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Abstract

At the core of equilibrium statistical mechanics lies the notion of sta-
tistical ensembles: a collection of microstates, each occurring with
a given a priori probability that depends on only a few macroscopic
parameters, such as temperature, pressure, volume, and energy. In this
review, we discuss recent advances in establishing statistical ensem-
bles for athermal materials. The broad class of granular and particu-
late materials is immune to the effects of thermal fluctuations because
the constituents are macroscopic. In addition, interactions between
grains are frictional and dissipative, which invalidates the fundamen-
tal postulates of equilibrium statistical mechanics. However, granular
materials exhibit distributions of microscopic quantities that are re-
producible and often depend on only a few macroscopic parameters.
We explore the history of statistical ensemble ideas in the context of
granular materials, clarify the nature of such ensembles and their
foundational principles, highlight advances in testing key ideas, and
discuss applications of ensembles to analyze the collective behavior
of granular materials.
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1. INTRODUCTION

Athermal, cohesionless particulate materials, such as dry grains and dense, non-Brownian sus-
pensions, exhibit features that are generic to many nonergodic, disordered (glassy) systems (1, 2).
However, these granular materials are nonergodic in the extreme sense, as they stay in a single
configuration unless driven externally. Exploration of configuration space is completely con-
trolled by the driving protocol, and because cohesive forces are absent, fluid or solid-like behavior
emerges purely as a response to external driving (3, 4). Thus, these systems are the epitome of
athermal condensed matter. The objective of this article is to describe recent developments in
constructing statistical ensembles for such athermal systems. We examine the history of statistical
ensembles for granular materials, which began with the ideas of Sam Edwards (5), describe recent
developments in theory and experiments, and explore future applications.

Although thermal fluctuations are absent, granular systems nonetheless exhibit large fluctu-
ations (6). This is exemplified by the exponential distribution of contact forces in jammed (solid-
like) granular assemblies (7, 8) andby large, intermittent stress fluctuations in quasistatic flows (9).
The ubiquitous presence of fluctuations with well-defined distributions that seem to depend on
a handful of macroscopic parameters (6) suggests that statistical ensembles could prove to be an
important tool for predicting the emergent properties of granular materials. There are two aspects
that need to be elucidated: (a) the establishment of the ensemble and (b) how to use the ensemble to
calculate and predict the emergent behavior of granular materials. After introducing the history of
athermal ensembles in Section 1, we discuss the special role of constraints in the enforcement of
mechanical equilibrium and how this differs from thermal ensembles. In Section 2, we review the
existing experimental and numerical tests of the ensembles, and in Section 3, we describe how to
use the distributions of microstates in an ensemble to calculate collective properties. These same
techniques can be extended to systems with slow dynamics, and examples of this are provided in
Section 4. Finally, we close with a summary of open questions in the field (Section 5).

1.1. History

Twenty-five years ago, Sam Edwards and coworkers (5) considered the problem of what sets the
packing density of granular materials under simple operations such as shaking, stirring, or
compression. They proposed a statistical ensemble approach, which was formulated along lines
paralleling that of equilibrium statistical mechanics and thermodynamics. In equilibrium statistical
mechanics, conservation of energy (First Law) implies that the total energy E of an isolated system
cannot fluctuate. The set ofmicrostates (we designate amicrostate as n) with a given total energyE,
calculated from the positions andmomenta of all particles, form themicrocanonical ensemble. The
macroscopic, extensive variable E characterizes the ensemble, and all microstates with this energy
are assumed to occur with equal probability. Different physical systems are distinguished by the
density of states VBðEÞ ¼

P
ndðE� EnÞ. Isolated systems are important only for establishing the

foundations of thermodynamics, and the canonical ensemble describing a system in contact with
a heat bath is characterized by an intensive macroscopic variable: the temperature 1

T ¼ ∂SðEÞ
∂E , where

S(E) (Table 1) is the entropy of the isolated system. It is useful to summarize the postulates used to
arrive at the framework described above. In addition to energy conservation, which is dynamical in
origin, the fundamental assumption underlying statistical mechanics is the equiprobability of
microstates with a given energy, which also follows from the maximization of entropy (10).

Edwards and collaborators set about formulating an analogous theory of granular materials.
Because of frictional forces and dissipation, energy is not conserved in granular systems; it is
therefore not an appropriate state variable. There are two aspects to the Edwards formulation.
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One that is often forgotten is the assertion that the dynamics of slowly driven granular systems is
controlled by the statistical properties of blocked states (11). For infinitely rigid grains, these
blocked microstates are composed of grains in mechanical equilibrium such that grains cannot be
moved without causing a finite overlap. In the modern parlance, these would be called jammed
states (12, 13). Motivated by the central role that the packing density plays in determining the
nature of jammed states, Edwards proposed to replace the Hamiltonian or energy function by
a volume function and defined the analogous density of states:VðVÞ ¼PndðV � VnÞ, where n is
now restricted to jammed states and is defined by just the positions of grains. Following the steps of
the development of thermodynamics, the Edwards entropy is then defined as S[ l lnV(V), which
yields a canonical ensemble characterized by a corresponding temperature-like variable X:

1
X

¼ ∂SðVÞ
∂V

, 1:

whichEdwards named compactivity. Just as theBoltzmann constantkB gives the ordinary entropy
the correct units of J/K, the constant l sets the units of compactivity relative to volume. Similarly,
one canwrite quantities analogous to the specific heat, theBoltzmanndistribution, etc. A summary
of these ordinary statistical mechanical quantities, and their translations into the Edwards en-
semble, is given in Table 1. Although the Edwards ensemble looks exactly like the ensembles of
equilibrium statistical mechanics, it is different in one very important way: It is constrained to
consider only those states that are blocked or jammed. Any calculation involving sums over states
such as a partition function has to explicitly impose this constraint.

The name compactivity was chosen because it describes how far a system is from its densest
possible state, beyond which no further compaction is possible. The extremal values of X are
chosen to give a sensible physical interpretation of the limits of validity of the ensemble. The lowest
possible compactivity (X ¼ 0) has come to be identified with random close packing, the densest
packing for which no crystalline order is present (14–16). The upper limit, at X ¼1, is typically
identifiedwith random loose packing (17, 18), the loosest packing forwhichmechanical stability is
still present. Beyond these values, the ensemble is no longer defined.

Soon after the introduction of the Edwards ensemble, it was realized that contact forces needed
to be incorporated into the definition of jammedmicrostates. Each grain must locally satisfy force
and torque balance, and in the presence of friction these forces cannot be deduced just from
positions of grains. There was also a heightened awareness (7, 9) of the significance of earlier

Table 1 Similar quantities from ordinary statistical mechanics and the original and generalized Edwards
ensemble. In practice,l is often taken to have a value of unity with units of 1/volume (1/stress for the generalized
ensemble), for simplicity. Note that the angoricity, unlike the other temperatures, is defined without a reciprocal.

Boltzmann Edwards Generalized Edwards

Conserved quantity Energy, E Volume, V Force-moment tensor, Ŝ

Number of valid configurations VB(E) V(V) V
�
Ŝ
�

Entropy S ¼ kB ln VB S ¼ l ln V S ¼ l ln V

Equilibrating quantity Temperature Compactivity Angoricity tensor

1
T
¼ ∂SðEÞ

∂E
1
X

¼ ∂SðVÞ
∂V

aml ¼ ∂SðSmlÞ
∂Sml

Distribution e�
E

kBT e�
V
X e�â:Ŝ
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observations (19, 20) of what have come to be known as force chains. These are roughly colinear
chains of particles through which larger-than-average stresses are transmitted. These consid-
erations led to the proposal of a generalized ensemble (21–23), with stress as an additional
governing state variable; the corresponding temperature-like variable was named angoricity by
Edwards, from the modern Greek word a�gxo§, meaning stress. There is a growing consensus that
the force-moment tensor Ŝ is the extensive variable most closely analogous to energy in equi-
librium statistical mechanics:

Ŝ ¼
X
m,n

dmnfmn, 2:

where dmn is the vector pointing from the center of particle m to the interparticle contact with its
neighbor particle n, fmn is the interparticle contact force, and the sum is over all pairs of grains.
These quantities are illustrated in Figure 1, along with sample images illustrating how they are
measured in experiments. Unlike the volumeV, Ŝ depends on both the positions of grains and their
interparticle contact forces. Because the force moment is a tensorial quantity, the angoricity is
a tensor as well:

aml [
∂S
�
Ŝ
�

∂Sml
. 3:

As the m, l component of the force-moment tensor goes to zero (corresponding to a loss of
rigidity), we expect the corresponding angoricity to tend to infinity. Since the original proposal,
a number of different formulations for the stress ensemble have been published (22–27).

1.2. Athermal Versus Thermal Ensembles

The volume and stress ensembles described in the previous section have come to be collectively
known as generalized Edwards ensembles (28) and are distinct from ordinary statistical me-
chanical ensembles in important ways. First, they are completely nonergodic. Because there is no
temporal evolution, there is no equivalence of time averages and ensemble averages. This pe-
culiarity arises because granular materials are athermal: At room temperature, the thermal energy

a b c
Particle nParticle n

Particle mParticle m

fmnfmn

dmn

Figure 1

Image from experiments on 2D photoelastic disks. (a) Particles in unpolarized and (b) polarized light.
From panel b, it is possible to extract vector contact force f mn ¼ �f nm at each interparticle contact,
shown schematically as white arrows. (c) Schematic of calculation of force-moment tensor Ŝ according to
Equation 2, using fmn and the vector dmn pointing from the center of particle m to the interparticle
contact with particle n. Dashed lines connect the center of particle m with the center of each particle it is
in contact with. Adapted from Reference 69.
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is many orders of magnitude lower than required tomove one grain over another against the force
of gravity. For example, a millimeter-sized grain of sand would require mgd � 10�5 J to move
upward by a distance equivalent to its own diameter against the force of gravity. At room
temperature (300 K), this corresponds to� 1015 kBT and therefore thermal motion is statistically
negligible. As such, all granular systems require external driving to explore new configurations,
and the Edwards ensemble (or its variants) can be interpreted only as an ensemble of microstates
created by independent realizations with certainmacroscopic parameters held fixed. Another type
of granular ensemble is that of subsystems within a single thermodynamically large system. In this
context, thermalization refers to the establishment of equal angoricity and compactivity in these
different subsystems. This granular thermalization is distinct from the establishment of effective
temperatures in glassy systems (29, 30),where the effective temperatures encode the fluctuations of
the slowly relaxing modes and are dynamical in nature.

Although the assumption of equiprobability of all valid microstates is well established for
equilibrium statistical mechanics, the situation is less clear for the Edwards ensembles. In fact, tests
of the hypothesis for jammed states in experiments, simulations, and exactly solvable models
reveal that equiprobability is not universally valid but does hold under some conditions (31–36).
In particular, Gao et al. (37) used closely matched simulations and experiments to generate
millions of statistically independent packings of seven disk-shaped particles. By enumerating all
unique configurations, they observed that the same finite number of microstates appeared in
both simulations and experiments, and that the relative frequencies of these microstates were
highly nonuniform (they differ by factors of up to amillion). However, equiprobability is not essential
for the definition of either compactivity (38) or angoricity (25). Furthermore, it has recently been
shown (39) that the Edwards entropy can satisfy extensivity even without equiprobability and that
a factor of 1/N! is necessary to avoid an athermal version of the Gibbs paradox.

If configurations are not equiprobable, one can generalize the definition of the density of states
in Table 1, for example V(V), to include the weights of microstates: VðVÞ ¼Pnvn dðV � VnÞ.
Themuchweaker condition of factorability,V(V1þV2)¼V(V1)V(V2), is necessary and sufficient
for defining angoricity and compactivity (40–42). An important point to note is that, unlikeVB(E),
V(V) is not determined by any Hamiltonian. A pragmatic perspective is to assert that different
protocols lead to different microstate weights and therefore to different V(V). The ensemble
approach is applicable, but each protocol would be like choosing a newHamiltonian that defines
the density of states.

1.3. Conservation Principles

The objective of a statistical ensemble framework is to predict the probability of occurrence of
a microscopic configuration, given a set of macroscopic constraints. In equilibrium statistical
mechanics, there are naturalmacroscopic constraints that emerge from conservation laws: energy,
volume, and number of particles. In jammed, athermal systems, there are similarly a natural set of
macroscopic variables and their associated conservation principles.

Anymicroscopic jammed state ofN grains is completely specified by the positions of the grains
and the forces (including frictional forces) at intergrain contacts: n ¼ frm, fmng, where rm is the
position of the mth grain and fmn is the contact force between grains m and n. As in thermal
systems, and in other jammed or glassy systems, a granular packing can exist in many different
microscopic states for a fixed set of macroscopic variables such as volume or applied stress. In
addition, there is a microscopic indeterminacy (1) arising from the Coulomb condition for static
friction, which imposes an inequality constraint: jfTj � mjfNj such that the magnitude of the
tangential force f T cannot exceed the static friction coefficient m times the magnitude of the
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normal force fN . Thus, there is a range of tangential forces that are allowed for any microscopic
grain configuration. What, then, is a natural microcanonical ensemble for jammed states?

To address this question, we start by examining the constraints that must be satisfied by
jammed (blocked) microstates. For infinitely rigid grains, there is a strict constraint on the frmg
because grains cannot overlap. The jammed states in the original Edwards ensemble are then all of
the just-touching configurations, and the volume occupied byN grains is amacroscopic invariant:
It is globally conserved. For grains that are not infinitely rigid, the nonoverlapping constraint
vanishes, and it is no longer clearwhat volume is conserved.Of course, one can fix the total volume
V occupied byN grains through the nominal packing fraction, but this is not a consequence of any
constraints on jammed states. The constraints that remain are those of mechanical equilibrium,
which involve the contact forces ffmng. These constraints lead to a robust conservation law
involving the force-moment tensor (24, 43, 44) of the granular packing, Ŝ, defined in Equation 2,
and related to the Cauchy stress tensor ŝ (45):

Ŝ ¼ Vŝ. 4:

The conservation of the force-moment tensor arises purely from local constraints of force and
torque balance. It holds for any material that is in mechanical equilibrium, regardless of di-
mensionality and microscopic details. Here, we demonstrate this conservation principle in
ageneric two-dimensional (2D)T¼ 0 solid using a continuum stress field, but a formulation that
explicitly incorporates the discreteness of the granular assembly can also be constructed (25, 46).

We consider a 2D T ¼ 0 solid under periodic boundary conditions (PBCs). Mechanical
equilibrium requires that the continuum stress field ŝðrÞ obeys force and torque balance every-
where. In the absence of body forces, the continuum stress field satisfies

= × ŝðrÞ ¼ 0 5:

due to force balance. Local torque balance also requires sml ¼ slm. There is an additional con-
straint of smm > 0 if the system of interest contains noncohesive interactions (e.g., dry grains), for
which tensile forces are not possible.

For a 2D system under PBCs (equivalent to the surface of a torus), there are three classes of
topologically distinct loops, labeled A, B, and C in Figure 2. For any region enclosed by a to-
pologically trivial (contractible) loop (type C), the total force acting on it can be calculated by
applying the divergence theorem to the stress fieldI

C
dS ŝ × n̂ ¼

Z
dV = × ŝ ¼ 0, 6:

yielding the same result regardless of loop shape, which simply reflects force balance. There are
also two classes of noncontractible loops: loops labeled A that wrap around the torus in the x
direction and those labeledB thatwrap around in the ydirection.Applying the divergence theorem
leads to two vector quantities,

Fx ¼
I
A
dS ŝ × n̂

and

Fy ¼
I
B
dS ŝ × n̂, 7:
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that do not depend on the particular paths loops A and B take. These vectors are topological
invariants in the sense that all loops belonging to the same topological class,A orB, have the same
value of Fx or Fy, respectively. For a granular system, which is inherently discrete, the loops are
not, in the strict sense, continuously deformable, given that they have to pass through force-
bearing contacts. Although the deformation of loops must obey the constraints of the underlying
contact network, this does not change the topological invariance of ðFx,FyÞ.

For each dimension (here, there are two: x, y), there is an invariant vector Fi, which represents
how much force is propagated through the material. These F vectors are equivalent to the sum of
Cauchy traction vectors on a surface in continuum mechanics (47) and are also a formal gen-
eralization of the concept of Cartesian load proposed in Reference 26. The F vectors are related to
the force-moment tensor, which is defined for discrete systems in Equation 2 and in continuum

as Ŝ ¼
Z

dV ŝðrÞ via

Ŝ ¼
�
Lx 0
0 Ly

��
Fx × x̂ Fx × ŷ
Fy × x̂ Fy × ŷ

�
. 8:

The extensive quantity Ŝ has been used to construct the stress ensemble framework. However,
from the preceding discussion, the natural conserved variables appear to be ðFx,FyÞ (28), which
scale linearly with system size. This feature is reminiscent of classical lattice models, which have
ground-state degeneracy that leads to finite entropy. In these models, the subextensivity of the
conserved quantity has nontrivial implications for phase transitions (48). It would be interesting to
explore a theory of grains based on the conservation of ðFx,FyÞ.

A natural microcanonical ensemble for jammed states of grains is one with a fixed value of the
force-moment tensor, which plays the role of energy in equilibrium statistical mechanics. The
force-moment tensor Ŝ is an extensive quantity (i.e., one that scales with system size), and one can
define the generalized density of states:

B

AA

CC

AA

BB

CC

Figure 2

Illustration of invariants. (Left panel) The physical system, a two-dimensional granular solid of sizeL3L, is outlinedby the black box. The
lines A and B represent the two distinct classes of noncontractible loops in the system, and C represents a trivial loop. (Right panel)
Representation of the system on the surface of a torus. Loops A and B are noncontractible and correspond to the same labeling as
in the left panel. To change Fx (or Fy), a change has to be made on the noncontractible loop B (or A).
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V
�
Ŝ
�
¼
X
n

vn d
�
Ŝn � Ŝ

�
.

The constraints on the microstates n are that (a) forces and torques are balanced on every grain,
(b) the Coulomb condition for static friction is satisfied, and (c) all forces are positive. If one
now assumes factorization,V

�
Ŝ1 þ Ŝ2

� ¼ V
�
Ŝ1
�
V
�
Ŝ2
�
, there is an exact analog of temperature,

which is the tensorial angoricity â:

â
�
Ŝ
�
¼ ∂ lnV

�
Ŝ
�

∂Ŝ
, 9:

as was specified by Equation 3.
The preceding derivation is easily generalized to three dimensions. Contractible loops become

closed volumes, and the three types of noncontractible surfaces correspond to the three invariants
ðFx,Fy,FzÞ; see also Section 3.2.

1.4. Microcanonical and Canonical Formulations

The original Edwards ensemble can be generalized to one in which V and Ŝ define a micro-
canonical ensemble, but with no assumption of equiprobability. This generalized Edwards en-
semble has much in common with statistical frameworks developed for glassy systems (1).
Collective properties in both are determined by the complexity of the landscape of metastable
states. For example, complexity in spin glasses is measured by the logarithm of the number of
local free-energy minima that have a given free-energy density (1, 49). An analogous definition
applies to the potential energy landscape of supercooled liquids (50, 51). For granular systems,
complexity is measured by the generalized entropyVðV, ŜÞ, with the caveat that themicrostates in
the Edwards ensemble must satisfy the constraints of mechanical equilibrium at zero temperature.

The microcanonical formulation of the generalized Edwards ensemble, which does not assume
equiprobability, still assumes that the entropy is extensive (factorization ofV). Recent numerical
simulations establish extensivity in the absence of equiprobability (39). What the microcanonical
formulation implies is the following: In a large system of grains that are jammed in a global volume
Vg with a global force-moment tensor Ŝg, the probability of finding a microstate within a sub-
system is given by the Boltzmann-like distribution

P
�
n ¼ frm, fmng

� ¼ 1
Z
exp

 
� V

�frmg�
X

!
exp½� â : Ŝ

�frm, fmng
��, 10:

whereX and âdepend only onVg and Ŝg. This is a remarkably strong constraint on the probability
of microstates in a nonequilibrium system. In general, this probability can depend on the complete
history of preparation (the protocol) and any number of mesoscopic and macroscopic variables.
Rigorous tests of Equation 10 are needed to establish the framework for both the microcanonical
and canonical ensembles. In the next section, we discuss such tests for both experimental and
numerical systems.

Defining the ensemble for static grains is the conceptually difficult part. Calculating the par-
tition function is technically difficult because of the constraints that one still needs to take into
account. An important point to make here is that establishment of a Boltzmann-like distribution
does not imply that the distribution of individual grain volumes or individual contact forces is
exponential (7). This would be true only if granular materials were like ideal gases with no
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correlations. As we discuss in Section 3, granular materials are actually strongly interacting
systems in which the interactions arise from constraints rather than interaction potentials.

2. TESTING THE ENSEMBLES

In spite of thought experiments proposed by theorists (1, 11), experimentalists were slow to
warm to performing laboratory tests of the applicability and validity of the ideas put forth by
Edwards. The earliest approach that gained tractionwas to consider analogs of the specific heat
(52). A well-known result of ordinary statistical mechanics is that the energy fluctuations of
a system around its mean value E are related in a simple way to its specific heat at constant

volume, via the relation cV ¼
 
∂E
∂T

!
V

¼ Æ�E� E
�2æ

kBT2 . Similarly, there is an analogous quantity

c ¼ ∂V
∂X

¼ Æ�V � V
�2æ

X2 for the Edwards ensemble that allowsmeasurement of relative changes in

compactivity via observations of the volume fluctuations:

Z V2

V1

dV

Æ�V � V
�2æ ¼

Z X2

X1

dX
X2 ¼ 1

X1
� 1
X2

. 11:

Here, the Boltzmann-like l factor has been dropped for simplicity. This relation was first used
to measure the compactivity of a granular material subject to tapping (52) and later on static
packings prepared through varying degrees of fluidization (53). A disadvantage of this volume
fluctuation method is that it integrates from a state with known 1/X1; typically, this is taken to
be random loose packing, where XRLP ¼ 1. However, it does provide a way to measure the
compactivity using only bulk measurements.

As a by-product, the measurements of the volume fluctuations themselves provide a probe of
the Edwards ensemble in the sense that a larger number of configurations corresponds to a larger

Æ�V � V
�2æ. This susceptibility canbe informative in its own right, as a hallmarkof the approach to

a critical point. An observation of a minimum in the fluctuations as a function of packing density
(53) has since been associated with the dilatancy transition (54, 55). Changes in such fluctuations
have been observed in a variety of both experiments and simulations of static packings (56–60),
but also in some systems with dynamics (61, 62). This last case is a test of Edwards’s original idea
that ensembles could describe driven granular systems and therefore hints at the validity of this
aspect of the Edwards ensemble beyond strictly jammed states.

A second technique for measuring compactivity was proposed by Dean& Lefèvre (63). They
observed that although the density of states V(V) and the partition function Z(X) may be
unknown for a given granular ensemble, V(V) is identical for the same system under two
different conditions. For any particular macroscopic volume V, the probability P of observing
that volume is given by

PðVÞ ¼ VðVÞ
ZðXÞ e

�V
X. 12:

If one has measurements of P(V) for the same system under two different preparations (enume-
rated 1, 2), the ratio of those two histograms is
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P1ðVÞ
P2ðVÞ ¼

ZðX2Þ
ZðX1Þ

e

�
1
X2
� 1

X1

�
V
. 13:

Therefore, by taking the logarithm of the ratio and fitting the data to determine the slope 1
X2

� 1
X1
,

it is possible to measure changes in the compactivity. If one has a reference point (again, com-
monlyXRLP¼1), then this can also be used as an absolutemeasurement. This technique was first
realized by McNamara et al. (38), who measured these quantities in both simulations and
experiments using local Voronoi volumes calculated from tomographs of an assembly of milli-
metric glass spheres. Because the histograms were nearly Gaussian, it was difficult to make
quantitative conclusions beyond a verification that the technique worked: Values of Xmeasured
using either Equation 11 or 13 were in approximate agreement. This same overlapping histogram
methodwas used on disk-shaped particles in a quasi-2D packing (64), where it was observed to be
properly intensive for assemblies of at least 200 particles (68). Note that this technique for
measuring compactivity does not rely on equiprobability and is insensitive to it because the factor
V(V) in Equation 13 cancels out whatever its form.

Threeothermethodsof calculatingX are available for evaluation. First, using the histograms of
local (Voronoi) volumes, it is possible to measure X directly by fitting a gamma distribution and
considering the ratio of the mean free volume to the shape factor of the gamma distribution (65).
Second, an equation of state relating the structural degrees of freedom and the number of in-
dependent boundary forces provides a fourthmeans ofmeasuringX for isostatic packings (66, 67).
A recent comparison of these two methods shows that they are not necessarily in quantitative
agreement with the techniques described by Equation 11 and 13 (68). Finally, it is possible,
through simulations, to both count particle configurations and to take the limitT→ 0 in a thermal
system.Using suchmethods on a simulation of slowly sheared particles, the thermalTeff (measured
via the diffusivity and the fluctuation-dissipation theorem) was found to compare favorably with
the compactivity (36).

Although these experiments have demonstrated the utility of the Edwards formulation as
a description of a system, this was merely a confirmation that compactivity was measurable, not
that it represented a truly temperature-like quantity. A more stringent test, as for ordinary ther-
modynamics, lies with the Zeroth Law of thermodynamics. A minimal expectation of a temper-
ature-like quantity is that it have the ability to equilibrate between a subsystem and a bath. In
experiments on a low-friction subsystem within a high-friction bath, the desired result would be
for the compactivity to take on the same value in both. However, for a system of 2D disks floated
on a frictionless surface and biaxially compacted, it was observed that althoughXmeasured using
either Equation 11 or 13 matched for either the subsystem or for the bath, the two values sys-
tematically failed to agree between the subsystem and the bath (69). This represents a significant
failure of the volume ensemble and compactivity.

Tests of the stress ensemble have a shorter history, but the angoricity appears to be more
promising as a valid temperature-like quantity. Because it is a tensor (see Equation 3), it is helpful
to calculate it by considering shear (St) and compressional (Sp) components separately. Each of
these components gives rise to its own angoricity, at and ap, respectively. For example, the shear
component (in a 2D system) is St ¼ (S1 � S2)/2 and the compressional part is Sp ¼ (S1 þ S2)/2,
whereof S1 and S2 are the eigenvalues of the force-moment tensor Ŝ. The trace of the force-
moment tensor has been commonly referred to as G[ 2Sp ¼ Tr Ŝ.

The stress ensemble was first tested using numerically generated packings of frictionless, de-
formable particles (24). As shown in Figure 3a, histograms of G obtained from clusters of grains
within a packing depend strongly on the density of the packing f (proportional to 1/V for a fixed
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number of particles). Using the method outlined in Equation 12 and 13, it is possible to (a) test
whether the distribution of G within a packing has a Boltzmann-like form and (b) extract the
differences in angoricity between different packings. This led to the identification of an equation of
state:

101

103

P
(Γ

)

0
0

1

m = 3
m = 4
m = 6
m = 8
m = 12
m = 16
m = 24
m = 32

1/
α 

× 
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–3
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α 

× 
10

–3

0 1 2 3 4
0

1

2
Bath (high friction)
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Fits to equation 14
Fluctuation dissipation theorem Shear
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1 21 2
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c

Γ × 10–3

Γ × 10–3

Γ × 10–3

0 3

Figure 3

(a) Histograms of the probability of measuring pressure G for subsystems of size m ¼ 8 within simulations of a frictionless, deformable
granular material containing 4,096 particles (24). Packing fraction f increases from left to right. The ratios of these histograms
provide ameasurement of the angoricity a, using the technique described in Equation 13. (b)Measured values of the reciprocal angoricity
1/a as a function of G in the same simulations, showing a slope of 0.49 (solid line), which is consistent with theoretical predictions
(25). Results are independent of subsystem sizem (colored symbols). (c) Equilibration of angoricity in a subsystemof low-friction particles
(diamonds) within a high-friction bath (circles), in repeated realizations of a quasi-2D packing (69). The upper data correspond
to at (shear), and the lower data correspond to ap (compression). The solid lines are fits to Equation 14, with slopes of 0.45
and 0.15, respectively. Dashed lines are for values calculated using the fluctuation dissipation theorem (analogous to Equation 11)
and are found to be in agreement. Adapted from References 24 and 69.
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This equationof statewas found tobe independent of cluster size (Figure 3b) for clusters more than
an order of magnitude smaller than was necessary for compactivity measurements. The slope of
the observed line is 1/2, which is in agreement with the value predicted from a configurational
entropy estimate of 2/ziso (25).

A similar techniquewas applied to packings in experiments (70), where the presence of friction
requires considering the full tensorial angoricity. A linear equation of state was observed there as
well. These linear equations of state indicate that the configurational entropy of the packings arises
via an ideal gas of noninteracting local stresses. A field theoretical model (25) of the spatial stress
fluctuationswas developed based on numerical data for frictionless disks, and this has been used to
predict the stress fluctuations of numerical and experimental packings under pure shear (71).

The generalized Edwards ensemble, combining volume and stress as independent factors, was
tested in simulations of three-dimensional (3D) frictionless grains (72). Thermalization was
achieved using independently generated configurations, and results from the ensemblewere found
to be in agreement with predictions from jamming. Experiments in 3D remain hampered by a lack
of techniques for measuring vector contact forces in the interior of granular materials. No
experiments or simulations have yet addressed the Edwards ensemble as a joint distribution
of volumes and forces, as has been proposed by Blumenfeld & Jordan (67). In addition, little is
known about how preparation protocol, particle shape, or particle polydispersity affect the
ensembles.

Unlike for compactivity, there has been success in applying angoricity in canonical situations
as well as microcanonical ones. Figure 3c shows results from the same experiment (69) in
which compactivity failed to equilibrate. A subsystem of low-friction (m < 0.1) particles was
placed within a bath of higher friction (m ¼ 0.8) particles. The overlapping histogram method
provides angoricities ap and at for a set of packings prepared at a given volume (and measured
pressure G). Each of these two temperature-like quantities equilibrated (independently) between
the subsystem and the bath: There is a 0th Law. In addition, each angoricity again had a linear
equation of state with the same form as Equation 14. The coefficients of these equations of
state were of similar magnitude to those observed in simulations (24). However, a configura-
tional entropy calculation (25) would predict a slope of 2/ziso ¼ 2/3, which is larger than was
observed.

3. STATISTICAL MECHANICS OF JAMMED STATES

As in equilibrium statistical mechanics, establishing the generalized Edwards ensemble provides us
with a canonical distribution of microstates: PnðX, âÞ. Therefore, the machinery of statistical
mechanics can be applied to calculate ensemble averaged quantities. In particular, one can define
the generating function (canonical partition function):

ZðX, âÞ ¼
X0

frm,f mng
exp

 
� V

�frmg�
X

!
exp½� â : Ŝ

�frm, fmng
��, 15:

where the prime on the summation indicates that the sum over frm, fmng is to be restricted to only
those states that satisfy the constraints of static mechanical equilibrium for every grain. Imposing
these constraints poses difficult challenges (26, 73–75). Whereas the force and torque balance are
equality constraints and are therefore straightforward to implement, the positivity of forces
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and the static friction law are both inequality constraints that are notoriously difficult to
implement.

In this section, we discuss the different schemes developed to calculate ensemble averaged
properties of jammed solids, emphasizing the approximations involved in implementing the
constraints of mechanical equilibrium. In both 2D and 3D, the constraints of force balance can be
enforced through the introduction of gauge fields (25, 46, 73). In 2D, these gauge fields have
an elegant geometric representation that has been used in recent years to calculate statistical
properties of jammed states at various levels of approximation. We first focus on the intertwining
of volume and stress in the partition function (Equation 15). Then, we discuss methods applicable
in 2Dbefore providing a brief description of a similarmathematical formulation in 3D, alongwith
the difficulties that arise when moving from 2D to 3D.

Equation 15 is a function of both X and â, and this cannot, in general, be written as
a product: ZðX, âÞ�ZðXÞZðâÞ. Recent work (67) draws attention to this fact and obtains an
expression for the partition function by combining the loop force formalism (43) (to enforce
force and torquebalance in2D)with thequadronmethod for taking intoaccount the volumedegrees
of freedom. For the special case of an isostatic assembly of grains, where each geometry leads to
a unique configuration of contact forces, the calculations (67) give rise to an equipartition-like
equation of state linking mean volume ÆVæ and compactivity ÆVæ ¼ (zN/2 þ M)X, where the
zN/2 structural degrees of freedom and the M independent boundary force degrees of
freedom contribute equally.

Most statistical treatments of jammed states have relied on some form of decoupling of the
volume and stress terms in the partition function. The original Edwards ensemble is an extreme
example: The stress fluctuations were not considered at all. Conversely, the force network en-
semble (FNE) (76) is based on a complete decoupling of the geometric and force degrees of
freedom. It is a microcanonical ensemble that takes a flat measure on all allowed force states for
a given, fixed geometric network. The FNE decoupling is based on a separation of scales: For
infinitely rigid grains or packings of soft grains very close to jamming, small geometric
displacements lead to large changes in the interparticle contact forces. The FNE is particularly
suited to computing probability distributions P(f ) of single contact forces f in both lattice ge-
ometries and some off-lattice geometries (77–79). It has also proved useful in understanding force
fluctuations in frictional packings (80). There are many excellent reviews of the application of the
FNE, and we refer the reader to these for a comprehensive discussion (81, 82).

Another variation on the decoupling theme is to consider a canonical stress ensemble that
neglects all volume fluctuations (24, 28, 70). This is the analog of the (T, V, N) ensemble of
equilibrium statistical mechanics. This is distinct from the FNE because both positions and
forces are retained as degrees of freedom through the force-moment tensor. The stress ensemble
is most appropriate for describing grains subject to shear stresses at constant volume (70). It is
a reasonable approximation in situations where volume fluctuations are negligible compared to
stress fluctuations. The experimental tests involving both X and â, described in the previous
section, suggest that â can be defined even in cases where the definition of X is murky. In the
remainder of this section, therefore, we focus on the pure stress ensemble (which includes the
FNE as a special case). The interdependence of volume and stress fluctuations in the generalized
ensemble, which is the analog of the (T, P,N) ensemble, has received less attention (67). One of
the important questions in this regard is the range of volumes over which jammed packings can
be created (15).
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3.1. Two-Dimensional Granular Solids

In 2D, the constraints of local force balance (Equation 5) allow for the definition of a vector gauge
field, hðx, yÞ (23, 25, 46, 73), such that1

ŝ ¼ =� h: 16:

In a discrete formulation at the grain level, this single-valued vector height field is defined on the
dual space of voids in a granular packing (43), as illustrated in Figure 4. Going around a grain in
a counterclockwise direction, the height field gets incremented by the contact force separating two
voids. The mapping to this dual space of loops and heights is rigorous and retains all of the
information about the original packing (25, 43, 46, 73).

A simpler geometric representation that does not carry information about the real-space ge-
ometry (but retains the topology of the contact network and accurately represents the structure in
height space) is the tiling picture (27) shown in the left panel of Figure 4b. Because the forces on
every grain must add up to zero, each grain can be represented by a polygonal tile constructed by
connecting the force vectors head-to-tail. Newton’s Third Law requires that the edges of tiles
exactly coincide because each edge (contact force) is shared by two grains. The vertices of this tiling
are the heights, and the faces of the tiles represent grains. Because the force associated with
touching grains is equal in magnitude and opposite in direction, force tiles tessellate height space
and the vertices of all force tiles fill a parallelogram (see Figure 4) in height space spanned by two
vectors, Fx and Fy, defined in Equation 8.

The force tilings can form the basis for calculating partition functions and ensemble averages.
In the tiling representation, the microcanonical stress ensemble comprises all tilings byNf tiles of
a parallelogram bounded by Fx and Fy, with each tile corresponding to a force-bearing grain with
more than two contacts. Grainswith two contact forces or fewer are not represented in a tiling.We
discuss this aspect in the context of tiling corresponding to frictional grain packings. A canonical
stress ensemble would be defined by â, and in this ensemble the boundary vectors defining the
parallelogram would be allowed to fluctuate. In order to perform an actual calculation, the
microscopic probabilities, vn, of each tiling would have to be defined and the additional con-
straints of torque balance and static frictionwould have to be imposed on the tilings. The latter two
are irrelevant for frictionless grains, and all calculations (to date) of statistical properties of
frictionless grains have assumed equiprobability vn ¼ 1. For frictionless grains, the FNE has been
used successfully to calculate statistical properties of grains in lattice geometries (83). Interestingly,
tilings of frictionless grains exhibit an additional extensive quantity that modifies the stress en-
semble. In the rest of this section,we summarize the application of stress ensembles to assemblies of
frictionless and frictional grains.

3.1.1. Frictionless grains. For dry granular solids, the forces between grains are purely repulsive.
Without friction and for disk-shaped particles, these contact forces are all central forces. It can be
easily proven that if forces are frictionless and repulsive, all force tiles must strictly be convex in
shape. When all force tiles are convex in shape, they form a planar graph in height space. As il-
lustrated in Figure 4, the result is equivalent to the Maxwell-Cremona reciprocal tiling or force
tiling (27),where each grain is represented by a polygonal tile.Hence, the area of the parallelogram
spanned by Fx and Fy is simply the total area taken up by all tiles in height space

1The generalized definition of the curl used implies that smn ¼Pm0n0 emm0n0 ∂m0Wn0n in 3D and smn ¼Pm0 emm0 ∂m0hn in 2D,
where e is the Levi-Civita symbol.
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Atot ¼
X
m

am ¼ ��Fx � Fy
��, 17:

where the last equality holds only in the thermodynamic limit or for PBCs (83). Equation 17
demonstrates that there is an additional extensive quantity for 2D frictionless assemblies of grains
that is distinct from Ŝ ¼Pmŝm. Although the conservation principle discussed in Section 1.3 is
a prerequisite for the additivity and conservation ofAtot, the latter holds only in special cases, such
as for frictionless grains for which all force tiles are convex. IfAtot is conserved, then following the
steps in the derivation of Equation 15, an additional Boltzmann term has to be introduced to
impose the area constraint on the canonical, microstate probability for frictionless grains:

Pn ¼ 1
Z
exp
��â : Ŝn � bAn

�
, 18:

where An is the area of a microscopic state and

b ¼ ∂S
∂Atot

. 19:

For isotropic states, â : Ŝn reduces to apGn, where Gn is the trace of the force-moment tensor. Gn is
proportional to the perimeter of a tile,P. Furthermore, for apolygon that is convexand isotropic in
shape, area is related to perimeter via A } P2. (Conversely, anisotropic polygons or complex
polygons may have a power < 2.) In this case, Equation 18 becomes

PðPÞ} 1
Z
exp
��apP � bP2�, 20:

which coincides with the result obtained in a test using FNE (27) and entropy maximization.
Within the tiling framework, force and pressure distributions can also be calculated using the FNE

Fy

Fx

flm

fln

Particle m

Particle l

Particle n

l

m flm
fln

h*

h
n

a b c

Figure 4

Force tilings for a frictionless grain packing from simulations (courtesy of Corey S. O’Hern). (a) Particle l is supported by balanced contact
forces that are exchanged with its neighbors (m, n, etc.). The real space contact network defines voids such as the one bordered by m, l,
and n (purple dot), on which the vector loop forces h, h� live. Going around a grain in a counterclockwise direction, the height is
incrementedby the contact force separating twovoids. (b) The force tile corresponding to grain l and its neighbors. The force vectors define
the edges of the force tiles, the faces are labeled by grain indices, and the heights h and h� become the vertices of the tiling. Because
of action-reaction and force balance, force tiles tessellate height space, as shown in panel c. The boundaries of the tessellation are defined
by the vectors Fx and Fy, which define the force-moment tensor Ŝ (Equation 8).
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on a lattice and off-lattice with excellent agreement between theory andMonte Carlo simulations
(27, 83, 84), although the approach remains to be tested on naturally generated packings with
coupled forces and geometry. One particularly interesting result is that the distribution of the
magnitude of individual contact forces,P(f), isGaussian for packings of frictionless grains (27, 83, 84),
and this is a direct consequence of the additional area conservation. The absence of this additional
conservation principle in frictional grains, to be discussed below, raises the intriguing possibility that
the exponential form of P(f) observed in experiments is connected to force chains and friction.

3.1.2. Frictional grains. The tiling framework for frictional grains admits nonconvex and even
complex (self-intersecting) polygons. Figure 5 shows a tiling constructed from experimental data
on jammed states created through shear (85). Grains located along force chains, where there is
a well-defined direction of large forces, tend to give rise to self-intersecting polygons, as illustrated
in Figure 5. The additional area conservation principle is, therefore, not applicable to tilings of
frictional grains, which are nonplanar because of the presence of self-intersecting polygons. For
frictional grains, therefore, the generalized Edwards ensemble encodes all the conservation laws,
and there are no additional conserved quantities. The number Nf of tiles corresponds to grains
withmore than two contacts. In frictionless grains, this number is not far from the actual number of
grains. However, in frictional systems at low densities close to random loose packing, force-
bearing grains organize into force chains that meander through a host of spectator particles that
bear essentially no force (3, 86). For these systems, Nf can be very different from the actual
number of grains. The tiling framework shows that for mechanical stability, what matters is Nf.
The volume in the original Edwards ensemble refers to the volume occupied by all grains.

In order to perform calculations for frictional grains, assuming equiprobability of microstates,
the constraints of torque balance and static friction would have to be imposed explicitly on the
sampling of tiles. To our knowledge, such a calculation has not been attempted yet. A mean-field
calculation has been performed (73) and leads to an approximation of the (force space)

Figure 5

Force tilings constructed from experimental shear-jammed states. Clockwise from left: A photoelastic
image (87) showing force chains, force tiling corresponding to this image, and a part of the force tiling
showing a self-intersecting polygon. The arrows mark the direction of contact forces.
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configurational entropy and hence a prediction for the equation of state for grains with friction. In
another development, force tilings constructed from experimental data have been analyzed to
demonstrate that the emergence of rigidity in shear-jammed solids (86) can be related to a per-
sistent pattern in the density of vertices in force tiles (85).

There is a clear need for the development of aMetropolis Monte Carlo algorithm that samples
tiling according to the Boltzmann-like distribution of the stress ensemble but that also imposes
the constraints of torque balance and the Coulomb friction law jftj � mjfNj on the sampling. The
advantage that the tiling framework offers is the ability to encode these constraints in the
geometrical language of polygons. It should be emphasized that sampling tilings is not restricted to
a fixed geometry of grains in real space. What is fixed is the number of force-bearing grains; for
example, their positions and contact forces are dynamical variables in aMonte Carlo scheme. The
positions do not enter the tiling picture explicitly, and an assumption being made in sampling
tilings without connecting to the real-space network is that there is a real-space network of grains
that corresponds to every tiling. This assumption is reasonable if there is a decoupling of forces and
positions, and the indeterminacy arising from tangential forces helps in this regard. Even if nu-
merical calculations are difficult, the tiling framework allows us to construct correlations in height
space, which are often more illuminating than real-space correlations (85). This is because the
primary source of correlations in dry granular ensembles is the constraints of mechanical equi-
librium, and these are explicitly taken into account in all tiling configurations.

3.2. Three Dimensions

In the 3D case, the definition of an equivalent microscopic framework to the 2D tiling becomes
muchmore complex (46, 73). At the continuum level, the equivalent to the vector gauge field h is
a tensor field Ŵ such that Equation 16 becomes1 ŝ ¼ =3Ŵ. Equivalently to the 2D case, we can
use Stokes’s theorem to show that the stress in a volume is a boundary term: the surface integral of
Ŵ dotted with the unit normal. Because Ŵ is a tensor rather than a vector, it is unclear what the
analog of the dual tiling space would be; no 3D equivalent of the tiling has been proposed so far.
Recently, DeGiuli &McElwaine (73) derived amicroscopic interpretation of Ŵ, analogous to the
2Dheight field.However, although themicroscopic variables are vectorial, theymap only to Ŵ by
incorporating significant parts of the local geometry. Finally, it should be noted that for realistic
3D packings, gravitation needs to be incorporated, and the framework based on conservation of
Ŝ needs to be extended to include gravity as an external field.

4. APPLICATION TO DYNAMICS

Asmentioned in the introduction, one of Edwards’s original ideas was that the dynamics of slowly
driven granular materials can be understood based on the microstate probabilities of jammed
states. This seems plausible if the driving is slow enough that there are rare transitions from one
jammed state to another, and the transition probabilities are controlled by properties of the
jammed states. This picture is reminiscent of frameworks constructed for describing the glassy
dynamics of thermal systems, such as the trap model (88), the soft-glassy-rheology (SGR) models
(89), and the shear-transformation-zone (STZ) theory (90). In all of these models, there are tran-
sitions intoandoutof trap-like entities, suchas free-energyminima.For example, in theSGRmodel it
is assumed that the material can be partitioned into mesoscopic regions. Each region is able to
accommodate some elastic energy and strain. Plastic deformations of the mesoscopic region occur
because of either (a) global driving or (b) fluctuations due to the elastic energies released by other
mesoscopic regions undergoing plastic deformation (89). In this mean-field model, the latter is
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represented as an activated process with an effective temperature that is different from the bath
temperature (89).

A natural avenue of exploration of granular dynamics based on the ensemble ideas is to adopt
the same philosophy as SGRand assume that angoricity plays the role of the effective temperature.
The idea that self-activated processes induced by stress fluctuations, ormechanical noise, influence
the rheology of slow granular flows has been explored in the literature (91, 92), and it seems
reasonable to assume that angoricity determines the strength of this mechanical noise. An
angoricity-based, SGR-like framework has been used to analyze stress fluctuations in laboratory
granular Couette flows (93, 94). This formalism provides an explanation for the observed log-
arithmic strengthening (95) of granular materials. A key point is that one needs to use a stress
ensemble rather than an energy ensemble (as would be the case for SGR) to obtain the correct
scalingwith shear rate. Such applications of the stress ensemble to analyze granular rheology are in
their infancy, and much remains to be explored.

5. SUMMARY AND OPEN QUESTIONS

Our overview of the application of statistical ensemble ideas to athermal, granular materials
highlights recent advances in this area. One of our primary objectives has been to emphasize the
similarities and differences between athermal and thermal ensembles. The experimental and nu-
merical tests discussed in this review illustrate the validity of the ensemble framework in several
different contexts. The equilibration of angoricity, which is the analog of thermalization in the
stress ensemble, has been shown to work both in experiments and simulations. Measurements of
angoricity and compactivity based on the method of overlapping histograms (Equation 13) and on
fluctuation-response relations (Equation 11) seem to agreewith each other, which suggests that even
in these athermal ensembles, fluctuations within a system determine its linear response to driving.

The majority of tests have been performed in 2D, and the applicability of ensembles to 3D
packings is much less clear. Equations of state, such as those relating the angoricity to the external
stress and compactivity to volume, have been measured in only a few systems. In particular,
equations of state involving the full tensorial angoricity have remained largely unexplored, as have
equations of state relating compactivity and angoricity. Because equiprobability does not seem to
be universally valid for jammed systems, equations of state depend upon the probabilitiesvn of the
microstates, and these are expected to be sensitive to preparation protocols, friction coefficients,
and particle shapes. The variation in equations of states is, therefore, expected to be greater than
that found in thermal ensembles. Validity of the ensemble framework, however, narrows down the
choice of macroscopic variables that should enter an equation of state.

From the perspective of calculations based on ensembles, the difficulty of imposing the con-
straints of mechanical equilibrium has hindered progress. In particular, calculations of partition
functions have been hampered by two inequality constraints: positivity of forces and the Coulomb
condition for static friction. The situation is hopeful in 2D, where the constraints have elegant
geometrical representations, but little is known about how to proceed in 3D.

Within the context of dynamics, the ensemble framework provides a natural basis for stress-
induced fluctuations being represented by a type of thermal noise. The rheology of slowly driven
systems could potentially be completely linked to angoricity and compactivity by generalizing the idea
of thermally activated processes to stress-activated processes that lead to plastic failure. If dynamics
can be related to granular equilibrium concepts such as angoricity and compactivity, that would be
a big step because granular rheology could then be related to stresses imposed at the boundaries.

To summarize, the past decade has seen much progress in testing and establishing the gener-
alized Edwards ensemble, which establishes the laws of granular equilibrium. We should
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emphasize that the ensemble framework is relevant only to static and slowly driven granular
materials where the kinetic energy of the grains does not play a significant role. For systems that
are governed by the laws of granular equilibrium, stress has emerged as the physical property that
dominates collective organization.
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