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Abstract

In recent years, the econometrics literature has shown a growing inter-
est in the study of partially identified models, in which the object of
economic and statistical interest is a set rather than a point. The char-
acterization of this set and the development of consistent estimators
and inference procedures for it with desirable properties are the main
goals of partial identification analysis. This review introduces the fun-
damental tools of the theory of random sets, which brings together ele-
ments of topology, convex geometry, and probability theory to
develop a coherent mathematical framework to analyze random ele-
ments whose realizations are sets. It then elucidates how these tools
have been fruitfully applied in econometrics to reach the goals of par-
tial identification analysis.
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1. INTRODUCTION

Random set theory is concerned with the development of a coherent mathematical framework to
study random objects whose realizations are sets. Such objects appeared a long time ago in sta-
tistics and econometrics in the form of confidence regions, which can be naturally described as
random sets. The first idea of a general random set in the form of a region that depends on chance
appears in Kolmogorov (1950), originally published in 1933. A systematic development of the
theory of random sets did not occur until later, stimulated by the study in general equilibrium
theory and decision theory of correspondences and nonadditive functionals, as well as the need in
image analysis, microscopy, and materials science of statistical techniques to develop models for
random sets, estimate their parameters, filter noisy images, and classify biological images.

These and other related applications of set-valued random variables induced the development
of statistical models for random sets, furthered the understanding of their distributions, and led to
the seminal contributions of Choquet (1953/1954), Aumann (1965), and Debreu (1967) and to
the first self-contained treatment of the theory of random sets given by Matheron (1975). Since
then, the theory has expanded in several directions, developing its relationship with convex
geometry, various limit theorems for random sets, set-valued processes, etc. An account of the
modern theory of random sets is available in Molchanov (2005).

More recently, the development within econometrics of partial identification analysis has
provided a new and natural area of application for random set theory. Partially identified
econometric models appear when the available data and maintained assumptions do not suffice to
uniquely identify the statistical functional of interest, might this be finite or infinite dimensional,
even as data accumulate (see Tamer 2010 for a review and Manski 2003 for a systematic
treatment). For this class of models, partial identification proposes that econometric analysis
should study the set of values for the statistical functional that are observationally equivalent, given
the available data and credible maintained assumptions; in this article, this set of values is referred
to as the functional’s sharp identification region. The goals of the analysis are to obtain a tractable
characterization of the sharp identification region, to provide methods for estimating it, and to
conduct tests of hypotheses and make confidence statements about it.

Conceptually, partial identification predicates a shift of focus from single-valued to set-valued
objects, which renders it naturally suited for the use of random set theory as a mathematical
framework to conduct identification analysis and statistical inference, to unify a number of special
results, and to produce novel general results. The random set approach complements the more
traditional one, based on mathematical tools for (single-valued) random vectors, that proved
extremely productive since the beginning of the research program in partial identification (see, e.g.,
Manski 1995 for results on identification and Horowitz & Manski 2000, Imbens & Manski 2004,
Chernozhukov et al. 2007, and Andrews & Soares 2010 for results on statistical inference).

A lack of point identification can generally be traced back to a collection of random variables
that are consistent with the available data and maintained assumptions. In many cases, this col-
lection of observationally equivalent random variables is equal to the family of selections of
a properly specified random closed set, and random set theory can be applied to describe their
distribution and to derive statistical properties of estimators that rely on them. Specific examples
discussed in detail in this article include interval data and finite static games with multiple equi-
libria. In the first case, the random variables consistent with the data are those that lie in the in-
terval with probability one. In the second case, the random variables consistent with the modeling
assumptions are the ones that represent equilibria of the game.

To fruitfully apply random set theory for identification and inference, econometricians need to
carry out three fundamental steps. First, they need to define the random closed set that is relevant
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to the problem under consideration using all information given by the available data and
maintained assumptions. This is a delicate task but is one that is typically carried out in iden-
tification analysis regardless of whether random set theory is applied. Second, they need to
determine how the observable random variables relate to this random closed set. Often, one of
two cases occurs: Either the observable variables determine a random set to which the (un-
observable) variable of interest belongs with probability one (e.g., the interval data example), or
the (expectation of the) (un)observable variable belongs to (the expectation of) a random set
determined by the model (e.g., the games with multiple equilibria example). Finally, they need to
determine which tool from random set theory should be utilized. To date, new applications of
random set theory to econometrics have fruitfully exploited Aumann expectations and their
support functions, (Choquet) capacity functionals, and laws of large numbers and central limit
theorems for random sets.

In this article, we begin in Section 2 by reviewing these basic elements of random set theory.
Then in Section 3 we review the econometrics literature that has applied them for identification
analysis. Econometrics applications to statistical inference are discussed in Section 4. Section 5
concludes.

The goal of this review is to provide a guide to the study of random set theory using com-
prehensive textbooks such as Molchanov (2005), from the perspective of applications in
econometrics (this goal is further developed in Molchanov & Molinari 2014). Our view is that the
instruction of random set theory could be fruitfully incorporated into PhD-level field courses in
econometrics on partial identification and in microeconomics on decision theory. Important
prerequisites for the study of random set theory include measure theory and probability theory;
good knowledge of convex analysis and topology is beneficial but not essential.

2. RANDOM SET THEORY REVIEW

Throughout this article, we use capital Latin letters to denote sets and random sets. We use
lowercase Latin letters for random vectors. We denote parameter vectors and sets of parameter
vectors by 6 and O, respectively. We let (), §,P) denote a nonatomic probability space on
which all random variables and random sets are defined, where Q is the space of elementary
events equipped with o-algebra § and probability measure P. We denote the Euclidean space
by R? and equip it with the Euclidean norm (which is denoted by | - ||).

The theory of random closed sets generally applies to the space of closed subsets of a locally
compact Hausdorff second countable topological space K (see Molchanov 2005). Unless other-
wise specified, in this article we let K = R¥ to simplify the exposition. Denote by F, G, and K the col-
lection of closed, open, and compact subsets of R?, respectively. Let S~ = {x eR?: x| = 1}
and B? = {x eR? x| < 1} denote the unit sphere and unit ball in R?, respectively. Given a set
A CRY let conv(A) denote its convex hull.

2.1. Random Sets

The conventional theory of random sets deals with random closed sets. An advantage of this
approach is that random points (i.e., random sets that are singletons) are closed, so the theory of
random closed sets includes the classical case of random points or random vectors as a special case.
A random closed set is a measurable map X : ) — F, where measurability is defined by specifying
the family of functionals of X that are random variables. In specifying this family, a balance is
sought between a need for weak conditions, so that there is a large class of examples of random sets,
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and a need for strict conditions, so that important functionals of random sets are random variables.
This trade-off results in the following definition.

Definition 1: A map X from a probability space (Q,J,P) to F is called a random
closed set if

X~ (K) = {o:X(w)nK#0} €5
for each compact set K c RY.

In other words, a random closed set is a measurable map from the given probability space
to the family of closed sets equipped with the o-algebra generated by the families of closed sets
{(Fe F:FNK # 0} for all K € K. A random compact set is defined as a random closed set that
is compact with probability one so that almost all values of X are compact sets. A convex random
set is defined similarly so that X(w) is a convex closed set for almost all w.

Example 1 (interval data): Interval data is a commonplace problem in economics and
the social sciences. Let Y= [y, yuy| be arandom interval on R where y; and yy are two
(dependent) random variables such that y; < yy almost surely. If K = [a, b], then

{YﬂK#@} = {yL <a,yUZa}U{yLe[a,b]}€S

because y; and yy are random variables. Measurability for all compact sets KCR
follows from similar arguments.

Example 2 (entry game): Consider a two-player entry game as in Tamer (2003), where
each playerjcan choose to enter (y; = 1) or to stay out of the market (y; = 0). Let £; and
&, be two random variables, and 6; < 0 and 6, < 0 be two parameters. Let players’
payoffs be m; = y;(6,y5_; + &), j = 1, 2. Each player enters the game if and only
if 7r; > 0. Then, for given values of 6; and ,, the set of pure-strategy Nash equilibria,
denoted Yy, is depicted in Figure 1 as a function of &1 and ¢,. The figure shows that for
(e1,€2) € [0, —64) X [0, —0,), the equilibrium of the game is unique, whereas for
(e1,&2) € [0, —64) X [0, —6,), the game admits multiple equilibria and the corresponding
realization of Y, has cardinality two. An equilibrium is guaranteed to exist because we
assume 01 < 0, 6, < 0. To see that Yy is a random closed set, notice that in this example,
one can take K ={(0, 0), (1, 0), (0, 1), (1, 1)} and that all its subsets are compact. Then

&

{(0, 1), (1,0

] &
-6;1

! {1, 0

Figure 1

The set of pure-strategy Nash equilibria of a two-player entry game as a function of £; and &5.
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{YonK#0} = {(e1,62) € Gk} €5,

where Gy is a Borel set determined by the chosen K. For example, if K = {(0, 0)},
then Gx = (—o0, 0) X (—o0, 0). Measurability follows because &; and &, are
random variables.

2.2. Capacity Functional and Containment Functional

Definition 1 means that X is explored by its hitting events (i.e., the events where X hits a compact
set K). The corresponding hitting probabilities have an important role in the theory of random sets;
hence, we define them formally here, together with a closely related functional.

Definition 2: (a) A functional Tx(K): K — [0, 1] given by
Tx(K) =P{XNK#0}, Kek,
is called the capacity (or hitting) functional of X.
(b) A functional Cx(F): F+ [0, 1] given by
Cx(F)=P{XCF}, FeF,

is called the containment functional of X. We write T(K) and C(F) instead of
Tx(K) and Cx(F) in cases in which no ambiguity occurs.

In random set theory, the capacity functional is important because it uniquely determines the
probability distribution of a random closed set X (see Molchanov 2005, chapter 1, section 1.2). We
note that the containment functional defined on the family of all closed sets F yields the capacity
functional extended to open sets G = F as

T(G) =P{XNG#0} =1 -P{XC G} =1— C(F)

and then by approximation determines T on all compact sets. Therefore, the containment
functional defined on the family of closed sets also determines the distribution of X. If X is
a random compact set, the containment functional defined on the family of compact sets suffices
to determine the distribution of X. If X = {£} is a random singleton with distribution P, then
Tx(K) =P{¢ € K} = P¢(K) and Cx(F) = P{¢ € F} = P¢(F); in other words, Tx and Cx coincide and
become the probability distribution of &. In particular, then Tx and Cx are additive so that
Tx(K; U K) = Tx(Ky) + Tx(K3) for disjoint K; and K5, and similarly for Cx. In general,
however, Tx is a subadditive functional, and Cx is a superadditive functional. This is because in
situations in which X contains more than a single point with positive probability, it might hit two
disjoint sets simultaneously, so that Tx(K; U K5) < Tx(K;) + Tx(K3), and it might be a subset
of a union of sets, but of neither of them alone, so that Cx(F; U F,) > Cx(F;) + Cx(F,).

Example 3 (interval data): Consider again the random interval Y = [y, yy]. Then
Ty({a}) =Ply; <a <yy}and Ty([a, b]) =Ply, <a,yy > a} +Ply, € [a,b]}. Similarly,
Cy([a,b]) = Plyr. > a, yu < b}

Example 4 (entry game): Consider the setup in Example 2. Then for K = {(0, 1)} we
have T({0, 1}) = P{e; < —01,&, > 0}and C({0,1}) =P{e; < —01,6, > 0} = P{0 < &1 < —04,
0 <&, < —0,}). For K={(1,0), (0, 1)} we have T({(1, 0), (0, 1)}) = C({(1, 0), (0, 1)}) =
1 —Ple; > =6y, &5 > —0,} — Ple; < 0, &, < 0}. One can similarly obtain T(K) and
C(K) for each K cK.
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2.3. Selections and Artstein’s Inequalities

Ever since the seminal work of Aumann (1965), it has been common to think of random sets as
bundles of random variables—the selections of the random sets.

Definition 3: For any random set X, a (measurable) selection of X is a random vector x
such that x(w) € X(w) almost surely. We denote by sel(X) the set of all selections from X.

We often call x a measurable selection to emphasize that x is measurable itself. Recall that
a random closed set is defined on the probability space (€, §,P) and, unless stated otherwise,
almost surely means P almost surely. A possibly empty random set clearly does not have a selection,
so unless stated otherwise, we assume that all random sets are almost surely nonempty, which in
turn guarantees the existence of measurable selections (Molchanov 20035, theorem 1.2.13). One
can view selections as curves taking values in the tube that is the graph of the random set X.

Example 5 (interval data): Consider again the random interval Y = [y;,yy]. Then
sel(Y) is the family of all F-measurable random variables y such that y(w) €
[yL(®),yu(w)] almost surely.

To tie the notion of selections to the more traditional approaches in econometrics,
we note that each selection of Y can be represented as follows. Take a random variable
r such that P{0 < r < 1} = 1; s distribution is left unspecified and can be any
probability distribution on [0, 1]. Let

y=ryL+ (1 =7)yy.

Then y € sel(Y). Tamer (2010) gives this representation of the random variables
in the interval [y, yu].

Example 6 (entry game): Consider the set Yy plotted in Figure 1. Let QM =
{weQ:e(w) [0, —6;) X [0, —6,)}. Then for w & QM the set Yy has only one selection
because the equilibrium is unique. For w € QM, Y, contains a rich set of selections,
which can be obtained as
(0, 1) if we Ql,
(0) = .
(1,0) if weQy,

for all measurable partitions O U Q, = oM,

Artstein (1983) and Norberg (1992) provide a necessary and sufficient condition that relates
the distribution of the selections of the random set X to the capacity (and containment) functional
of X. This is considered a fundamental result in random set theory because it allows one to
characterize the distribution of bundles of random vectors that constitute random sets.

Theorem 1 (Artstein): A probability distribution w on R? is the distribution of a
selection of a random closed set X in RY if and only if

w(K) < T(K) = P{XNK # 0} (1)
for all compact sets K c R?. Equivalently, u on R is the distribution of a selection
of a random closed set X in R if and only if

w(F) = C(F) = P{X C F} 2)

for all closed sets FCR?. If X is a compact random closed set, it suffices to check
Equation 2 for compact sets F only.
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A proof is provided in Molchanov (2005, corollary 1.4.44) and Molchanov &
Molinari (2014).

Importantly, we note thatif u from Theorem 1 is the distribution of some random vector x, then
it is not guaranteed that x € X almost surely (e.g., x can be independent of X). Theorem 1 means
that for each such p, it is possible to construct a random variable x that has distribution w and that
belongs to X almost surely. In other words, one couples x and X on the same probability space.
Hence, the nature of the domination condition in Equation 1 can be traced to the ordering, or first-
order stochastic dominance, concept for random variables. Two random variables x and y are
stochastically ordered if F,(¢) > F,(t) (i.e., P{xx < ¢} > P{y < ¢} for all #). In this case, it is possible
to find two random variables x” and y’ distributed as x and y, respectively, such that x” <y’ almost
surely. A standard way to determine these random variables is to set x' = F.! (u) and y' = F; ' (u)
by applying the inverse cumulative distribution functions to the same uniformly distributed random
variable #. One then speaks about the ordered coupling of x and y. We note that the stochastic
dominance condition can also be written as P{x € A} < P{y € A} for A = [t, o) and all # € R. Such
a set A is increasing (or upper) (i.e., x € A and x < y implies y € A). Using the probabilities of upper
sets, this domination condition can be extended to any partially ordered space. In particular, this
leads to the condition for the ordered coupling for random closed sets Z and X obtained by Norberg
(1992). Two random closed sets Z and X can be realized on the same probability space as random
sets Z' and X’ having the same distribution as Z and X, respectively, and so that Z' ¢ X’ almost surely,
if and only if the probabilities that Z has a nonempty intersection with any finite family of com-
pact sets Ky, ..., K,, are dominated by those of X. If the set Z is a singleton (e.g., Z = {x}), such
condition can be substantially simplified and reduces to the one in the inequalities in Equation 1.

If Equation 1 holds, then w is called selectionable. In this article, we refer to Equation 1 as
Artstein’s inequalities. It follows immediately that Ty and Cx equal the upper envelope and
the lower envelope, respectively, of all probability measures that are dominated by Ty and
dominate Cy. Specifically, given

Py = {p:p(K) < Tx(K)VK €K} = {u: u(F) > Cx(F)VF € F},
we have (see Molchanov 20035, theorem 1.5.13)

Tx(K)= sup{,u(K) 7 EIP’X}, Kelk,
Cx(F)=inf{u(F):nePx}, FeF.

Because of this, the functionals T and Cy are also called coherent upper and lower probabilities.
In general, the upper and lower probabilities are defined as envelopes of families of probability
measures that do not necessarily stem from a random closed set.

2.4. Aumann Expectations and Support Functions

The space of closed sets is not linear, which causes substantial difficulties in defining the expec-
tation of a random set. One approach, inspired by Aumann (1965) and pioneered by Artstein &
Vitale (1975), relies on representing a random set using the family of its selections and considering
the set formed by their expectations.

If X possesses at least one integrable selection, then X is called integrable. In this case, only
existence is important; for example, X being a segment on the line with one end point equal to zero
and the other one equal to a Cauchy distributed random variable is integrable because it possesses
a selection that equals zero almost surely, regardless of the fact that its other end point is not
integrable. The family of all integrable selections of X is denoted by sel'(X).
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Definition 4: The (selection or Aumann) expectation of an integrable random closed
set X is given by

EX =cl /de:xEsell(X)
Q

If X is almost surely nonempty and its norm || X|| = sup{ |x]]: x € X } is an integrable random
variable, then X is said to be integrably bounded, and all its selections are integrable. In
this case, the family of expectations of these integrable selections is already closed, and there
is no need to take an additional closure as required in Definition 4 (see Molchanov 2005,
theorem 2.1.24).

The selection expectation depends on the probability space used to define X (see Molchanov
2003, section 2.1.2). In particular, if the probability space is nonatomic and X is integrably
bounded, the selection expectation EX is a convex set regardless of whether X might be nonconvex
itself (Molchanov 20035, theorem 2.1.15). This convexification property of the selection expec-
tation implies that the expectation of the closed convex hull of X equals the closed convex hull of
EX, which in turn equals EX. It is then natural to describe the Aumann expectation through its
support function because this function traces out a convex set’s boundary; therefore, knowing the
support function is equivalent to knowing the set itself (see Figure 2 and Equation 3 below).

Definition 5: Let K be a convex set. The support function of K is
hi(u) = sup{(k,u} ke K}, ueRd

where {k, #) denotes the scalar product.

! by (u) !

Figure 2

The support function of K in direction # is the signed distance of the support plane to K with exterior
normal vector # from the origin; the distance is negative if and only if # points into the open half space
containing the origin (Schneider 1993, p. 37).
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Note that the support function is finite for all # if K is bounded and is sublinear (positively
homogeneous and subadditive) in #. Hence, it can be considered only for u € B? or ue S,
Moreover, one has

K =, cge{k:Ck,u) <hg(u)} =0, coi{k:(kyuy<hy(u)}. (3)

The great advantage of working with the support function of the Aumann expectation stems
from the following result.

Theorem 2: If an integrably bounded random set X is defined on a nonatomic
probability space, or if X is almost surely convex, then

Ebx (1) = bgx (1), ueR?,

A proof is provided in Molchanov (2003, theorem 2.1.22).

This implies that one does not need to calculate the Aumann expectation directly by looking at all
selections but can simply work with the expectation of the support function of the random set.

2.5. Limit Theorems for Sums of Random Sets
Consider a sequence of independently and identically distributed (i.i.d.) randomssets X;,i =1, ...,
n, where the notion of i.i.d. in this case corresponds to the requirements that

P{X;NK#0,...,X,NK,#0} = [ P{X;nK;#0} VKi,...,K,€K,
1,

i= g

P{X;NK#0} = P{X;NK#0} Vij,VKek.

Random set theory provides laws of large numbers and central limit theorems for Minkowski
sums of i.i.d. random sets that mimic the familiar ones for random vectors. Given two sets A and
B in R?, and scalars A and y in R, define the dilated set A\A = {reR?:7 = Aa, ac A} and let
the Minkowski sum of the sets AA and yB be defined as AA + yB = {rERd: r=2Aa-+ vyb,
acA,be B}. The Minkowski summation is a commutative and associative operation. Notably,
however, it is not an invertible operation: Given two sets A and B, it might be impossible to find
a set C such that A + C = B (e.g., this happens if A is a ball and B is a rectangle). Hence, whereas
with random variables one expresses limit theorems by taking the difference between a sample
average of the variables and their expectation (and normalizing it with a growing sequence), in the
case of random sets, one considers the (normalized) Hausdorff distance between the Minkowski
average of the sets and their Aumann expectation, where the Hausdorff distance between two sets
A and B is defined as

pi(A,B) = inf{r>0:ACB,BCA"}
= max{dy(A,B),dy(B,A)},

where A" = {a : d(a, A) < r} denotes the r-envelope of A, and
dy(A,B) = i -b
1 (A, B) = max min [l — b|

denotes the directed Hausdorff distance from A to B.

The limit theorems rely on three key steps. First, attention is restricted to convex random sets,
and the sets are represented as elements of a functional space by means of their support function.
This is useful because the sum of the support functions of a sequence of sets is equal to the support
function of the Minkowski sum of the sets:
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n

bige )= Y (o).

i=1

Second, an embedding theorem given by Hormander (1954) guarantees that the space of
compact and convex subsets of R? endowed with the Hausdorff metric can be isometrically
embedded into a closed convex cone in the space of continuous functions on the unit sphere
endowed with the uniform metric so that

pr(X1,X2) = sup [|bx, (1) — hx,(u).

ues!

Finally, the Shapley-Folkman-Starr theorem states that for K, . . ., K,, being any subsets of RY,

pu <K1 4+ Ky conv(Ky + - + Kn)) < Vd max [K,].

Because for a sequence of i.i.d. integrably bounded random sets Xy, ..., X,, we have that
n~ ! max||X;|| converges to zero almost surely, taking a Minkowski average yields asymptotic
convexification. Hence, the Hausdorff distance between the Minkowski average of not necessarily
convex, but integrably bounded sets and the Minkowski average of their convex hulls converges
to zero.

Putting these steps together, one obtains

1< 1< 1< 1<
PH(;;XZ‘;EX> —PH<;;COHV(X1‘),EX> <PH<;_ X,-,; COHV(Xi))

Hence, one obtains Theorem 3 below by using a law of large numbers and a central limit
theorem for continuous-valued random variables (the i.i.d. average of support functions minus
their expectation), together with Hérmander’s embedding theorem, which converts it into a result
for the Hausdorff distance between Minkowski averages of convex random sets and their Aumann
expectation, and the Shapley-Folkman-Starr theorem, which allows one to lift the requirement of
convexity of the sets.

Theorem 3 (law of large numbers for random sets): Let X, Xy, X5,... be i.i.d.
integrably bounded random closed sets in R%. Then

Xy 4ot X
Prr (%,EX) -0 almost surely as 7 — oc.

A proof is given in Molchanov (2005, theorem 3.1.6).

Theorem 4 (central limit theorem for random sets): Let X, X4, X5, ... bei.i.d. random
closed sets in R? such that E[|X||* < co. Then

Xy 4+ X
\/ZPH( 1+n+ ",EX) d sup{‘{(uﬂ:ueSdl} as 1 — 0o,

where {{ (u), ue Sd”} is a centered sample continuous Gaussian random function
on S*! with covariance E[{(n)l(v)] = E[bx(u)hx(v)] — E[bx(u)|E[hx(v)].
A proof is given in Molchanov (2005, theorem 3.2.1).
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3. APPLICATIONS TO IDENTIFICATION ANALYSIS

Identification analysis entails the study of what can be learned about a parameter of interest, given
the available data and maintained modeling assumptions. Within the partial identification par-
adigm, the goal is to characterize the sharp identification region, denoted ®; in what follows. This
region exhausts all the available information, given the sampling process and the maintained
modeling assumptions. Although it sometimes is easy to characterize @, there exist many im-
portant problems in which a tractable characterization is difficult to obtain. It may be particularly
difficult to prove sharpness, that is, to show that a conjectured region contains exactly the feasible
parameter values and no others. Proving sharpness is important. If a conjectured region is not
sharp, then some parameter values in it are actually inconsistent with the sampling process and the
maintained assumptions. Hence, they cannot have generated the observed data. Failure to eliminate
such values weakens the model’s ability to make useful predictions. It also weakens the researcher’s
ability to achieve point identification when it attains, as well as to test for model misspecification.
This is true both in the context of structural analysis and in the context of reduced form analysis.

3.1. Sharp Identification Regions

Tractable characterizations of sharp identification regions have been provided in several contexts
using standard tools of probability theory (see, e.g., Manski 1989, 2003; Manski & Tamer 2002;
Molinari 2008). Beresteanu et al. (2011) show how to apply random set theory to yield a unified
method for characterizing @, including applications in some important settings for which other
approaches are less tractable. Their approach rests on the fact that in many partially identified
models, the information in the data and assumptions can be expressed as the requirement that either
(a) a random vector belongs to a random set with probability one, or (b) the conditional expectation
of a random vector belongs to the conditional Aumann expectation of a random set almost surely
with respect to the restriction of P to the conditioning o-algebra. This immediately allows for
characterizations of the elements of 0; through Artstein’s inequalities and through the support
function dominance condition, respectively. We illustrate these ideas using two simple examples.

Example 7 (best linear prediction with interval outcomes and covariates): Suppose the
researcher is interested in the best linear prediction of y given x but observes only random
intervals Y = [y, yy] and X = [x,xy] such that Ply; <y < yy, xp < x <xy} = 1.
Earlier on, Horowitz et al. (2003) studied this problem and provided a characterization
of the sharp identification region of each component of the vector 6. The computational
complexity of the problem in their formulation, however, grows with the number of points
in the support of the outcome and covariate variables and becomes essentially unfeasible
if these variables are continuous, unless one discretizes their support quite coarsely. We
show here that the random set approach yields a characterization of ®; that remains
computationally feasible regardless of the support of outcome and covariate variables.

Suppose X and Y are integrably bounded. Then one can obtain @ as the collection of
6’s such that there are selections (%, 7) € sel(X X Y) and associated prediction errors
£(0) =y — 61 — 62%, satisfying Ee(6) = 0 and E(£(6)x) = 0. Hence, we build the set

y—01—0)x
Qo = 5]‘(~ ~ ~):(56,5/)65(31(X><Y)
(y—61 —sz)x

We remark that Qy is not necessarily convex.
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For a given 6, we can have a mean-zero prediction error uncorrelated with its as-
sociated selection x if and only if the zero vector belongs to EQy. Convexity of EQ,
and Equation 3 yield

0€EQqp &(0,u) <hpo,(u) VueB™

Using Theorem 2, we obtain

0; = {0:0<E(hg ) VueB}| = {9: max (~E(ho,(u)) = 0}, (4)

uch?

where

ho,(u) = max_[ur (5~ 01 = 6:2%) + (3% — 015 — 05|
yeYxeX

is an easy-to-calculate continuous-valued convex sublinear function of #, regardless
of whether the variables involved are continuous or discrete.

The optimization problem in Equation 4 showing whether 6 € ©,is a convex program
hence is easy to solve [see, e.g., the CVX software by Grant & Boyd (2010)]. We note,
however, that the set O itself is not necessarily convex. One then has to scan the
parameter space to trace out 0. Ciliberto & Tamer (2009) and Bar & Molinari (2013)
propose methods to conduct this task. Projections of @ on each of its components can
be obtained using the support function of this set, as shown in Kaido et al. (2013).

Example 8 (entry game): Consider the setup in Example 2. Assume we observe data that
identify Py, the multinomial distribution of outcomes of the game, and that the dis-
tribution of € is known up to a finite-dimensional parameter vector that is part of 6.
Earlier on, Tamer (2003), Berry & Tamer (2007), and Ciliberto & Tamer (2009)
studied this problem and provided an abstract characterization of ®; based on aug-
menting the model with an unrestricted selection mechanism that picks the equilibrium
played in the region of multiplicity. The selection mechanism is a rather general random
function that Beresteanu et al. (2011) later showed builds all possible selections of the
random set of equilibria. Because the selection mechanism may constitute an infinite-
dimensional nuisance parameter, dealing with it directly creates great difficulties for the
computation of @; and for inference. Random set theory yields a complementary
approach through which one can characterize ®; avoiding altogether the need to deal
with the selection mechanism. The resulting characterization is computationally
tractable, can be directly linked to existing inference methods (e.g., Andrews & Shi
2013), and is in the spirit of the earlier literature in partial identification that provides
tractable characterizations of sharp identification regions without making any refer-
ence to the selection mechanism (see, e.g., Manski & Tamer 2002, Manski 2003). To
build intuition for how this characterization is possible, we recall that Theorem 1
(Artstein’s inequalities) and Theorem 2 (the Aumann expectation and support function)
allow us to characterize the distribution and the expectation of each selection of
a random set, without having to build such selections directly.

In our simple example, if the model is correctly specified and the observed outcomes
result from pure-strategy Nash play, then a candidate 6 can have generated the
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observed outcomes if and only if y € sel(Y,). An immediate application of Artstein’s
theorem vyields

0 = {6:P{y e K} < Ty, (K),KcK},

which allows one to verify whether 6 € ®; by checking a finite number of moment
inequalities—specifically 2” — 2, with 7 the cardinality of K. This can potentially be
a large number, but in Section 3.2 below, we show that econometric applications of
random set theory similar in spirit to, but much more complex than, the example
considered here motivated econometricians to find effective ways to substantially reduce
the number of test sets K over which to check the dominance condition.

Beresteanu et al. (2011) show that ®; can be equivalently characterized in terms of
an Aumann expectation and support function, observing that if the model is correctly
specified, the multinomial distribution P, observed in the data should belong to the
collection of multinomial distributions associated with each selection of Yy. Recalling
that the probability mass function of a discrete random variable is equal to the
expectation of properly defined indicator functions, one can express the collection of
multinomial distributions associated with each selection of Y, as an Aumann ex-
pectation. Specifically, define the set

(1=3)(1 =)
Qp=1q:9= y1(1-75) ,y €sel(Yp)
(1-51)%
Y1Y2

Then one can equivalently write

O = {6:P, cE(Qy)}
_ {9 £ (Py, 1) < b0, (1), Vu € BY }
_ {9:(Py,u)gE(hQB(u)),‘v’ueBd}
_ {0: max Py, ) — E(ho,(n)) = 0},

where the second line follows from Equation 3, the third line follows from Theorem 2,
and the last line is an algebraic manipulation. The maximization problem in it is
a convex optimization problem, and solving it is computationally easy. For example,
Boyd & Vandenberghe (2004, p. 8) write, “We can easily solve [convex] problems
with hundreds of variables and thousands of constraints on a current desktop
computer, in at most a few tens of seconds.”

The characterization based on the Aumann expectation also applies easily to
situations in which outcomes of the game result from mixed-strategy Nash play or
from other solution concepts, by replacing the set Qg with one collecting the mul-
tinomial distributions over outcomes of the game associated with each equilibrium
mixed strategy. However, there is no result to date formally establishing a charac-
terization for these models based on Artstein’s inequalities.
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Beresteanu etal. (2011) establish the validity of their Aumann expectation-based approach for
a general class of econometric models, which they call “models with convex moment predictions.”
A detailed discussion of these models goes beyond the scope of this review; our two preceding
examples, however, illustrate the key features of the random set approach to obtaining tractable
characterizations of sharp identification regions.

In important complementary work, Galichon & Henry (2011) use the characterization of 0,
based on Artstein’s inequalities to study finite games of complete information with multiple pure-
strategy Nash equilibria. They show that further computational simplifications can be obtained,
by bringing to bear different mathematical tools from optimal transportation theory. A discussion
of this theory is beyond the scope of this review.

3.2. Core-Determining Classes

Artstein’s inequalities (Equation 1) characterize distributions of selections by solving a po-
tentially large system of inequalities indexed by all compact subsets of the carrier space. As
discussed in the previous section, however, econometric applications of random set theory call
for computationally tractable characterizations of ®;. This motivated the study of a reduced
family of test sets that still suffices to check for the selectionability of a distribution. Such
a reduced family of sets was formally defined by Galichon & Henry (2006, 2011), who then
implement it in the context of incomplete models that satisfy a monotonicity requirement. Here
we present a definition that makes use of the containment functional; a similar definition can be
given using the capacity functional.

Definition 6: A family of compact sets M is said to be a core-determining class for
a random closed set X if any probability measure p satisfying the inequalities

u(F)> C(F) = P{X C F} ()

for all F € M is the distribution of a selection of X, so Equation 5 holds for all closed
sets F.

It is easy to show that a core-determining class M is also distribution determining; in other
words, the values of the containment functional on M uniquely determine the distribution of the
random closed set X (distribution-determining classes in random set theory correspond to a similar
concept for random variables in probability theory). However, distribution-determining classes
are not necessarily core determining.

A rather easy and general core-determining class is obtained as a subfamily of all compact sets
that is dense in a certain sense. For instance, in the Euclidean space, it suffices to consider compact
sets obtained as finite unions of closed balls with rational centers and radii.

For a further reduction, one should impose additional restrictions on the family of realiza-
tions of X. Assume that X is almost surely convex. It is known that the containment functional
Cx(F), F € F, uniquely determines the distribution of X. Because a convex set X fits inside
a convex set F, it would be natural to expect that probabilities of the type Cx(F) = P{X C F} for
all convex closed sets F uniquely determine the distribution of X. This is, however, only the case
if X is almost surely compact (see Molchanov 2005, theorem 1.7.8). Even in this case, however,
the family of all convex compact sets is not a core-determining class when the random sets are
of dimension greater than 1.

In some cases (most importantly, for random sets being intervals on the line), it is useful to note
that X C F if and only if X C Fx, where
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Fx = U X
X we) X (w)CF (w)

for any set Q) of full probability. Thus, w is the distribution of a selection of X if and only if
u(Fx) > P{X c Fx} for all closed sets F.

Example 9 (random interval): Let Y = [y}, yy] be a bounded random interval on the
real line. In this case, it is useful to characterize selections by the inequalities in
Equation 2 involving the containment functional of Y. Then u is the distribution of
a selection of Y if and only if

/J“([a! b]) 2 P{YC[&I, b}} =Pla<yr,yy<b}
for all segments [a, b] CR.

Sometimes it is possible to partition the whole space of elementary events () into several subsets
such that the values of X on w’s from disjoint subsets are disjoint.

Theorem 5: Consider a partition of ) into sets {1, 1 < i < N, of positive probability,
where N may be infinite. Let K; = U{X(w) TwEe Q,-} denote the range of X(w) for w €
Q. Assume that K;, i > 1, are disjoint. Then it suffices to check Equation 1 only for all
K such that there is i € {1,..., N} for which K CcK;.

A proof is provided in Molchanov & Molinari (2014).

This result may yield a significantly reduced core-determining class.

Example 10 (entry game): Consider the setup in Example 2. We show above that
Artstein’s theorem yields

0 = {0:P{y e K} < Ty, (K),KCK}.

Thisamounts to 2” — 2 inequalities to check, with 7 the cardinality of K, in this case 4.
An application of Theorem 5, however, shows that it suffices to check eight
inequalities involving singleton sets K = {a}:

0 = {0:Cy, ({a}) <Py = {a}} < Ty, ({a}),a € K.

Galichon & Henry (2011) propose the use of a matching algorithm to check that a probability
measure is selectionable, using tools from optimal transportation theory. Indeed, a random vector
xisaselection of X if and only if it is possible to match values x(w) for w € Q to the values of X(w) so
that x(w) € X(w). This yields an alternative algorithm to check the selectionability and also makes
it possible to quantify how far a random vector is from the family of selections.

3.3. Random Sets in the Space of Unobservables

In Example 7, for the interval data case, we encounter a random closed set defined in the space of
unobservables, the prediction errors. Random closed sets defined in such space can be extremely
useful for incorporating restrictions on the unobservables in the analysis, as illustrated by
Chesher and Rosen in a series of papers (e.g., Chesher & Rosen 2012, Chesher et al. 2013). Here
we illustrate their approach through the entry game example.
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Example 11 (entry game): Consider again the two-player entry game in Example 2. So
far we have addressed the identification problem in this model by defining the random
closed set Yy(¢) of pure-strategy Nash equilibria associated with a given realization of
e=(e1,&2). Therandom set Y, can be viewed as a set-valued function of ¢. The inverse
of this function is defined as (see Aubin & Frankowska 1990)

Yo(y) = {s:y € Yg(é‘)}.

If y is a random element in K, then Y, is a random closed set in the space of
unobservables. Then

yesel(Yy(e)) o e€ sel(Yg(y)),

so thatusing Artstein’s inequalities (Equation 2), we find that a candidate distribution
for ¢ is the distribution of a selection of Yy(y) if and only if

P{ec F} > P{Yo(y) CF}

forall closed sets F in the plane, which is the realization space for . However, Chesher
& Rosen (2012) show that this family of test sets can be considerably reduced to being
equivalent to the case in which one works with Y,, by observing that the realizations
of Yy(y) associated with the four realizations of y € K are four rectangles (see Figure
1). Hence, one can construct the core-determining class in the following steps. (a) Let
F be a proper subset of one of the four rectangles; then P{Y,(y) C F} = 0, and the
inequality is automatically satisfied. (b) Take the collection of sets F that contain one
of the four rectangles but not more. Then it suffices to check the inequalities for the
four sets F that equal (the closure of) each of the rectangles; this is because a larger set
F’ in this family yields the same value for the containment functional as F. (c) Take the
collection of sets F that contain two of the four rectangles but not more. A similar
reasoning allows one to check the inequalities only on the five sets F that equal (the
closure of) unions of two of the rectangles. Observing that the realizations Y, (0, 0)
and Y, (1, 1) are disjoint, one obtains that the containment functional is additive on
sets F = F; U F, such that Y,(0, 0) C F; and Yy(1, 1) C Fa; therefore, inequalities
involving this set are redundant. (d) Finally, the collection of sets F that contain three
of the four rectangles can similarly be reduced to (the closure of) unions of three of the
rectangles and therefore yield redundant inequalities.

As this example makes plain, one can often work with random sets defined either in the
space of observables or in the space of unobservables. It is then natural to ask which might be
more advantageous in practice. We believe the answer depends on the modeling assumptions.
As a rule of thumb, if the modeling assumptions are either stochastic or shape restrictions on the
observables, it is often most useful to work with random sets defined in the space of observables.
If the modeling assumptions are either stochastic or shape restrictions in the space of unobserv-
ables, it is often most useful to work with random sets defined in the space of unobservables.
Suppose, for example, within the two-player entry game discussed above, that one observes
variable v along with y. Then if the model is correctly specified, one has that (y, v) € sel(Yy, v).
Impose the exclusion restriction that y is independent of v. Notice that the capacity and con-
tainment functional of Yy may depend on v. Then applying Artstein’s inequalities, one immediately
gets (see Molchanov & Molinari 2014)
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0= {0 :Cy,,({a}) <P{y = {a}} < Ty,,({a}),a €K, v — a.s.}.

Alternatively, suppose the exclusion restriction is between an instrumental variable v and the
unobservable ¢. If the model is correctly specified, (¢,v) € sel(Yy,v), and a similar reasoning as
before yields

0; = {0:P{ec F) > P{Ts(y) CFlu}, Fe Myv—as.,

where M is the core-determining class obtained above. For other examples, readers are referred
to Beresteanu et al. (2012) and Chesher & Rosen (2012).

4. APPLICATIONS TO INFERENCE

Identification arguments are always at the population level. That is, they presume that identified
features of the model can be learned with certainty from observation of the entire population.
However, in practice, such features need to be estimated from a finite sample. When a model is
partially identified, statistical inference is particularly delicate to conduct. This is because the
identified feature of the model is a set rather than a point. The shape and size of a properly defined
set estimator change with sample size, and even the consistency of the estimator becomes harder to
determine. Horowitz & Manski (2000), Manski & Tamer (2002), Imbens & Manski (2004),
Chernozhukov etal. (2007), and Andrews & Soares (2010), among others, address the question of
how to conduct inference in partially identified models, using tools of probability theory for
random variables. A complementary approach is built on elements of random set theory. The
method offers a unified approach to inference for level sets and convex identified sets based on
Wald-type test statistics for the Hausdorff distance. The approach has been shown to be especially
advantageous when @ is convex, or when one is interested in inference for projections of Oy,
because, in this case, the support function is a natural tool to obtain a functional representation of
the boundary of the set, or its projections directly.

4.1. Estimation of Level Sets

The nature of partial identification problems calls for estimation of sets that appear as solutions to
systems of inequalities. In the case of one inequality, consider the set S(¢) = {s eR?: f(s) < t} for
a lower semicontinuous real-valued function fand some # € R. The lower semicontinuity property
of fis actually equivalent to the closedness of such level sets. If now f is replaced by its empirical
estimator f,, then S,(¢) = {s eR?:f,(s) < t} yields the plug-in estimator of S. If f is a probability
density function, then the complement of the set S(¢) appears in cluster analysis (see Hartigan
1975). More sophisticated estimators of S(¢) using the so-called excess mass method are considered
in Polonik (1995). The asymptotic normality of plug-in estimators is studied in Mason & Polonik
(2009), and optimal rates are obtained in Rigollet & Vert (2009).

Molchanov (1998) shows that the plug-in estimator is strongly consistent if S(z) equals the
closure of the set {s €RY:f(s) < t}. This condition is also necessary under some rather mild
technical conditions. However, this condition is violated if fhas a local minimum at level £. Most
importantly, this is the case if ¢ is the global minimum of the function £, and S(z) is then the set
arginf f of the global minimizers of the function f. This case has been thoroughly analyzed by
Chernozhukov et al. (2007), who suggest estimating S(¢) by the set {s : f,,(s) < ¢ + &,}, where the
nonnegative correction term ¢,, declines to zero at an appropriate rate.
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A limit theorem obtained in Molchanov (1998) for the plug-in estimator provides a limit distri-
bution for the normalized Hausdorff distance between S(¢) and S,,(¢), both intersected with any given
compact set K. The limit theorem holds under the assumptions that the normalized difference f,,(s) —
f(s) satisfies a limit theorem and that f satisfies a certain smoothness condition formulated in terms
of its downside continuity modulus [i.e., the infimum of f{s’) — f{s) for s’ from a neighborhood of s].

4.2. Support Function Approach

Beresteanu & Molinari (2008) propose the use of statistics based on the Hausdorff distance to
perform estimation and inference on sharp identification regions @; in the space of sets, so as to
replicate the common Wald approach to these tasks for point identified models in the space of
vectors. In particular, they employ two Wald statistics, which measure the Hausdorff distance and
the directed Hausdorff distance between the identified set and a set-valued estimator, and develop
large sample and bootstrap inference procedures for these statistics.

Their results apply directly to incomplete econometric models in which 0, is equal to the
Aumann expectation of a random set that can be constructed using random variables charac-
terizing the model. Applying the analogy principle, Beresteanu & Molinari suggest the estimation
of @ through a Minkowski sample average of random sets defined using the sample observations.
The support function of the convex hull of these random sets is used to represent the set estimator
as a sample average of elements of a functional space so that Theorems 3 and 4 (law of large
numbers and central limit theorem) are used to establish consistency of the estimator and derive its
limiting distribution with respect to the Hausdorff distance. They also show that the critical values
of the limiting distribution can be consistently estimated through a straightforward bootstrap
procedure. Hypotheses about subsets of the population identification region are tested using the
Wald statistic based on the directed Hausdorff distance, and these tests are inverted to obtain
confidence sets that asymptotically cover the population identification region with a prespecified
probability. Additionally, hypotheses about the entire population identification region, rather
than only its subsets, are tested using the Wald statistic based on the Hausdorff distance.

We illustrate Beresteanu & Molinari’s approach for the case of a best linear predictor with
interval outcome data. We remark that in the case of entry games, @, is not convex; therefore, any
statistic based on the support function yields asymptotic statements about conv(0;).

Example 12 (inference for best linear predictors with interval outcomes): Suppose the
researcher is interested in the best linear prediction of y given x. Let (x,y1,yu) be
the observed variables, with P{y; < y < yy} = 1. Then the sharp identification
region of the best linear prediction parameter vector 6 can be obtained defining the

random segment
_ y 2
G= {( ) : )’LS)’SJ’U}CR
xy

and collecting the least squares associated with each (3, xy) € sel(G):

0 = BeRd:f):E(i i)_lE(jy),(y,xy)esel(G), (6)

x
where we have assumed that G is integrably bounded (this is the case, for example,

if yr, yu, xy1, and xyy are each absolutely integrable). Given a random sample
(s YLis YUi)i1»> ODE can estimate O; using
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o al
O =2, (G1+ -+ Gp),

where 3, is a consistent estimator of the matrix inside Equation 6. Using Theorem 3,
Beresteanu & Molinari (2008) establish a Slutsky-type result and under mild reg-
ularity conditions show that

pu(8.01) =),

To show that the support function process converges to a Gaussian process, Beresteanu &
Molinari need to assume that all x variables have a continuous distribution. This
assures that the set ®; does not have flat faces, which in turn guarantees that he (1) is
differentiable in #. Therefore, a functional delta method can be employed to show,
under additional mild regularity conditions, that

Vrpy <@n, &)L sup |[|2(u)],

uesi!

Vndy <@1, @)L sup (—z(u)).,

uesi!

where z(u) is a linear function of a centered sample continuous Gaussian process. By
comparison, in the presence of flat faces in @7, Bontemps et al. (2012) show that the
support function process converges to the sum of a Gaussian process and a countable
point process that takes nonzero values at directions # orthogonal to the flat faces
of O

A simple nonparametric bootstrap procedure that resamples from the empirical
distribution of (x;,yrisyui)i_, consistently estimates the quantiles of the limiting
distributions of these Wald statistics. Hence, one can test hypotheses of the form
$0:0; = O versus H4 : O # O using the statistic based on the Hausdorff distance
and hypotheses of the form $j: @) C ©; versus H4: @9 Z O using the statistic based
on the directed Hausdorff distance. Inverting these tests yields confidence collections
that are unions of sets that cannot be rejected as equal to either ©; or subsets of 0.
Estimation and inference can be implemented using standard statistical packages,
including STATA (see http://economics.cornell.edu/fmolinari/#Stata_SetBLP).

Bontemps et al. (2012) extend these results in important directions by allowing for
incomplete linear moment restrictions, in which the number of restrictions exceeds
the number of parameters to be estimated, and extend the familiar Sargan test for
overidentifying restrictions to partially identified models. When the number of
restrictions equals the number of parameters to be estimated, the authors propose
a support function-based statistic to test hypotheses about each vector 6 € 0@, and
invert this statistic to obtain confidence sets that asymptotically cover each element of
O; with a prespecified probability.

Chandrasekhar et al. (2012) significantly extend the applicability of Beresteanu & Molinari’s
(2008) approach to cover the best linear approximation of any function f(x) that is known to lie
within two identified bounding functions. The lower and upper functions defining the band are
allowed to be any functions, including ones carrying an index, and can be estimated parametrically
or nonparametrically. Because the intervals defining the outcome variable [i.e., the extreme points
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of the band on f(x)] can be estimated nonparametrically in a first stage, Chandrasekhar et al.
develop a new limit theory for the support function process and prove that it approximately
converges to a Gaussian process and that the Bayesian bootstrap can be applied for inference. They
also propose a simple data-jittering procedure, in which a continuously distributed error with
arbitrarily small but positive variance is added to each discrete variable in x, eliminating flat
faces in ©;. Hence, they obtain valid, albeit arbitrarily conservative, inference without ruling out
discrete covariates. In a study of inference for sets defined by one smooth nonlinear inequality,
Chernozhukov etal. (2012) show that the (directed) Hausdorff statistic can be weighted to enforce
either exact or first-order equivariance to transformations of parameters.

4.3. Duality Between the Level Set Approach and the Support Function Approach

Kaido (2012) further enlarges the domain of applicability of the support function approach by
establishing a duality between level set estimators based on convex criterion functions and the
support function of the level set estimators. This allows one to use Hausdorff-based statistics and
the support function approach not only when 0; is the Aumann expectation of a properly defined
random closed set, but also when such a representation is not readily available.

Kaido considers an identification region and its corresponding level set estimator given, re-
spectively, by

0, ={6€0:f(6) = 0},
0,(t) = {0€0:a,f,(6) <1},

where O is a convex subset of R, fis a convex, lower semicontinuous criterion function with
values in R and infimum at zero, f and f,, satisfy the additional regularity conditions set forth in
Chernozhukov et al. (2007), a,, is a growing sequence, and ¢ > 0 is properly chosen. Under these
assumptions, @ is convex, and Kaido (2012, lemma 3.1) establishes that

h(;)”(t) (u) <b<e inf a,f,(0)>t,

HEK;,,,‘Q@

where K;,, = {0 eRY: (u,6) > b}.

Using this result, Kaido shows how to relate the normalized support function process Z,, (1, t) =
a, (b@n ® (u) — he, (u)) to a localized version of the criterion function £, to obtain its asymptotic
distribution using the notion of weak epiconvergence (see Molchanov 20035, section 5.3). An
application of Hormander’s embedding theorem then yields the asymptotic distribution of test
statistics based on the Hausdorff distance.

Kaidoetal. (2013) show that Kaido’s (2012) approach can be extended to conduct inference on
projections of ®; even when this set is nonconvex and the identified set is estimated using a level set
estimator under the assumptions of Chernozhukov et al. (2007). Their method is based on the
simple observation that the projections of @; are equal to the projections of conv(0;), and as such,
when projections are the object of interest, no information is lost owing to the convexification
effect of the support function approach.

4.4. Efficiency of the Support Function Approach

Kaido & Santos (2014) develop a theory of efficiency for estimation of partially identified models
defined by a finite number of convex moment inequalities of the form E(mz(x; 0)) < 0,7 =1,... ],
which are smooth as functionals of the distribution of the data. The functions 6+ #3;E (1;(x; 6) ) are
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assumed to be convex so that O = {6 : E(m;(x;0)) < 0,j=1,... ]} is convex and can be represented
through its support function. Using the classic results in Bickel et al. (1993), Kaido & Santos show
that under suitable regularity conditions, the support function admits for /z-consistent regular
estimation. The assumptions rule out, in particular, (a) flat faces in ®; that depend on parameters to
be estimated, (b) more binding moment inequalities than parameters to be estimated atany boundary
point of O, and (c) sets @7 with empty interiors. Using the convolution theorem, they establish that
any regular estimator of the support function must converge in distribution to the sum of a mean zero
Gaussian process G( and an independent noise process Ao.

Using the same reasoning as in the classical case, Kaido & Santos (2014) call a support function
estimator semiparametrically efficient if it is regular and its asymptotic distribution equals that of
Gyo. Hence, they obtain a semiparametric efficiency bound for regular estimators of the support
function by deriving the covariance kernel of G. Then they show that a simple plug-in estimator
based on the support function of the set of parameters satisfying the sample analog of the moment
inequalities attains this bound.

The semiparametrically efficient estimator of the support function is used to construct esti-
mates of the corresponding identified set that minimize a wide class of asymptotic loss functions
based on the Hausdorff distance. To estimate critical values of the limiting distribution of test
statistics based on the Hausdorff distance, Kaido & Santos (2014) propose a score-multiplier
bootstrap that does not require the support function to be recomputed for each resample of the
data, which is especially computationally attractive. In addition to convex moment inequality
models, Kaido & Santos’s (2014) results imply that the estimator for the best linear predictor with
interval outcome data in Example 12 is asymptotically efficient.

5. CONCLUSIONS

Although its initial development was in part motivated by questions of general equilibrium
analysis and decision theory, random set theory had not been introduced in econometrics until
recently. The new surge of interest in applications of random set theory to econometrics has been
motivated by partially identified models, in which the identified object is a set rather than a sin-
gleton. Researchers interested in partially identified models need to provide tractable character-
izations of sharp identification regions and need to develop methodologies to estimate sets, test
hypotheses about (subsets of) the identification regions, and build confidence sets that cover them
with a prespecified asymptotic probability.

Each of these tasks may be simplified by the use of random set theory, and many results can be
developed under a unified framework. This is because random set theory distills elements of to-
pology, convex geometry, and probability theory to directly provide a mathematical framework
designed to analyze random elements whose realizations are sets. The resulting tools have proven
especially useful for inference when the econometric model yields a convex sharp identification
region, and for identification analysis when the informational content of the econometric model is
equivalent to the statement that (the conditional expectation of) an (un)observable variable almost
surely belongs to (the conditional Aumann expectation of) a random set.

This article has attempted to introduce the basic elements of random set theory that have
proven useful to date in econometrics and to summarize the main applications of the theory within
this literature. The hope is that this review can stimulate and simplify further applications of
random set theory in econometrics.

The random set approach to partial identification may complement a more traditional ap-
proach based on laws of large numbers and central limit theorems for random vectors, which
continues to be productively applied in the field. We do not review results based on these methods,
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but refer readers to Tamer (2010), and references therein, for a survey of the partial identification
literature.

We also do not summarize the important literature in decision theory that employs elements of
random set theory, most notably nonadditive measures and Choquet integrals. We refer interested
readers to Gilboa (2004) for a thorough treatment of these topics.
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