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Abstract

At the heart of the analyses of landscape genetics are isolation models seek-
ing to explain either interindividual or interpopulation connectivity. These
models use spatial, ecological, and topographic predictor variables measured
between sites in an attempt to explain observed genetic variation. During the
past decade, these models have adopted an increasingly sophisticated set of
techniques to quantify intervening physical and ecological spaces, although
they are restrained by rather mundane approaches to characterizing the ge-
netic components of connectivity. Population Graphs are one approach to
improving the quantification of genetic covariance used in models of land-
scape genetics. I explain the construction of the Population Graph frame-
work, explain its strengths and weaknesses, and provide examples of how it
has been used during the past decade within the contexts of landscape and
population genetics.
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1. INTRODUCTION

The term landscape genetics is commonly applied to studies of population genetics that integrate
analyses of genetic connectivity with spatio-ecological data commonly derived from landscape
ecology (Dyer 2015). Although originally focused on detecting barriers and identifying gradients
(Manel et al. 2003), landscape genetics has grown into a more general term applied to studies that
identify features of the intervening landscape that influence either individual-based movement
(e.g., Cushman et al. 2006) or interpopulation gene flow (e.g., Murphy et al. 2010). In general,
analyses in landscape genetics have the basic form

G ∼ f (E)

where the term G encompasses some translation of genetic structure, diversity, or distance, to be
explained by one or more external (E ) variables representing characteristics such as topography,
space, ecology, or habitat. The relationship between the independent spatial or ecological variables,
or both, with the genetic data contained in G is often examined in the context of pairwise distance
metrics and isolation models.

Models of genetic differentiation as a function of spatial isolation date to Wright (1943), and
their use has been applied broadly to studies based on the sampling of individuals and popula-
tions (e.g., Malécot 1948, Slatkin 1993). The use and subsequent extension of classic isolation
models are virtually the defining features of contemporary studies of landscape genetics. Exten-
sions to the basic isolation by distance (IBD) model have been proposed that replace Euclidean
space with variables representing other potentially isolating features, including isolation by eco-
logical resistance (McRae 2006), isolation by habitat (Nosil et al. 2008), isolation by environ-
ment (Wang et al. 2013), and isolation by barrier (Schwartz et al. 2002). Perhaps even more
fundamental than the addition of other isolating features is the breadth of objective functions
that have been developed to estimate separation under these models. The degree of separa-
tion measured as spatial, ecological, or along some other resistance surface, is now commonly
measured using not only Euclidean (straight-line) distance but also algorithms that estimate
the least-cost-path distance (Foley & Holland 2010), path lengths restricted to specific corri-
dors (Pinto & Keitt 2009), or weighted lengths of all potential paths (circuit theory; McRae
et al. 2008).

Although these developments have provided a much broader tool set for understanding
connectivity—one that has the potential to more closely describe how organisms interact with
the environment through which they move—the genetic component of these analyses has largely
remained static. In this review, I highlight one recent extension to the treatment of the genetic
component used in analyses of both landscape and population genetics. This approach, called
Population Graphs, is an implicitly graph-theoretical representation of multilocus genetic covari-
ance. Although Population Graphs possess characteristics that are analogous to both structure
statistics and isolation models commonly employed in population-genetic analyses (Dyer 2007),
they are a model-free approach that describes the way in which genetic variation is distributed
across the landscape. I begin by introducing the mathematics behind Population Graphs and
cover the scope and current limitations of its use. Drawing upon a decade of studies, I show
how the graph-theoretical shape of Population Graphs and parameters derived thereof have been
used to better understand how landscape features influence genetic connectivity and, by exten-
sion, the maintenance of structure. I close by providing an overview of ongoing developments
in Population Graph analyses and comment briefly on the current state of studies of landscape
genetics.
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Topology:
the pattern of edge
connections within a
network that define
localized and global
network structures

2. POPULATION GRAPHS

The amount of genetic variation observed among strata, σ 2
A, is a function of both the rate of

migration among strata and the genealogical history of the markers and populations being ex-
amined. The magnitude of this variation can been quantified using an array of similar statistics,
such as Wright’s FST (Wright 1931), Nei’s GST (Nei 1973), and Slatkin’s RST (Slatkin 1995), and
the dueling parameters for markers with high allelic diversity from Hedrick (2005, G′

ST) and Jost
(2008, DEST, although see Whitlock 2011). Despite the plethora of approaches, all of these indices
provide a singular inference: the magnitude of variation that exists among strata.

Given the centrality of σ 2
A in these parameters, it should be pointed out that the range of

values that these parameters may assume can arise from a wide range of different, and potentially
mutually exclusive, demographic histories. This is an unfortunate consequence of summarizing
variance into a single index. It is particularly problematic when we are using these tools with
the sole intent of uncovering unknown demographic histories and processes. Moreover, statistics
such as these are often insensitive to recent changes or perturbations, or both, in mating patterns
(e.g., Landguth et al. 2010), making it difficult to resolve the relatively recent or contemporary
processes that are the focus of landscape genetics.

The Population Graph framework was designed to get around these problems. Instead of esti-
mating the magnitude of variation, Population Graphs define the way in which genetic variation,
independent of magnitude, is distributed among strata. This is done using a two-step process
whereby total genetic variation is first decomposed into a geometric interpretation of compo-
nents within and among strata, and then that graph-theoretical structure is modified using con-
ditional covariance to identify the minimal topological configuration necessary to describe the
totality of observed genetic variation. The genetic structure of within-population variance, σ 2

W,i ,
is represented as a volume surrounding the centroid of the population (Figure 1a). This volume
is analogous to the populationwise contribution to error variance from a random effects linear

a b

Figure 1
Geometric representation of population-genetic covariance. (a) Each individual population is represented
geometrically as a node whose volume is proportional to the within-population component of genetic
variance, σ 2

A. (b) Different populations are connected by edges whose magnitude is proportional to their
interpopulation variance σ 2

A;i↔ j .
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model, such as AMOVA (analysis of molecular variance) (e.g., Dyer et al. 2004). The among-
strata component of genetic variation, σ 2

A, is similarly partitioned into the additive components
representing variation among all pairs of populations, σ 2

A;i↔ j . The centroids of populations are
connected with an edge whose length is defined by σ 2

A;i↔ j (Figure 1b). These two components
constitute a network structure with nodes (strata) and edges (measures of covariance) identical to
how variance is decomposed in the AMOVA analysis (Excoffier et al. 1992), though represented
in a graph-theoretical context.

A Population Graph is derived from this network AMOVA structure by applying conditional
covariance to the edges that connect all strata. Conditional covariance is used to determine the
subset of edges in the network which are redundant, in terms of describing the total pattern of
among-strata genetic variation. This process is statistically analogous to building a linear regression
model, whereby additional predictor variables are examined for their importance relative to the
sufficiency of the existing model (a Type III sums of squares). If, given what is already in the model,
the addition of the edge provides significant power to explain the overall topology, then it is kept
within the network; otherwise, it is removed. Biologically, conditional covariance functions reveal
the demographic covariance network nested within the topology that contains connections among
all pairs of strata. This decomposition provides the reverse mapping from σ 2

A back to the underlying
demographic model that is unattainable with the use of structure statistics, such as FST and its
many analogs, alone. By way of example, consider a simple three-population model with a source
population and two sink populations (Figure 2). In this model, both overall and pairwise estimates
of genetic structure (FST) will stabilize and equilibrate through time. However, even if there is no
direct migration between islands B and C, their structure estimates [denoted FST(B,C) in Figure 2]
will indicate ongoing connectivity. Even without a direct exchange of migrants among islands,
differentiation is low because both sink populations receive individuals from the same mainland.
From a population-genetics perspective, this pattern would be interpreted as being due to ample
interisland gene flow, which is an incorrect interpretation given the underlying demographic
model. Ambiguous patterns arising from looking at the magnitude of divergence are not unique

C(B,C|A
) = 0

A

B

C

F S
T(

B,
C)

F ST(A,B)

FST(A,C)

Figure 2
Schematic representing a demographic model with a single-source population (A) and two sink populations
(B and C). Black arrows indicate the routes of actual gene flow. If examined using traditional structure
statistics, pairwise FST will be the same across all three comparisons even though no real gene flow is
occurring among the islands (red ). Conditional covariance as implemented in Population Graphs seeks to
examine differentiation among populations, given each island’s covariance with the entirety of the data
( green).
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to source–sink models alone. Kimura & Weiss (1964) showed that in 1D stepping-stone models,
the correlation between allele frequencies among populations decays at a rate of r ∼ e−x

√
2μ/m,

where x is the number of steps, μ is the mutation rate, and m is the migration rate. Functionally,
this means that for parameters such as μ = 10−6 and m = 0.01 (not uncommon in studies of
landscape genetics), the correlation of allele frequencies between pairs of populations that are not
directly exchanging migrants will exceed ρ = 0.80 at distances of up to five steps.

The problem here is that the relationship between the islands, as measured by FST(B,C) in
Figure 2, or allele frequency correlations after Kimura & Weiss (1964), is taken without reference
to the rest of the data set. Conditional covariance estimates the covariance between the islands,
conditional on each individual island’s covariance with the mainland. Once the covariance between
the mainland and the islands is accounted for, the covariance between the islands, denoted C(B,
C|A), will disappear. The resulting covariance topology, which started out as a fully connected
graph, will retain connections only between populations with nonzero conditional covariance,
which in the example from Figure 2 resolves the underlying demographic model much better
than sets of pairwise estimates.

2.1. Graph-Theoretical Fundamentals

As a graph-theoretical object, a Population Graph can be both manipulated and examined using
a host of network-based methods that also have biologically meaningful interpretations. A Popu-
lation Graph, G = {V,E}, is composed of two separate sets, nodes and edges, that are estimated
from N individuals in k populations using their multilocus genotypes. The node set (also called
vertex set in some notations) is denoted as V and represents the sampling strata, with size |V | = k.
The number of vertices in a graph defines the potential size of the second set, E, the edge set,
and can only be as large as m = k(k − 1)/2. As defined, edges in a Population Graph have a
characteristic length equal to σ 2

A;i↔ j , and are bidirectional because covariance is a symmetric trait.
Several parameters measured on both node and edge sets can be useful in analyses of population

and landscape genetics. Quantitative analyses of graph components can focus on nodes, edges, the
clustering of nodes within the graph, the connections between subcomponents in the network,
overall network robustness, or a combination of these. The overall size of the graph defines a
connection probability, pc = |E|/m. Population Graphs with higher connectivity have less genetic
independence and hence lower overall genetic structure. The correlation between these two has
been shown via simulations to be exceptionally high (correlation of node centrality with FST is
ρ = −0.95; Dyer 2007). The relative importance of individual nodes and edges is also quantifi-
able using several common graph-theoretical parameters, as discussed in the sidebar, Network
Structure.

The way in which nodes are connected within a Population Graph can also provide biologically
meaningful inferences. Genetic markers have commonly been used to rank the relative importance
of populations based upon the magnitude of diversity or structural divergence, or both (Falk &
Holsinger 1991, Milligan et al. 1994). Graph-theoretical parameters can provide an additional
set of criteria that quantify the relative position of populations within the functional connectivity
network, independently of the amount of resident diversity or relative structure. Measures of
connectivity may highlight genetically depauperate populations as being of positional importance
based upon their physical location in the gene-flow network. For example, the two populations
connecting peninsular Baja California to mainland Mexico (derived from Dyer & Nason 2004)
in the Population Graph depicted in Figure 3 are not overtly diverse or divergent. However,
their relative position in the network suggests that they are critical relative to the distribution
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NETWORK STRUCTURE

Nodes and edges can be quantified as to their relative importance to overall graph structure using several approaches
(Wasserman & Faust 2005). A common set of estimates, grouped under the moniker centrality, seeks to identify
the importance of individual components relative to the shape and structure of the entire topology. Metrics used to
estimate centrality include the degree (the number of edges attaching to a node), closeness (a weighted measure of
distance from the node to all other nodes), and betweenness (a ranking of how many of the shortest paths through
the graph go through a specific node or edge). Higher-level network structures can be quantified by identifying
the clustering of nodes (referred to as a clique), estimating the modularity within the network for robustness, and
calculating relative estimates of network size for comparative purposes (diameter). Within Population Graphs, these
approaches have been used to quantify relative population importance in relation to rates of gene flow (Dyer 2007)
and differences between stage-stratified cohorts of plants (Herrera-Arroyo et al. 2013) and as measures of network
sensitivity (Koen et al. 2013) and robustness (Albert et al. 2013).

of population-genetic covariance as depicted in the connectivity network. Positional importance
within a gene-flow network has not been examined in great detail, although it has the potential to
provide insights salient to conservation and management decisions.

2.2. Sampling and Scale

At present, networks based upon interindividual distances are not supported, alienating a large
fraction of landscape-genetic studies, due to the necessity of estimating within-population variance
(see Dyer 2015). At the time of writing, 150 manuscripts had cited the initial Dyer & Nason
(2004) Population Graph paper, of which roughly half had applied the approach as a component
of their research (the other half citing it parenthetically). Despite being a representation of genetic
covariance with discrete strata, Population Graphs have been applied to organisms exhibiting a
wide range of natural distributions, from continuous terrestrial (Dyer et al. 2010) and marine
(Fitzpatrick et al. 2011) to taxa inhabiting discretely defined populations (e.g., Giordano et al.
2007). More than half of the studies (52%) have applied Population Graphs to plant taxa, with
the remainder split among animal systems (38%), fungal studies (8%), and the work on HIV
dispersion of Pagán & Holguı́n (2013) (<1%).

Given its derivation from the AMOVA model, the sample allocation of individuals within strata
can be guided by standardized statistical approaches to minimize the variance in �ST, an interclass
correlation (Smouse et al. 2001). The expected variance in �ST depends upon the number of strata
(k) and the number of individuals sampled from each population ( j). For a fixed sample size (N =
j ∗ k), the variance in the among-strata component is given by

s 2
� = 2

[1 + (k − 1)�]2(1 − �)2

k(k − 1)( j − 1)
1.

(after Falconer 1981). This relationship should be used to examine a range of potential sampling
allocations (e.g., how many individuals and populations are examined) that could minimize the
overall variance in genetic-structure parameters. As pointed out by Koen et al. (2013), studies of
landscape genetics that use populations as focal sampling units should focus on maximizing the
number of sampling locations in preference to increasing within-population precision; it is, after
all, the covariance among populations that is created by the patterns of connectivity. This empha-
sis provides a better characterization of how connectivity is being influenced by the intervening
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SB

Figure 3
The Population Graph representing the distribution of genetic covariance in the Sonoran Desert–endemic
Lophocereus schottii (Cactaceae) from Dyer & Nason (2004). Nodes represent individual populations in
peninsular Baja California (orange) and mainland Mexico (blue). The node marked SB is spatially proximate
to populations in mainland Mexico, although it is genetically connected to populations in mid-peninsula Baja
California. Edges connecting nodes represent the pattern of genetic covariance among all populations.

landscape because there are more comparisons to be examined among populations crossing dif-
ferent landscape features. Individual-based analyses have the opposite problem in that they need
more at-site variance, which Landguth et al. (2012) interpreted to mean more loci per individual.
Across most levels of among-strata variance seen in studies of landscape genetics, however, the
relationship in Equation 1 provides a window of equally powerful sample allocations from which
to choose.

A fundamental requirement of estimating covariance is the need for a robust estimate of within-
stratum variation because it is used as a denominator in several steps in the calculations. As with
any sampling scheme, poor estimation of within-stratum variance will result in reduced statistical
power. In general, within-population variance is minimized by the addition of mulitlocus genetic
markers. The number of markers required is a function of both the underlying spatial distribu-
tion of genetic variation as well as the granularity of the sampling; permutation and subsampling
techniques can be used to ensure that parameters have stabilized. Studies have developed Pop-
ulation Graphs from a broad range of marker types including allozymes (Dyer & Nason 2004),
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microsatellites (Krafsur et al. 2005), amplified fragment length polymorphisms (Greve et al. 2012),
and single nucleotide polymorphisms (Dell’Acqua et al. 2014). Sequence data have yet to be applied
to the Population Graph approach, although not because of any inherent incompatibility: Drop-
ping noninformative sites makes variable nucleotides similar to single nucleotide polymorphisms.
However, the kind of research questions for which sequence divergence is appropriate often fo-
cus on bifurcation and divergence at longer timescales than the more contemporary or relatively
recent connectivity analyses that are the focus of most studies of landscape genetics. Depend-
ing upon the life-history characteristics of the study organisms and the temporal scale at which
the processes are operating, analyses based upon genetic covariance may be more informative
than sequence-based markers evaluating sequence variants, even at temporal scales approximating
phylogeographic processes (e.g., Dyer & Nason 2004, Dyer et al. 2010, Garrick et al. 2013).

2.3. Statistical Performance

The shape and makeup of a Population Graph, as is true for any analysis of structure, are sensitive
to the number of populations being sampled and the amount of variation present. In general,
the utility of Equation 1 is that it allows one to determine how to maximize the number of
sites (k) across which topological structure is based (e.g., the pattern of edge connections). The
effects of not sampling all potential sites, or undersampling individuals within particular sites, in
a Population Graph has been examined, thus far, only briefly. Koen et al. (2013) subsampled two
empirical data sets to compare the relative statistical stability of pairwise structure statistic (FST) and
distance (e.g., Bray–Curtis distance, DC) with Population Graph structure. The numerical values
estimated for edge weights in the topology were sensitive to both unsampled and undersampled
populations, as would be expected given that topology is estimated based upon the totality of the
data, and changes in any part of these data will percolate throughout the Population Graph. That
is not to say that the statistical inferences obtained from the topology change, but that the lengths
of the edges change as the input data set changes. Alternatively, Koen et al. (2013) found that
pairwise estimates of genetic structure and distance were unaffected by changes in the entire data
set unless they were changed individually within the pair of populations for which the parameter
was being estimated (e.g., pairwise parameters are sensitive only to the pairs of populations being
manipulated). Despite changes in the edge lengths, subsampling individuals within populations
did not negatively impact subsequent model fit with respect to spatial or resistance isolation.

Because the entire data set is used to estimate the shape of a Population Graph rather than using
single pairs of populations to estimate individual parameters, topological structure stabilizes faster,
after perturbation, than more traditional parameters quantifying genetic structure (FST, �ST),
genetic distance (DC), and isolation (e.g., M̂ from Slatkin 1993; Dyer 2007, Dyer et al. 2010,
Noutsos et al. 2014). Population Graphs may also be more robust to loci that deviate from optimal
expectations. While examining the spatial genetic structure and connectivity in subspecies of the
Arabian burnet moth, Klütsch et al. (2011) showed simulation results suggesting that although the
presence of null alleles at microsatellite loci increases the size of the edge set (e.g., there are more
connections in Population Graphs with null alleles than the same data without them), thereby
overestimating connectivity, they do so by increasing the size of the edge set by only 3%, which
is insufficient to cause any major inferences about underlying demographic models.

3. INFERENCES BASED UPON GENETIC TOPOLOGIES

Given that Population Graphs focus on how genetic variation is distributed, many of the biolog-
ically relevant inferences gained by adopting this approach can be found by analyzing the way in
which the network is connected.

334 Dyer



ES46CH15-Dyer ARI 1 November 2015 10:25

3.1. Topological Shape

An almost ubiquitous feature of studies of population and landscape genetics during the past
decade has been the utilization of clustering algorithms such as STRUCTURE (Pritchard et al.
2000). These methods are intended to identify clear partitions in the data. In a Population Graph,
partitions can result in fragmentation of the topology, thus creating two or more disconnected
subgroups (e.g., collections of populations unconnected to the rest of the network). Disconnected
groups are statistically independent and represent independently evolving phylogroups. However,
clear clusters are not always present in the data, and it is well known that approaches such as
STRUCTURE perform relatively poorly when connectivity occurs along gradual gradients (e.g.,
Pritchard et al. 2007), when structure is nested (Dupanloup et al. 2002, Evanno et al. 2005), or
in the presence of autocorrelation (e.g., Schwartz & McKelvey 2009). Although it is possible to
adjust prior probabilities to account for some of these problems, it is often the impetus of studies
of landscape genetics to specifically identify which features are modifying connectivity, making
the approach of adjusting prior probabilities a bit tautological.

Population Graphs are not specifically intended to find partitions but instead to describe how
variation is distributed. Their use, however, in conjunction with clustering algorithms may aid in
understanding the spatial distribution of genetic variation within species that have heterogeneous
or nested structures. Fitzpatrick et al. (2011) leveraged the combination of these tools in the anal-
ysis of genetic variance in parrotfish (Scarus rubroviolaceus; Scaridae) sampled from throughout
the Indian and Pacific Oceans. Both Hawaiian and eastern Pacific populations were clearly par-
titioned in the STRUCTURE analysis, and populations from the central–western Pacific Ocean
and Indian Ocean were both moderately admixed. The Population Graph for this showed a more
nuanced interpretation of the data, with the Hawaiian islands being entirely disconnected and the
remaining populations being connected only tenuously between eastern Pacific populations and
those found in the central–western Pacific and Indian Oceans. It is, perhaps, in these kinds of cases,
where genetic structure does not have clean breaks, that Population Graphs may be most helpful
in interpreting the processes that produced the observed data. Even without disconnected sub-
components, the pattern of connectivity between subgroups can be evaluated for nested structure
using nonparametric approaches. Cases in which this has been particularly informative include
identifying endemic groupings in livestock herds (Li et al. 2007), specific landscape features caus-
ing genetic vicariance (Dyer & Nason 2004), the genetic consequences of alternate habitat choice
(Giordano et al. 2007), subspecies boundaries (Klütsch et al. 2011), and reproductive isolation (Li
et al. 2014). The important point here is that the topology itself is not the end result, but it can
function as a platform on which subsequent hypotheses can be tested.

3.2. Conditional Genetic Distance

All networks can be represented either graphically for visualization or in matrix format for subse-
quent analyses. An adjacency matrix, A = {aij}; i, j = 1, . . . , k, records the pattern of connectivity
and the length of the edges that connect nodes. The adjacency matrix for a Population Graph
does not define a pairwise distance amenable to analysis directly; it describes only the pattern of
connectivity between nodes sharing an edge. However, it is easily manipulated to produce a matrix
of shortest-path distances through the network.

Conditional genetic distance (cGD) is defined as the length of the shortest path through
the topology connecting populations and is estimated directly from the adjacency matrix (Dyer
et al. 2010). The distances between nodes in disconnected topologies (e.g., those with separate
components) are infinite and cannot be used in subsequent analyses. The use of distance in a
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Extended edges:
edges in a topology
whose physical
separation is much
more than would be
expected based upon
genetic covariance

Compressed edges:
edges connecting
populations that are
physically closer than
expected based upon
genetic covariance

Population Graph as a metric of isolation was first introduced by Dyer & Nason (2004), who
showed that a graph-distance metric provided better-fit models of IBD (calling it isolation by
graph distance). The parameter cGD has been used in models of IBD (Noutsos et al. 2014),
habitat (Quintela et al. 2014), and resistance (Dyer et al. 2010) as a primary measure of pairwise
genetic separation. The parameter cGD has been shown to provide a better fit than traditional
pairwise statistics under many conditions due to its property of homoscedasticity (although see
Dyer et al. 2010 for when Bray–Curtis distance, DC, may be preferred).

3.3. Compressed and Extended Edges

Although the pattern of connectivity within a topology is based solely upon genetic information,
the nodes represented in the topology depict real populations and can be assigned georeferenced
coordinates and mapped. If genetic covariance is determined solely by the physical separation
between populations (e.g., a pure IBD model) then we would expect to see the relative lengths
of the edges in the Population Graph scaling proportionately to those lengths in the Population
Graph. Deviations in edge lengths for mapped Population Graphs arise from one of two potential
processes. Long-distance dispersal events and range expansion tend to create physical distances
between populations that are much greater than expected given their genetic covariance. In a
Population Graph, we can identify these extended edges specifically because their physical length
(based upon spatial or ecological distances) will be disproportionately large given their edge weight
in the topology defined by genetic covariance. Conversely, landscape features that restrict gene
flow, such as inhospitable habitat and other barriers including mountain ranges, rivers, and urban
centers, will result in populations that are physically more proximate than expected given their
genetic covariance. These compressed edges represent potential spatial locations where genetic
differentiation is more than expected given the spatial arrangement of populations: that is, regions
where intervening habitat restricts connectivity. Within a single topology, there may be both
compressed and extended edges (Figure 4), showing that throughout species’ distribution, con-
nectivity interacts differentially with specific features of the intervening landscape (e.g., Wegier
et al. 2011). For processes such as range expansion, extended edges will not only be present but
will also be primarily aligned along the axis of expansion. This was demonstrated in the Sonoran
desert plant Euphorbia lomelii, where all of the extended edges were aligned with the known route
of range expansion following the Pleistocene (Garrick et al. 2009). Alignment and expansion have
been found in less obvious cases as well, including in the spatial structure of the invasive grass
Microstegium vimineum, where two separate invasion lineages have subsequently come into sec-
ondary contact (Baker & Dyer 2011). Because the topology itself is created without reference
to the spatial arrangement of populations, mapping topologies identify disproportionately scaled
edges whose presence gives clues about differential demographic and landscape factors impacting
genetic connectivity.

3.4. Topological Congruence

Although individual Population Graphs provide insights into how genetic structure is spatially
distributed, collections of Population Graphs may be able to expand these inferences about pop-
ulation dynamics in several ways. There appear to be only a few examples of studies that have
compared multiple Population Graphs. Among the first of such studies, Fortuna et al. (2009) ana-
lyzed the spatial arrangement of genetic covariance in four co-occurring plant species, with the goal
of understanding similarities in the substructure of the graphs. They argued that the underlying
modularity in these networks outlines the boundaries of evolutionarily significant units, manage-
ment units, or both. In a subsequent paper, Albert et al. (2013) extended this work by examining
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SB

Figure 4
The Population Graph representing the distribution of genetic covariance in the Sonoran Desert–endemic
Lophocereus schottii (Cactaceae) from Dyer & Nason (2004) mapped onto the spatial coordinates (longitude
and latitude) of sampled populations. Population SB (from Figure 3) is highlighted for comparison. Edges in
this topology are depicted in three categories: normal edges whose length is proportional to that expected
under a model of isolation by distance ( gray); edges whose length is longer than expected (known as
extended edges; red ), which are consistent with long-distance dispersal events; and edges whose length is
shorter than expected (known as compressed edges; green), which indicate a reduced permeability of
intervening landscape features.
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Congruence:
similarity in the
structure of two or
more graph topologies

the robustness of network structures, highlighting the importance not only of standing topological
structures but also the relative stability of network structures under perturbation. Kutnjak et al.
(2014) used a bootstrap approach to determine a similar measure of relative edge stability in the
topology created from an alpine plant, although this approach was not applied to collections of
topologies. Ranking relative edge sensitivity (or elasticity, as an analog to matrix analyses) has the
potential to provide insights into the underlying structure of the topology. Various components
of the networks may be differentially robust to population reduction or other demographic pro-
cesses. This is a component of Population Graphs that needs additional investigation, and there
exists a large body of literature about matrix-stability techniques that have been successfully used
in life-history analyses and that could be applied to address stability issues within topologies.

Another interesting use of multi-topology comparison came from Widmer et al. (2012), who
examined the phylogeographic structure of an epiphytic lichen fungus Lobaria pulmonaria and its
algal symbiont, both of which were used to estimate Population Graph topologies and examined for
congruence. Using Mantel tests to determine correlation in cGD between species, they showed a
high degree of symmetry in the two species, which would be expected given the interconnectedness
of their life histories. An analysis of symmetry in spatial genetic structure may provide valuable
information for a broad range of studies. Coevolutionary hot spots are predicted to exist where
there is the greatest asymmetry in gene flow in the interacting taxa (Gomulkiewicz et al. 2000).
These areas of asymmetry correspond to Population Graph subcomponents that deviate in their
patterns of connectivity. Being able to identify the spatial location of these coevolutionary hot spots
by looking at neutral genetic covariance could prove to be a tremendous resource. I am not aware
of any published studies that have a sufficient sampling density across populations that is adequate
to identify asymmetries in gene flow between coevolving taxa other than those of Widmer et al.
(2012), who were not interested in this particular question. Applied in a community context, there
are still large gaps in understanding the extent to which co-occurring taxa have similarly responded
either to previous demographic shifts or to ongoing gene flow, and how this has influenced spatial
genetic structure. Does spatial connectivity for co-occurring plants pollinated by an overlapping
suite of generalist pollinators translate into spatial genetic congruence? Although these kinds of
questions are still largely unexplored, Population Graphs may make the answers easier to find.

4. PERSPECTIVES

Landscape genetics defines a subset of studies of population genetics that focus on genetic con-
nectivity and the role that spatial and ecological features between sites have in influencing this
connectivity (Dyer 2015). Although these particular sets of hypotheses are not new (e.g., Smouse
& Wood 1987), the integration of tools largely derived from landscape ecology has increased
the specificity with which we can define ecological, topological, and spatial variables. As a conse-
quence, we are able to get a more fine-grained analysis of which features influence gene flow and,
perhaps more importantly, their relative significance. However, almost all analytical developments
that have bolstered interest in landscape genetics have focused on how we treat the independent
variables. The methodological approaches we have used to manipulate and define the genetic
aspects of these analyses—the actual answer to the analytical questions that we are using spatial
and ecological data to predict—have largely languished in decades-old analytical metrics.

These metrics were derived specifically to estimate evolutionary processes at equilibrium and
under ideal conditions (Neigel 1997), neither of which are appropriate standing assumptions
for landscape- or many population-genetic studies. What is sorely needed is for population
geneticists to embrace questions of landscape genetics and provide additional tools and tech-
niques that may not be readily available or whose importance may not be currently appreciated
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among practitioners of landscape genetics. Approaches examining parameters such as coances-
try, consanguineous mating, inbreeding, and genetic-effective population size have already been
developed. Yet these approaches seem to have been largely ignored by the landscape-genetics
community, even though they provide linkages supported by theory about how landscape and
ecological effects influence the structure of population genetics. Metrics such as the Bray–Curtis
genetic distance have been embraced despite having little theoretical underpinning with respect to
population-genetic expectations. When combined with more sophisticated methods for dealing
with ecological- and spatial-predictor variables, the Population Graph framework seems able to
provide insights that more traditional approaches cannot.

The theory behind the processes that create and maintain genetic covariance among popula-
tions is much more developed than those that describe how individual movement translates into
population-genetic structure. Given the emphasis in the literature of landscape genetics on how
ecological features influence the transient movement of individual animals (Dyer 2015), we are
undoubtedly in store for a treasure trove of novel theory linking these two. Although landscape
genetics may address only a subset of more common hypotheses about population genetics, un-
covering the way in which ecological heterogeneity influences a population’s structure can act to
solidify connections between ecology and evolution sensu lato.

FUTURE ISSUES

1. Conditional genetic covariance is a symmetric property of a Population Graph. However,
underlying networks of genetic connectivity are likely to contain regions of asymmetry
(e.g., Fraser et al. 2004, Paz-Vinas et al. 2013). As an iterative approach, asymmetric gene
flow can be partitioned out of Population Graphs (Dyer et al. 2010), although the presence
and extent of the underlying asymmetry need to be known a priori. The development of
methodologies that can identify the presence and relative impact of asymmetric gene flow
within a Population Graph will provide information on the net flow of genetic material
within the topology. Of particular interest are the application of asymmetric gene flow
in studies on hybridization (Noutsos et al. 2014) and the magnitude of gene escape from
crop plants (Papa & Gepts 2003).

2. In two cases thus far, Population Graphs have been used to quantify contemporary pollen
movement (Dyer et al. 2012, DiLeo et al. 2014) by looking at the spatial structure of sam-
pled pollen pools. Both isolation-by-resistance and gravity-model approaches have been
applied to identify which forest features influence pollen-mediated gene flow. In both
of these cases, remotely sensed data (obtained using LiDAR and hyperspectral imaging)
have provided accurate characterizations of the intervening environment through which
gene flow was occurring. The larger the spatial extent of our analyses, the more robust
they will be at quantifying the relative permeability of individual landscape features.

3. Given the large volume of studies of landscape genetics that have been conducted on
individuals rather than populations, extending the notions of individual-based Popula-
tion Graphs may bring a corresponding increase in statistical precision to those studies,
similar to what has been seen when applying conditional covariance to population-level
isolation models. The current stumbling block is deciding how to determine how many
loci are necessary to provide sufficiently robust estimates of within-individual variance
(e.g., Landguth et al. 2012), and the consequences of mixing within-individual and in-
terindividual variances as they pertain to the estimation of conditional covariance.
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Fraser DJ, Lippé C, Bernatchez L. 2004. Consequences of unequal population size, asymmetric gene flow,
and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Mol. Ecol. 13:67–80

Garrick RC, Nason JD, Fernández-Manjarrés JF, Dyer RJ. 2013. Ecological co-associations influence species’
response to past climatic change: an example from a Sonoran Desert bark beetle. Mol. Ecol. 22:3345–61

Garrick RC, Nason JD, Meadows CA, Dyer RJ. 2009. Not just vicariance: Phylogeography of a Sonoran
Desert euphorb indicates a major role of range expansion along the Baja peninsula. Mol. Ecol. 18:1916–31

Giordano AR, Ridenhour BJ, Storfer A. 2007. The influence of altitude and topography on genetic structure
in the long-toed salamander (Ambystoma macrodactulym). Mol. Ecol. 16:1625–37

Gomulkiewicz R, Thompson JN, Holt RD, Nuismer SL, Hochberg ME. 2000. Hot spots, cold spots, and the
geographic mosaic theory of coevolution. Am. Nat. 156:156–74

Greve C, Gimnich F, Hutterer R, Misof B, Haase M. 2012. Radiating on oceanic islands: patterns and processes
of speciation in the land snail genus Theba (Risso 1826). PLOS ONE 7:e34339

Hedrick PW. 2005. A standardized genetic differentiation measure. Evolution 59:1633–38
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