined as

NM = EU (C)M 2

N
,

CV =
√

EU (C2) − EU (C)2

EU (C)
,

S = EU (C3) − 3EU (C)EU (C2) + 2EU (C)3

[
EU (C2) − EU (C)2

]3/2 ,

16.

where EU is the average over the unitary group under the Haar measure. Figure 6 clearly demon-
strates, for N = 6 and M = 13, respectively, that the different particle species are statistically
perfectly well discernable and that the RMT prediction derived from Equation 19 perfectly fits
the numerically generated data.

We thus have succeeded in devising a set of statistical, easily computable and measurable
quantifiers that unambiguously certify the transmitted particle species—through the characteristic
features of many-particle interference signals generated by random unitaries (152). When the
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Figure 6
Statistical certification of the transmitted particles’ specific scattering dynamics, as determined by the
scattering matrix U and the particles’ quantum statistical nature. Quantifiers are the normalized mean, NM,
and the coefficient of variation, CV, of the C-data set generated by sampling the correlation function Ci, j
(see Equation 18), over all output ports i �= j of the network (see Figure 5), for N = 3 particles fed into an
array of M = 13 input ports. The colored scattered data points result from direct numerical simulation for
one single random unitary and variations of the input ports populated by the N-particle input state
(Equation 9). Mean values thereof are indicated by the open circles, which coincide with the analytical
random matrix theory (RMT) prediction (152) (given by rather bulky rational expressions in N and M ).
This latter agreement implies yet another confirmation of the Bohigas-Giannoni-Schmidt conjecture.

underlying dynamics exhibits additional structure or symmetries, we expect certification to be
eased (158), and thus we have here sketched out how to deal with some sort of worst case scenario.
Blending structural and disorder features will be the next natural step to further refining our
understanding of the dynamical consequences of indistinguishability.

SUMMARY POINTS

1. Quantum transport on finite disordered networks is dominated by strong, interference-
induced fluctuations.

2. The statistics of characteristic transport coefficients can be controlled by imposing coarse
grained constraints while maintaining disorder on the microscopic level. By construction,
this defines a robust, statistical control strategy for transport on disordered networks.

3. The dynamics of multiple excitations on a network gives rise to characteristic many-
body interference effects (to be distinguished from simple bunching or anti-bunching!),
indicative of the quantum statistical nature of the interfering particles, on the level of
multi-point correlation functions on output.

4. A statistical analysis of the characteristic interference structures imprinted on low-order
correlation functions evaluated on the many-particle output state allows the unambigu-
ous distinction between fermionic, bosonic, and distinguishable particle dynamics, with
moderate experimental and computational overhead.
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FUTURE ISSUES

1. Embedding finite disordered networks into superstructures as characteristic, e.g., of the
photosynthetic apparatus of algae and plants or also of organic PV devices, will allow
assessment of the potential advantage of quantum transport on microscopic scales for the
overall functionality.

2. Experimental tools must be developed that allow us to select and possibly knock-out
specific coherent transition amplitudes.

3. Observables must be defined that distinguish bunching effects from bona fide bosonic
many-particle interference contributions.

4. Partial distinguishability (161, 162) of the particles can be accounted for by introducing an
additional continuous degree of freedom which may convey Welcher Weg information
on the level of many-particle transition amplitudes. This will allow incorporation of
unavoidable experimental imperfections for boson sampling certification schemes, but
also opens novel perspectives for the decoherence theory of many-particle quantum
systems.
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114. Jesenko S, Žnidarič M. 2013. J. Chem. Phys. 138:174103
115. Wilkins DM, Dattani NS. 2015. J. Chem. Theory Comput. 11(7):3411–19
116. Kramer B, MacKinnon A. 1993. Rep. Prog. Phys. 56:1469
117. Pichard JL, Zanon N, Imry Y, Douglas Stone A. 1990. J. Phys. 51:587–609
118. Hansen N. 2006. In Towards a New Evolutionary Computation, ed. JA Lozano, P Larrañaga, I Inza,
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