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Abstract

A parameter of an econometric model is identified if there is a one-to-
one or many-to-one mapping from the population distribution of the
available data to the parameter. Often, this mapping is obtained by
inverting a mapping from the parameter to the population distribu-
tion. If the inverse mapping is discontinuous, then estimation of the
parameter usually presents an ill-posed inverse problem. Such prob-
lems arise in many settings in economics and other fields in which
the parameter of interest is a function. This article explains how ill-
posedness arises and why it causes problems for estimation. The need
to modify or regularize the identifying mapping is explained, and
methods for regularization and estimation are discussed. Methods
for forming confidence intervals and testing hypotheses are summa-
rized. It is shown that a hypothesis test can bemore precise in a certain
sense than an estimator. An empirical example illustrates estimation
in an ill-posed setting in economics.
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1. INTRODUCTION

A parameter of an econometric model is said to be identified if it is uniquely determined by the
probability distribution from which the available data are sampled (hereinafter referred to as the
population distribution). In other words, a parameter is identified if there is a one-to-one ormany-
to-onemapping from the population distribution to the parameter. The parametermay be a scalar,
vector, or function. In many familiar economic settings, such as least squares or instrumental
variables (IV) estimation of a linear model, the parameter of interest is a scalar or vector, and the
identifyingmapping is continuous. That is, small changes in the population distribution of the data
produce only small changes in the identified parameter. When this happens, the parameter of
interest can be estimated consistently by replacing the unknown population distribution with
a consistent sample analog, such as the empirical distribution of the data (Manski 1988). Con-
sistency of the sample analog implies that the difference between the sample analog and true
population distribution is small when the sample size is large. The estimated parameter is con-
sistent for the true parameter because the continuity of the identifying mapping implies that the
difference between the estimated and true parameter values is small if the difference between the
sample analog and true population distribution is small.

This approach to estimation does not necessarily work if the mapping that identifies the
parameter of interest is discontinuous. Nonparametric IV estimation and deconvolution are
examples of discontinuous mappings in economics in which the parameter of interest cannot be
estimated consistently by replacing the unknown population distributionwith a consistent sample
analog. Nonparametric IV estimation is a generalization of conventional IV estimation of a linear
model. Deconvolution and closely related estimation problems are important in models with
errors in variables (Chen et al. 2011; Li 2002; Li & Hsiao 2004; Schennach 2004a,b), panel data
models (Horowitz & Markatou 1996), models with latent factors (Bonhomme & Robin 2010),
empirical models of auctions (Li et al. 2000), and estimation using aggregated data (Linton &
Whang 2002). Many other examples of discontinuous mappings arise in mathematics, statistics,
and engineering. Some of these are described in Section 3 of this article. Others are described by
O’Sullivan (1986) andEngl et al. (1996). In each case, the parameter of interest cannot be estimated
consistently by replacing the population distribution of the datawith a consistent sample analog in
the identifyingmapping.This is because the estimated and true values of the parametermaybe very
different, even if the sample size is large enough to make the difference between the sample analog
and population distribution negligibly small.

An estimation problem is called ill posed if the identifyingmapping is discontinuous in away that
prevents consistent estimation of the parameter of interest by replacing the population distribution
of the datawith a consistent sample analog. The problem is called an ill-posed inverse problem if the
discontinuous identifyingmapping is obtainedby inverting anothermapping that is continuous.The
concept of ill-posedness is usually attributed toHadamard (1923), who called a problemwell posed
if it has a unique solution that depends continuously on the available data. An ill-posed problem is
one that is not well posed. This concept can be formalized (e.g., Kress 1999, definition 15.1), but
formalization is not needed for the discussion in this article. In the context of this article, the
uniqueness condition for well-posedness is equivalent to identification of the parameter of interest.
The continuity condition means that replacing the population distribution of the data with
a consistent sample analog in the identifyingmapping yields a consistent estimator of the parameter.
The concept of ill-posedness differs from nonrobustness (Huber 1981). Nonrobustness refers to
a situation inwhich the population distribution of the data differs from the one assumed in amodel.
Ill-posedness refers to a type of estimation problem that arises in a correct model.
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This article shows how ill-posed inverse problems arise, explains how estimation and inference
can be carried out in ill-posed settings, and explainswhy estimation in these settings is important in
economics. I focus on three examples that illustrate the issues and methods associated with ill-
posed inverse problems. These are nonparametric estimation of a probability density function,
deconvolution density estimation, and nonparametric IV estimation.

The remainder of the article is organized as follows. Section 2 provides examples of continuous
and discontinuous identifying mappings. These illustrate how discontinuity can arise in problems
that are important in economics. Section 2 also explains why discontinuity causes problems for
estimation and inference. Section 3 presents examples of ill-posed inverse problems in mathe-
matics, statistics, and engineering. The econometrics literature on ill-posed inverse problems
builds on research in these fields, some of which is over 100 years old and very important in
modern medicine and image processing. Section 4 treats regularization and estimation of models
that present ill-posed inverse problems. The term regularization refers tomethods for removing the
discontinuity in the identifying mapping to facilitate estimation. Different models and estimation
problems require different regularization methods, depending especially on the source of dis-
continuity in the identifying mapping. Section 4 concentrates on regularization and estimation of
the models described in Section 2. Section 5 discusses confidence intervals and hypothesis tests
based on thesemodels. Section 6 presents an empirical example that illustrates estimation in an ill-
posed setting in economics. Section 7 presents concluding comments. Section 8 is an appendix that
presents technical material that is not essential for understanding the main ideas of the article.
Unless otherwise stated, it is assumed throughout this article that all random variables are con-
tinuously distributed.

2. MOTIVATING EXAMPLES

This section provides examples that illustrate the difference between continuous and discontin-
uous identifying mappings and how a discontinuous mapping can arise in settings that are im-
portant in economics. The examples help to motivate the discussion in Sections 4 and 5 of
estimation and inference in ill-posed problems.

2.1. Examples of Continuous and Discontinuous Identifying Relations

The first example of a continuous mapping is the identifying relation of the familiar linear mean-
regression model. The model is

Y ¼ XbþU; EðUjXÞ ¼ 0, ð1Þ

where Y is the scalar-valued dependent variable; X is a 13 p vector of explanatory variables;
U is an unobserved, scalar random variable; and b is a p3 1 vector of constants. Let Xj denote
the j-th component of X. Assume that EðY2Þ�M and EðX2

j Þ�M for each j ¼ 1, . . . , p and some
constant M < 1. Equation 1 implies that

E
�
X0Y

� ¼ �
EðX0XÞ�b. ð2Þ

Inversion of Equation 2 yields the relation

b ¼ �
EðX0XÞ��1EðX0YÞ. ð3Þ
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Equation 3 determinesbuniquely ifEðX0XÞ is a nonsingularmatrix. Thus, Equation 3 identifiesb.
Moreover, b is a continuous function of EðX0XÞ, EðX0YÞ, and the probability distribution of
ðY,XÞ. Small changes in these quantities cause only small changes in b.

Another example of a continuous mapping is obtained by allowing X to be endogenous but
assuming that an instrumental variable Z is available. The model in Equation 1 then becomes

Y ¼ XbþU; EðUjZÞ ¼ 0, ð4Þ

whereZ is a 13 q vector and q� p. As before, assume that E
�
Y2

��M and E
�
X2

j

��M for some
constant M < 1. Also assume that each component Zj of Z satisfies E

�
Z2

j

��M. Equation 4
implies that

E
�
Z0Y

� ¼ �
EðZ0XÞ�b,

and therefore,

E
�
X0Z

��
EðZ0ZÞ��1E

�
Z0Y

� ¼ E
�
X0Z

��
EðZ0ZÞ��1�EðZ0XÞ�b. ð5Þ

Inversion of Equation 5 yields

b ¼ E
�
X0Z

��
EðZ0ZÞ��1E

�
Z0X

� �1E
�
X0Z

��
EðZ0ZÞ��1E

�
Z0Y

�
.

on
ð6Þ

Theparameterb is uniquely determined if the inversematrices on the right-hand side of Equation 6
exist. Thus, Equation 6 identifies b in the model in Equation 4. Moreover, b is a continuous
function of the moments and the probability distributions of the random variables on the right-
hand side of Equation 6.

Now consider estimation of b in the models in Equations 1 and 4. Suppose the data available
for estimating b in Equation 1 are a random sample from the probability distribution of ðY,XÞ.
Then b in Equation 1 can be estimated by replacing the unknown population expectations in
Equation 3 with sample averages. This is equivalent to replacing the unknown distribution of
ðY,XÞwith the empirical distribution of the data.Denote the data by fYi,Xi : i ¼ 1, . . . , ng. Define
the sample averages

mXY ¼ n�1
Xn
i¼1

X0
iYi

and

mXX ¼ n�1
Xn
i¼1

X0
iXi.

Then b in the model in Equation 1 is estimated by replacing EðX0YÞ with mXY and EðX0XÞ with
mXX in Equation 3 to obtain the ordinary least squares estimator

b̂LS ¼ m�1
XXmXY .

Now suppose the data for estimating b in Equation 4 are a random sample from the probability
distribution of ðY,X,ZÞ. Then b in the model in Equation 4 can be estimated by replacing the
unknown population expectations in Equation 6 with sample averages. Denote the data by
fYi,Xi,Zi : i ¼ 1, . . . , ng. Define the sample averages
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mZY ¼ n�1
Xn
i¼1

Z0
iYi,

mZZ ¼ n�1
Xn
i¼1

Z0
iZi,

and

mZX ¼ n�1
Xn
i¼1

Z0
iXi.

Then replacingEðX0ZÞ,EðZ0ZÞ, andEðZ0YÞwithmXZ,mZZ, andmZY in Equation 6, respectively,
yields the two-stage least squares estimator

b̂IV ¼
�
m0

XZm
�1
ZZmXZ

��1
m0

XZm
�1
ZZmZY .

The estimators b̂LS and b̂IV are consistent for b in their respective models. This is because (a) the
sample averages entering b̂LS and b̂IV are consistent for their corresponding populationmoments,
and (b) the identifying relations in Equations 3 and 6 are continuous functions of the population
expectations on their right-hand sides. Consistency of the sample averages implies that they are
arbitrarily close to the corresponding population moments when n is sufficiently large. Consis-
tency combined with the continuity of Equations 3 and 6 implies that b̂LS and b̂IV are arbitrarily
close to b when n is sufficiently large.

As discussed in Section 1, however, there are important settings in which the relation that
identifies a parameter is discontinuous. Discontinuous identifying relations often arise when the
parameter of interest is a function rather than a finite-dimensional quantity. An example is the
relation that identifies the probability density function of a scalar, continuously distributed ran-
dom variable in terms of that variable’s cumulative distribution function. The relation is

f ðxÞ ¼ dFðxÞ
dx

, ð7Þ

where f is the probability density function, and F is the cumulative distribution function. The
mapping in Equation 7 from F to f is discontinuous. Equation 7 is the inverse of

FðxÞ ¼
Z 1

�1
Iðv� xÞf ðvÞdv, ð8Þ

where Ið×Þ is the indicator function. Equation 8 is a continuous mapping, but Equation 7 is not. In
Equation 8, small changes in f can induce only small changes in F, but the converse is not true.
Arbitrarily small changes in F can induce large changes in f . To see this, suppose that f ðxÞ� a for
some a < 1. Then F can be approximated arbitrarily well uniformly in x by a step function. Given
any ɛ > 0, there is a step function, Fstep, such that

sup
�1<x<1

��FstepðxÞ � FðxÞ��< ɛ. ð9Þ
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Define

fstepðxÞ ¼ dFstepðxÞ
	
dx.

Then one finds that fstepðxÞ ¼ 1 at jumps of Fstep, and fstepðxÞ ¼ 0 elsewhere. Therefore,
jfstepðxÞ � f ðxÞj can be arbitrarily large, even if jFstepðxÞ � FðxÞj is arbitrarily small. Accordingly,
estimation of f in Equation 7 (nonparametric density estimation) is an ill-posed inverse problem.
The probability density function f cannot be estimated consistently by replacing F on the right-
hand side of Equation 7 by the empirical distribution function

FnðxÞ ¼ n�1
Xn
i¼1

IðXi � xÞ.

Although Fn is a uniformly consistent estimator of F, it is a step function. Its derivative is always
zero or 1 and never approaches f ðxÞ when 0 < f ðxÞ < 1, regardless of how large n is.

Deconvolution provides a second example of an ill-posed inverse problem that is important in
economics. The source of the problem is illustrated by a simple, idealized model of measurement
error. More realistic versions of deconvolution are described, for example, by Horowitz &
Markatou (1996), Delaigle et al. (2008), Johannes (2009), Li (2002), Li et al. (2000), Schennach
(2004a,b), and Linton & Whang (2002). Suppose one wants to know the distribution of
a continuously distributed random variable X that is measured with error. X is not observed.
Rather, one observes the random variable Y that is related to X by

Y ¼ X þ ɛ; ɛ∼Nð0, 1Þ. ð10Þ

The data, fYi : i ¼ 1, . . . , ng, are a random sample of Y. Let fY and fX denote the probability
density functions of Y and X, respectively. Let f denote the standard normal probability density
function. Then fY is identified by the sampling process; can be estimated by nonparametric density
estimation; and is related to fX, the density of interest, by

fYðyÞ ¼
Z 1

�1
fXðvÞfðy� vÞdv. ð11Þ

Thus, fY is the convolution of fX andf. The density fX is identified as the solution to the integral in
Equation 11 (thus the term deconvolution). The solution to Equation 11 and the mapping that
identifies fX is

fXðxÞ ¼ 1
2p

Z 1

�1
e�itxþt2=2hYðtÞdt, ð12Þ

where hY is the characteristic function of the distribution of Y. The mapping in Equation 11 from
fX to fY is continuous, but the inverse mapping in Equation 12 is not. To see why, define

~fY
�
y
� ¼ �

1� d
�
fY
�
y
�þ dfC

�
y
�
,

where fC is the standard Cauchy density function, and d is a constant satisfying 0 < d < 1. Then
one can make sup�1<y<1jfYðyÞ � ~fYðyÞj arbitrarily small by making d sufficiently small. The
characteristic function of the standard Cauchy distribution is hCðtÞ ¼ e�jtj. Therefore,
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~fXðxÞ ¼ 1
2p

Z 1

�1
e�itxþt2=2

h
ð1� dÞhYðtÞ þ de�jtj

i
dt

¼ ð1� dÞfXðxÞ þ d

2p

Z 1

�1
e�itxþt2=2�jtjdt ¼ 1

foreveryx.Thus, thedifferencebetween~fX and fX canbe infinite, althoughthedifferencebetween~fY and
fY maybearbitrarily small.Accordingly, estimationof fX inEquation10 is an ill-posed inverseproblem.

Nonparametric IV estimation, which has received much recent attention in econometrics, is
a third example of an ill-posed inverse problem. The model for nonparametric IV estimation is

Y ¼ gðXÞ þU; EðUjZ ¼ zÞ ¼ 0. ð13Þ

In this model, X is a possibly endogenous, continuously distributed explanatory variable, Z is a
continuouslydistributed instrument forX, andU is an unobserved randomvariable. The objective is
to estimate the function g, which is assumed to satisfy mild regularity conditions but is otherwise
unknown. The data are a random sample fYi, Xi, Zi : i ¼ 1, . . . , ng from the distribution of
ðY,X,ZÞ. The main issues involved in nonparametric IV estimation can be explained most simply
by assuming that X and Z are scalars, and this assumption is made throughout this article.

A quantile version of the model in Equation 13 can be obtained by replacing EðUjZ ¼ zÞ in
Equation 13 with the conditional quantile restriction PðU� 0jZ ¼ zÞ ¼ q for some q satisfying
0 < q < 1. Under appropriate conditions, gðXÞ þU in Equation 13 can be replaced by the
nonseparable function gðX,UÞ. Quantile nonparametric IV estimation is discussed in detail by
Horowitz & Lee (2007) and Chen & Pouzo (2012). It is not discussed further in this article.

To see why nonparametric IV estimation presents an ill-posed inverse problem, let fXZ and fZ
denote the probability density functions of ðX,ZÞ and Z, respectively. Let fXjZ denote the
probability density function of X conditional on Z. Assume that the support of ðX,ZÞ is ½0, 1�2.
There is no loss of generality in this assumption because it can always be satisfied, if necessary, by
replacingX andZwithFðXÞ andFðZÞ, respectively, whereF is the standard normal distribution
function. The model in Equation 13 implies that

EðYjZ ¼ zÞ ¼ E
�
gðXÞjZ ¼ z

�

¼
Z 1

0
gðxÞfXjZðx, zÞdx

¼
Z 1

0
gðxÞfXZðx, zÞ

fZðzÞ
dx.

ð14Þ

Define rðzÞ ¼ EðYjZ ¼ zÞfZðzÞ. It follows from Equation 14 that

rðzÞ ¼
Z 1

0
gðxÞfXZðx, zÞdx. ð15Þ

Equation 15 shows that g is the solution to an integral equation. The integral equation is called
a Fredholm equation of the first kind in honor of the Swedish mathematician Erik Ivar Fredholm.

Themapping in Equation 15 from g to r is continuous if fXZ is bounded. That is, small changes
in g produce small changes in r. However, the inverse mapping from r to g is discontinuous, and
estimation of g in Equation 13 is an ill-posed inverse problem. This is illustrated by an example
in Section 8. Although the example is a special case, the discontinuity that it illustrates holds
whenever fXZ is square-integrable on ½0, 1�2.
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2.2. The Control Function Model

The control function model is a flexible alternative to Equation 13 and the nonparametric IV
approach to estimating a model with an endogenous explanatory variable. The identifying re-
lation in the control function model is continuous. This section discusses the control function
model and its relation to nonparametric IV estimation.

In the control function model, endogeneity is treated as an omitted variables problem. The
assumptions of themodel permit identification of a control function or variablewhose inclusion in
the model removes endogeneity. Blundell & Powell (2003) provide a general description of the
control function model. Here, we describe the use of a control function to achieve identification in
amodel that is similar to the nonparametric IVmodel in Equation 13. Newey et al. (1999) present
the details of the argument and explain how to estimate the model.

The model is

Y ¼ gðXÞ þU ð16Þ

and

X ¼ rðZÞ þ V, ð17Þ

where g and r are unknown functions,

EðVjZ ¼ zÞ ¼ 0 ð18Þ

for all z, and

EðUjX ¼ x,V ¼ vÞ ¼ EðUjV ¼ vÞ ð19Þ

for all x and v. If the mean ofX conditional on Z exists, Equations 17 and 18 can always be made
to hold by setting rðzÞ ¼ EðXjZ ¼ zÞ. Identification in the control function model comes from
Equation 19. It follows from Equations 16 and 19 that

EðYjX ¼ x,V ¼ vÞ ¼ gðxÞ þ EðUjV ¼ vÞ
¼ gðxÞ þ hðvÞ,

where hðvÞ ¼ EðUjV ¼ vÞ and V ¼ X � rðZÞ. Therefore, g is identified by the relation

gðxÞ ¼ EðYjX ¼ x,V ¼ vÞ � hðvÞ.

The mapping from the conditional expectations on the right-hand side of this relation to g is
continuous, so the control function model does not present an ill-posed inverse problem.

The model in Equation 13 for nonparametric IV estimation and the control function model
in Equations 16–19 are nonnested, so the two models are not substitutes for one another. It is
possible for EðUjZ ¼ zÞ ¼ 0 to hold but not EðUjX ¼ x,V ¼ vÞ ¼ EðUjV ¼ vÞ and vice versa.
Therefore, neither model is more general than the other. It is possible to test the hypothesis that
there is a random variableU such thatEðUjX ¼ x,V ¼ vÞ ¼ EðUjV ¼ vÞ in the control function
model and the hypothesis that there is a (possibly different)U satisfying EðUjZ ¼ zÞ ¼ 0 in the
nonparametric IV model (Horowitz 2012a). However, it is not possible to determine whether
one model fits the available data better than the other if both hypotheses are true. The control
function model is not discussed further in this article.

28 Horowitz



3. EXAMPLES FROM OTHER FIELDS

This section presents two examples of settings from fields other than economics in which ill-posed
inverse problems arise. These settings illustrate thewide occurrence of ill-posed problems and their
long history in mathematics and related fields. The examples also illustrate similarities and an
important difference between ill-posed problems in economics and many other fields.

3.1. Computerized Tomography and the Radon Transformation

Computerized tomography presents an ill-posed inverse problem that has been studied extensively
because of its importance tomodernmedicine. In computerized tomography, a cross section of the
human body is scanned by a thinX-ray beam thatmoves across or in a half circle around the body.
The intensity of the beam upon entering the cross section is known. The intensity upon exit is
recorded as a function of the line the beam traverses. The objective is to recover the X-ray ab-
sorptivity or density of the body as a function of location in the cross section.

To formulate the tomography problem mathematically, let L denote a line through the cross
section of the body, and let x denote a point in the cross section. Let f ðx,LÞ denote the X-ray
absorptivity at point x along line L. Let Iðx,LÞ denote the intensity of the beam at point x along
line L and I0 ¼ Ið0,LÞ denote the intensity of the entering beam. The reduction in intensity at
point x on line L is

dIðx,LÞ ¼ �Iðx,LÞf ðx,LÞdx.

Therefore, holding L fixed,

1
Iðx,LÞ

dIðx,LÞ
dx

¼ �f
�
x,L

�
. ð20Þ

Let IeðLÞ denote the intensity of the beam that exits along line L. IeðLÞ is the solution to the
differential equation in Equation 20 with the initial condition Ið0,LÞ ¼ I0. Therefore,

IeðLÞ ¼ I0 exp


�
Z
L
f ðx,LÞdx

�
.

Equivalently,

JðLÞ[ log


IeðLÞ
I0

�
¼ �

Z
L
f ðx,LÞdx. ð21Þ

The integral on the right-hand side of Equation 21 is called the Radon transform of f ðx,LÞ in
honor of the Austrian mathematician Johann Radon, who studied it in the early twentieth
century. Hoderlein et al. (2010) and Gautier & Kitamura (2013) present applications of the
Radon transformation and its higher-dimensional extensions to econometric models with
random coefficients.

In computerized tomography, JðLÞ is observed for some set of lines L, so recovering f ðx,LÞ
amounts to reconstructing a function from its line integrals or, equivalently, inverting the Radon
transformation. Radon (1917) derived an analytic expression for the inverse transformation.
To state it and see why the Radon transformation presents an ill-posed inverse problem, let
x ¼ ðx1, x2Þ0 and u ¼ ðu1, u2Þ be vectors in two-dimensional space with kuk2 [ u21 þ u22 ¼ 1.
Then each line L can be written as fx : u0x ¼ sg for some real s in a set SðuÞ that, in the case of
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computerized tomography, is determined by the geometry of the cross section being examined.
Equation 21 can be written as

JðLÞ ¼ gðu, sÞ ¼
Z
u0x¼s

f ðxÞdx,

where now f ðxÞ denotes the X-ray absorptivity at the vector point x. Equivalently,

gðu, sÞ ¼
Z
dðu0x� sÞf ðxÞdx, ð22Þ

where d is the Dirac delta function. Radon (1917) showed that if the ranges of s and u are suf-
ficiently large, then

f ðxÞ ¼ 1
4p2

Z
kuk¼1

Z
SðuÞ

gsðu, sÞ
u0x� s

dsdu, ð23Þ

where gsðu, sÞ ¼ dgðu, sÞ=ds. Natterer (1986, section II.2) and Natterer & Wübbeling (2001,
section 2.1) provide derivations of Equation 23.

Equation 23 is a mapping that identifies the absorptivity f ðxÞ in terms of the observed quantity
gðu, sÞ. However, Equation 23 is discontinuous because the integrand on the right-hand side of
Equation 23 involves the derivative gs. For reasons explained in Section 2.1 in connection with
nonparametric density estimation, an arbitrarily small change in gðu, sÞ can produce a large
change in gsðu, sÞ and therefore in the integral on the right-hand side of Equation 23. For
example, if gðu, sÞ is a smooth function of s at each u, it can be approximated arbitrarily well at
each u by a step function of s. The derivative of a step function is a sum of delta functions, which
may be very different from gs. Therefore, the resulting approximation of f ðxÞ may be very
different from the true f ðxÞ.

In practice, g may not be observed on a continuum of u and s values, and the inverse of the
Radon transformation must be found numerically. Therefore, in practice, the true g is replaced by
an approximation. The so-called data in Equations 22 and 23 are observations or numerical
approximations to g at a possibly discrete set of values of u and s. Because the Radon trans-
formation is discontinuous, its inverse is not necessarily close to the true f , even g is observed on
a very fine grid of s and u values, and the approximation to g is very accurate.

3.2. Restoration of a Distorted and Noisy Image

The restoration of a distorted and noisy image presents an ill-posed inverse problem that is closely
related to nonparametric IV estimation. Systematic distortion of an image can occur, for example,
if the receiver of the image is faulty (e.g., the original mirror of the Hubble Space Telescope or
a camera that is out of focus) or if the signal carrying the image passes through a refractivemedium
suchas theEarth’s atmosphere. An image becomes noisy if, for example, randomnoise is generated
in the receiver. Image restoration has received much attention in mathematics, statistics, and
engineering because of its importance in modern astronomy, communications, and medicine,
among other fields. Chalmond (2003, chapter 1) provides many examples of problems in image
restoration or transformation. This section provides one brief example.

Let the intensity (or darkness) of a two-dimensional image at the point x be given by the
function gðxÞ. Suppose that g is not observed. Instead, the distorted, noisy imageYð×Þ is observed.
A model for relating g to Y is
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YðzÞ ¼
Z
f ðz, xÞgðxÞdxþ ɛ, ð24Þ

where YðzÞ is the distorted, noisy image at the point z, and ɛ is an unobserved random variable
satisfying EðɛjzÞ ¼ 0. The first term on the right-hand side of Equation 24 represents systematic
distortion of the image. The function f depends on the distortion mechanism (e.g., the passage of
light through a refractive medium). The second term on the right-hand side of Equation 24
represents random noise in the image. Taking expectations conditional on z on both sides of
Equation 24 yields

EYðzÞ [ rðzÞ ¼
Z
f ðz, xÞgðxÞdx. ð25Þ

Equation 25 is similar to Equation 15, which is the identifying mapping for nonparametric IV
estimation. As in nonparametric IV estimation, the inverse of the mapping in Equation 25 is
discontinuous, so Equation 25 presents an ill-posed inverse problem.

The most obvious difference between Equations 15 and 25 is that fXZ in Equation 15 is
a probability density function, whereas f in Equation 25 is not necessarily a probability density
function. A more important difference between image restoration and nonparametric IV esti-
mation is that the function f in image restoration is often known (e.g., through knowledge of the
distortion mechanism), whereas the density fXZ in nonparametric IV estimation is unknown.
Similarly, the function that takes the place of f in theRadon transformation, dðu0x� sÞ inEquation
22, is known. That fXY is unknown in nonparametric IV estimation does not affect identification
or the existence of an ill-posed inverse problem, but it makes estimation of g in the nonpara-
metric IV model different from estimation in tomography and image restoration. Estimation is
discussed in Section 4.

4. REGULARIZATION AND ESTIMATION OF MODELS WITH ILL-POSED
INVERSES

Estimation of a model with a discontinuous identifying mapping begins by modifying the mapping
to remove the discontinuity. This is called regularization. Estimation is then carried out by
replacing unknown population parameters in the modified mapping with consistent sample
analogs. Modification of the identifying mapping changes the population parameter that is
identified. To ensure identification and estimation of the correct parameter, one decreases the
amount of modification to zero as the sample size increases. The methods used for regularization
and their consequences for estimation accuracy depend on the model under consideration. This
section discusses regularization and estimation of the models described in Section 2.

The discussion here aims at presenting methods for regularization and estimation in as
straightforward and intuitive away as possible. Accordingly, themethods are not presented in full
generality, and many technical details are omitted. Generalizations and technical details are
available in the references that are cited.

4.1. Nonparametric Density Estimation

This section discusses regularization for estimation of the probability density function fX of the
continuously distributed random variableX. As in Section 2, the identifying relation in Equation 7
is discontinuous because there are step functions (and, more generally, functions whose deriva-
tives are very different from f ) that are arbitrarily close to F. This problem can be overcome by
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smoothingEquation 7 so that it becomes a continuous relation. Todo this, letK denote a probability
density function that is supported on ½�1, 1�, bounded, symmetrical around zero, and nonzero on
ð�1, 1Þ. One possibility is

KðvÞ ¼ ð15=16Þ�1� v2
�2
I
�jvj � 1

�
,

but there are many others. K is called a kernel function. The smoothed or regularized version of
Equation 7 is

~fXðx, hÞ ¼
1
h

Z 1

�1
K
�
x� j

h



dF

�
j
�
, ð26Þ

where h > 0 is a constant called a bandwidth. It follows from the Helly-Bray theorem of inte-
gration theory (see, e.g., Rao 1973, p. 117) that Equation 26 is a continuousmapping from F to ~fX.
Therefore, one can obtain a consistent estimator of ~fX by replacing F on the right-hand side of
Equation 26 with the empirical distribution function Fn. The resulting estimator, f̂X, is the kernel
nonparametric density estimator

f̂X
�
x, h

� ¼ 1
h

Z 1

�1
K
�
x� j

h



dFn

�
j
�

¼ 1
nh

Xn
i¼1

K
�
x�Xi

h



,

where the data, fXi : i ¼ 1, . . . , ng, are a random sample of X.
The strong law of large numbers implies that f̂Xðx, hÞ is a consistent estimator of ~fXðx, hÞ for

each x2 ð�1,1Þ and h > 0. Indeed, it can be shown that f̂Xð × , hÞ estimates ~fXð × , hÞ consistently
uniformly over x2 ð�1,1Þ. However, ~fXð × , hÞ� fXð × Þ for any fixed h > 0. Rather, ~fXð × , hÞ is
the probability density function of the random variable X þ hɛ, where ɛ is a random variable
whose probability density function isK. Thus, regularization distorts the identifying mapping and
prevents consistent estimation of fX if h is held constant. A consistent estimator of fX can be
obtained by letting h→0 as n→1. In other words, the amount of regularization or modification
of Equation 7 decreases to zero as n increases. The rate at which h decreases must not be too fast.
Otherwise, there is not enough regularization to overcome the discontinuity of Equation 7. It can
be shown that if fX is uniformly continuous, h→0, and nh=logn→1, then

lim
n→1 sup

�1<x<1

���f̂Xðx, hÞ � fXðxÞ
���→0

with probability 1 (see, e.g., Silverman 1978). Thus, with the proper amount of regularization,
the regularized estimator of fX is uniformly consistent.

There is a large literature on the properties of kernel nonparametric density estimators,
methods for estimating the densities of random vectors, and methods for choosing h in applica-
tions. Silverman (1986) provides a broad discussion of the topic. Härdle& Linton (1994) provide
a variety of technical details. They also discuss a regularization method that is different from the
one presented here and that leads to a kernel estimator different from f̂Xðx, hÞ.

An important characteristic of f̂X that is shared by all estimators in ill-posed inverse problems
(not only estimators of probability density functions) is slow convergence in probability of the
estimator to the identified function. This is unavoidable, regardless of themethod of regularization
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or the function being estimated, although the precise rate of convergence depends on the details of
the estimation problem. In practice, slow convergence in probability of an estimator implies that
the estimator may be imprecise.

The rate of convergence in probability of any nonparametric density estimator, including the
kernel estimator f̂Xðx, hÞ, depends on the smoothness of the target density, fX, as measured by its
number of derivatives. When fX has two continuous derivatives, the fastest possible rate of con-
vergence is n�2=5 (Stone 1982). In contrast, estimators such as b̂LS and b̂IV that are based on con-
tinuous identifying mappings typically converge in probability at the rate n�1=2. The rate of
convergenceof anonparametricdensity estimator canapproachbutnever achieven�1=2 if fX hasmore
than two derivatives, but the resulting estimator can behave poorly with samples of practical size.

4.2. Deconvolution

This section discusses regularization for estimation of the probability density function fX in the
deconvolution model in Equation 10. The mapping in Equation 12 that identifies fX is discon-
tinuous because the integrand on the right-hand side of Equation 12 may be unbounded as
t → 61. One can overcome this problem by modifying Equation 12 so that integration is over
the finite interval ½�c, c� for some finite c > 0. The modified identifying relation is

~fXðx, cÞ ¼ 1
2p

Z c

�c
e�itxþt2=2hYðtÞdt, ð27Þ

where ~fXðx, cÞ is defined as the quantity on the right-hand side of Equation 27. The mapping in
Equation 27 is continuous in the sense that arbitrarily small changes in hY produce arbitrarily
small changes in ~fXð × , cÞ. A consistent estimator of ~fX can be obtained by replacing hY on the
right-hand side of Equation 27 with the empirical characteristic function of Y. The empirical
characteristic function is

ĥYðtÞ ¼ n�1
Xn
j¼1

exp
�
itYj

�
.

The resulting estimator of ~fX is

f̂Xðx, cÞ ¼ 1
2p

Z c

�c
e�itxþt2=2ĥYðtÞdt.

The function f̂Xð × , cÞ estimates ~fXð × , cÞ consistently uniformly over x2 ð�1,1Þ. However,
~fXð × , cÞ� fXð×Þ for any fixed c > 0.Thus, aswith nonparametric density estimation, regularization
distorts the identifying mapping and prevents consistent estimation of fX if c is held constant.
A consistent estimator of fX can be obtained by letting c→1 as n→1 so as to decrease the
amount of regularization or modification of Equation 12 as n increases. Delaigle & Gijbels
(2004) describe methods for choosing the value of c in applications.

The fastest possible rate of convergence in probability of f̂X to fX in deconvolution is determined
by minimizing the sum of the variance of f̂X and the square of the bias caused by truncating the
range of the integral on the right-hand side of Equation 12. The variance increases and the bias
decreases as c increases. The rate of convergence of f̂X or any other estimator of fX is especially slow
when ɛ in Equation 10 is normally distributed. If fX has k bounded derivatives, then the fastest
possible rate of convergence when ɛ∼Nð0, 1Þ is ðlog nÞ�k=2 (Carroll & Hall 1988). Slow con-
vergence of f̂X is an unavoidable consequence of the rapid rate at which the characteristic func-
tion of ɛ, hɛðtÞ, approaches zero as jtj→1 when ɛ∼Nð0, 1Þ. Specifically, one finds that
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hɛðtÞ} expð�t2=2Þ. Faster convergence of f̂X is possible if hɛðtÞ converges to zero more slowly as
jtj→1. This happens if the probability density function of ɛ has a limited number of derivatives in
a neighborhood of the origin (Carroll &Hall 1988, Fan 1991a). For example, if ɛ has the Laplace
(double exponential) distribution, then f̂X can converge to fX at the rate n�k=ð2kþ5Þ. This rate
approaches the parametric rate of n�1=2 if fX is sufficiently smooth in the sense of having suffi-
ciently many bounded derivatives. Thus, increased smoothness of the distribution of X increases
the achievable rate of convergence of f̂X, whereas increased smoothness of the distribution of ɛ
decreases the achievable rate of convergence of f̂X. The practical consequence of the slow con-
vergence of f̂X is that accurately estimating fX in themodel in Equation 10may be impossible if the
distribution of ɛ is very smooth.

The relation between smoothness and the rate of convergence of an estimator carries over to
nonparametric IV estimation of g in the model in Equation 13. As discussed in Section 4.3, the
achievable rate of convergence of an estimator of g becomes faster as g becomes smoother. It
becomes slower as fXZ, the probability density function of ðX,ZÞ, becomes smoother. If fXZ is very
smooth—for example, if ðX,ZÞ has a bivariate normal distribution—then the fastest possible rate
of convergence of an estimator of g is ðlognÞ�s for some s > 0 that increases as gbecomes smoother.
Thus, as in estimation of fX in the model in Equation 10, accurate nonparametric IV estimation of
g may be impossible if the distribution of fXZ is very smooth.

4.3. Nonparametric Instrumental Variables Estimation

This section discusses regularization and estimation of the function g in the model in Equation 13.
There are several methods for regularizing Equation 13. The method discussed here is that of
Horowitz (2011). Similar regularization methods are presented by Blundell et al. (2007) and
Newey (2013). Other approaches to regularizing Equation 13 are described by Darolles et al.
(2011), Carrasco et al. (2007), Hall & Horowitz (2005), and Newey & Powell (2003).

To explain the regularization method and derive the estimator of g, assume that ðX,ZÞ in
Equation 13 is supported on ½0, 1�2. As explained in Section 2, there is no loss of generality in this
assumption. LetL2½0, 1� denote the set of functions whose squares are integrable on ½0, 1�. That is,

L2
�
0, 1

� ¼
�
h :

Z 1

0
hðxÞ2dx < 1

�
.

Define the norm khk of any function h2L2½0, 1� by

khk ¼

 Z 1

0
hðxÞ2dx

�1=2
.

For any functions h1, h2 2L2½0, 1�, define the inner product

hh1, h2i ¼
Z 1

0
h1ðxÞh2ðxÞdx.

Finally, define the operator A on L2½0, 1� by

ðAhÞðzÞ ¼
Z 1

0
fXZðx, zÞhðxÞdx. ð28Þ

A is the infinite-dimensional generalization of a square matrix. The adjoint of A, denoted by A�,
is defined by the relation
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�
A�h2, h1

� ¼ hh2,Ah1i

for any h1, h2 2L2½0, 1�. A� is the infinite-dimensional generalization of the transpose of a square
matrix. Assume that

Z 1

0

Z 1

0
fXZðx, zÞ2dxdz < 1. ð29Þ

Let flj : j ¼ 1, 2, . . . g denote the eigenvalues of A�A. That is, lj satisfies
A�Ah ¼ ljh

for some function h such that khk ¼ 1. Order the eigenvalues so that l1 � l2 � . . . > 0. If A�A is
one-to-one and, therefore, invertible, lj > 0 for all j. However, if Equation 29 holds, then zero is
a limit point of the eigenvalues of A�A. That is, lj →0 as j→1, and there are infinitely many lj’s
within any arbitrarily small neighborhood of zero. This is the source of the ill-posed inverse
problem in nonparametric IV estimation and the consequent need for regularization of Equation
13 to estimate g.

Now write Equation 15 as

r ¼ Ag. ð30Þ

Equation 30 is a system of infinitely many linear equations in infinitely many unknowns. If A is
one-to-one, then the solution to Equation 30 is

g ¼ A�1r. ð31Þ

Equivalently,

g ¼ ðA�AÞ�1A�r. ð32Þ

Equations 31 and 32 aremappings from the distribution of ðY,X,ZÞ to g. Therefore, they identify
g. If A and A�A were finite-dimensional, nonsingular matrices, then g could be estimated con-
sistently by replacing the unknown population quantities A and r with consistent estimators.
However, this procedure does not workwhenA is infinite dimensional. As explained byHorowitz
(2011), that lj →0 as j→1 guarantees that Equations 31 and 32 are discontinuous mappings of
r to g. Roughly speaking, this is because A and A�A are nearly singular infinite-dimensional
matrices. This could not happen if A and A� were finite dimensional because the eigenvalues of
a nonsingular finite-dimensional matrix are bounded away from zero.

This problem can be solved and regularization achieved by approximating A by a finite-
dimensional matrix and r by a function that is known up to a finite-dimensional parameter. The
approximations toA and r are constructed so that their approximation errors converge to zero in
an appropriate sense as the dimension of the approximations increases. The resulting regularized
version of g can be estimated consistently by using standard IV methods for linear models. Of
course, the regularized version of g does not satisfy Equation 13. A consistent estimator of g in
Equation 13 can be obtained by letting the dimensions of the finite-dimensional approximations
toA and r increase as the sample size increases. This procedure and themethod for implementing
it by using standard IV methods are described in detail in Section 8.

Let J denote the dimension of the finite-dimensional approximations to A and r. Specifically,
the approximation to A is a J3 J matrix, and the approximation to r has J unknown para-
meters. Denote the resulting estimator of g by ĝJ. A consistent estimator of g is obtained by
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letting J→1 as n→1. The optimal rate of increase of J is obtained byminimizing the sum of the
(asymptotic) variance of ĝJ and the square of the bias caused by replacing A and r by finite-
dimensional approximations. The variance increases and the bias decreases as J increases. If g has
s derivatives, fXZ has q < 1 derivatives with respect to any combination of its arguments, and
certain other regularity conditions hold; the variance is of order J2qþ1=n (Horowitz 2012b).
Minimizing the sum of the squared bias plus the variance yields J ¼ O½n1=ð2sþ2qþ1Þ� and

��ĝJ � g
�� ¼ Op

h
n�s=ð2sþ2qþ1Þ

i
.

Chen & Reiss (2007) show that n�s=ð2sþ2qþ1Þ is the fastest possible rate of convergence in
probability that is achievable uniformly over functions g and fXZ satisfying reasonable regularity
conditions. The rate of convergence of ĝJ to g becomes faster as g becomes smoother (s increases)
and slower as fXZ becomes smoother (q increases).

The rate of convergence of ĝJ to g is even slower if fXZ has infinitely many derivatives. For
example, if fXZ is the bivariate normal density (or the density of a smooth monotone trans-
formation of bivariate normals to the unit square), the size of the optimal J isOðlognÞ, and the rate
of convergence of

��ĝJ � g
�� is Op

�ðlognÞ�s�. When fXZ is very smooth, the data contain little
information about g in Equation 13. Unless g is restricted in other ways, such as assuming that it
belongs to a low-dimensional parametric family of functions, a very large sample may be needed
to estimate g accurately when fXZ is very smooth.

The foregoing discussion shows the importance of choosing J well in nonparametric IV esti-
mation. Indeed, as explained in Section 4.4, the dependence of J on the sample is the main
difference between parametric and nonparametric estimation of g. The choice of J in appli-
cations is a difficult topic on which research has only recently begun. Newey (2013) and
Horowitz& Lee (2012) describe heuristic methods for choosing J. Horowitz (2012b) describes
a mathematically rigorous way to choose J by minimizing a sample analog of the asymptotic
expectation of

��ĝJ � g
��2.

The operatorA in Equation 30 must be one-to-one to ensure identification of g in the model in
Equation 13. This requirement is often called the completeness condition of nonparametric IV
estimation and is the nonparametric analog of the rank condition of parametric IV estimation.
If A is not one-to-one, then Equation 30 is satisfied by two or more different functions g, so g
is not identified. The rank condition of parametric estimation can be tested empirically. In
contrast, the condition that A is one-to-one in nonparametric IV estimation cannot be tested
(Canay et al. 2013). The condition that A is one-to-one requires the eigenvalues of A�A to
exceed zero. However, as discussed in the paragraph following Equation 29, there are in-
finitely many eigenvalues in any arbitrarily small neighborhood of zero. With a finite sample,
regardless of how large that sample is, random sampling error makes it impossible to dis-
tinguish between eigenvalues that are very close to zero and eigenvalues that are equal to zero.
Therefore, with a finite sample, it is not possible to distinguish empirically between an operator
A for which all the eigenvalues of A�A are strictly positive and an operator for which some
eigenvalues of A�A equal zero.

Now let ~gJ denote the function that is obtained by replacing A and r in Equation 31 by their
finite-dimensional approximations. The inability to test whether A is one-to-one in applications
and the resulting possibility that g in Equation 13 is not identified do not prevent point estimation
of ~gJ for a fixed J using the method described in this section. If the J3 J matrix approximating
A is nonsingular, then ĝJ is a consistent estimator of ~gJ. Moreover, for each J, the vector�
n1=2ðĝ1 � ~g1Þ, . . . , n1=2ðĝJ � ~gJÞ

�0
is asymptotically multivariate normally distributed with a

mean of zero. Therefore, inference about ~gJ can be carried out using the standard methods of
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parametric IV estimation. Santos (2012) describes some ways to do inference about g when A
is not one-to-one. This is an important topic for future research.

4.4. The Difference Between Parametric and Nonparametric Instrumental Variables
Estimation

The estimator ĝJ described in Section 4.3 is a standard IV estimator for the parametric model

Y ¼
XJ
j¼1

gjcjðXÞ þU; E
�
UjZ� ¼ 0,

where the functions fcj : j ¼ 1, 2, . . . g are an orthonormal basis for L2½0, 1�. The gj’s are the
unknown parameters in thismodel. As is explained in Section 8, they can be estimated consistently
by using standard IV methods for linear models. Therefore, it is reasonable to ask whether there
is any practical difference between parametric and nonparametric IV estimation. The answer is
yes. Except in special cases, parametric and nonparametric methods give different estimates of g,
confidence intervals, and outcomes of hypothesis tests. As discussed in Horowitz (2011) and
Newey (2013), the reason for this is that parametric estimation treats themodel as fixed and exact,
whereas nonparametric estimation treats it as an approximation that depends on the size of the
sample. Specifically, in nonparametric estimation, J, or the size of the model, is larger with large
samples than with small ones. In contrast, J is fixed in parametric estimation. This makes esti-
mates of g based on parametric and nonparametric methods different unless the value of J used for
parametric estimation happens to coincide with the appropriate value for nonparametric esti-
mation.Moreover, because parametric estimation assumes a fixed model that does not depend on
the sample size, parametricmethods typically indicate that the estimates aremore precise than they
really are. Consequently, conclusions that are supported by a parametric estimator may not
be supported by a nonparametric estimator.

5. INFERENCE

This section discusses methods for forming confidence regions and testing hypotheses in ill-posed
inverse problems. There are important differences between inference in parametric and non-
parametric models, including the nonparametric models that give rise to ill-posed inverse problems.
One difference concerns the relation between optimal point estimators and confidence regions. In
a finite-dimensional parametric model, one can use an asymptotically optimal (or, equivalently,
efficient), asymptotically normal estimator of a parameter to form an asymptotic confidence interval
for the parameter. However, this does not happen in nonparametric estimation because of the
phenomenon of asymptotic bias. In nonparametric estimation, confidence interval formation and
optimal point estimation are separate tasks. A second difference between parametric and nonpara-
metric models concerns the relation between confidence regions and hypothesis tests. In a finite-
dimensional parametric model, a hypothesis about the parameter of interest can be accepted or
rejected according to whether the hypothesized value is contained in a confidence region for the
parameter. Conversely, a confidence region can be obtained by inverting a statistic for testing a hy-
pothesis. This duality between confidence regions and hypothesis tests does not hold in non-
parametric models, including models that present ill-posed inverse problems. A hypothesis test can
often be made more precise than a confidence region, and useful confidence regions cannot neces-
sarily be obtained by inverting test statistics. Consequently, forming confidence regions and testing
hypotheses in nonparametric models are distinct tasks.
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5.1. Confidence Regions

The estimator of a parameter of a finite-dimensional parametric model usually has a normal
asymptotic distribution that is centered at the true parameter value. Specifically, if û is an estimator
of a scalar parameter whose true value is u0, then

n1=2
�
û� u0

�	
su → d Nð0, 1Þ,

where su is a standard error. It follows from this result that as n→1,

P
�
�z < n1=2

�
û� u0

�	
su � z

�
→FðzÞ �Fð�zÞ ¼ 2FðzÞ � 1,

for any z, where F is the standard normal distribution function. Let za=2 denote the 1� a=2
quantile of the standard normal distribution. That is, za=2 satisfies

F
�
za=2

� ¼ 1� a=2.

Then an asymptotic 1� a=2 confidence interval for u0 is

û� n�1=2za=2su � u0 � ûþ n�1=2za=2su.

The kernel nonparametric density estimator f̂Xðx, hÞ in Section 4.1, deconvolution density esti-
mator f̂Xðx, cÞ in Section 4.2, and nonparametric IV estimator ĝJðxÞ in Section 4.3 are also
asymptotically normally distributed for each x. However, the asymptotic distributions of these
estimators are not centered at the true function values, fXðxÞ in the cases of kernel density esti-
mation anddeconvolutiondensity estimation, and gðxÞ in the case of nonparametric IV estimation.
Rather, the asymptotic distributions are centered at ~fXðx, hÞ, ~fXðx, cÞ, and ~gJðxÞ for kernel non-
parametric density estimation, deconvolution density estimation, and nonparametric IV esti-
mation, respectively. Thus, as n→1,

dn1
h
f̂Xðx, hÞ � ~fXðx, hÞ

i.
sn1ðx, hÞ

dn2
h
f̂Xðx, cÞ � ~fXðx, cÞ

i.
sn2ðx, cÞ

dn3
�
ĝJðxÞ � ~gJðxÞ

�	
sn3ðx, JÞ

9>>>>>=
>>>>>;

→ d N
�
0, 1

� ð33Þ

for anyx, where dn1, dn2, and dn3 are normalization constants and sn1ðx, hÞ, sn2ðx, cÞ, and sn3ðx, JÞ
are standard errors. The normalization constants increase without bound as n→1. If h, c, and
J remain fixed as n→1, then dn1, dn2, dn3 ¼ n1=2. If h, c, and J change as n increases so that
f̂ Xðx, hÞ, f̂ Xðh, cÞ, and ĝJ, respectively, estimate fX, fX, and g consistently, then dn1, dn2, and dn3
increase at rates that depend on the details of the model being considered but are always slower
than n1=2.

It follows from Equation 33 that as n→1,

dn1
h
f̂Xðx, hÞ � fXðxÞ

i	
sn1ðx, hÞ→ d N

h
Dn1ðxÞ

	
s1ðx, hÞ, 1

i
, ð34Þ
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dn2
h
f̂Xðx, cÞ � fXðxÞ

i	
sn2ðx, cÞ→ d N

h
Dn2ðxÞ

	
s2ðx, cÞ, 1

i
, ð35Þ

and

dn3
h
ĝJðxÞ � gðxÞ

i	
sn3ðx, JÞ→ d N

h
Dn3 ðJÞ

	
s3ðx, JÞ, 1

i
, ð36Þ

where

Dn1ðxÞ ¼ dn1
h
~fXðx, hÞ � fXðxÞ

i
,

Dn2ðxÞ ¼ dn2
h
~fXðx, cÞ � fXðxÞ

i
,

and

Dn3ðxÞ ¼ dn3
h
~gjðxÞ � gðxÞ

i
.

The quantities Dn1ðxÞ, Dn2ðxÞ, and Dn3ðxÞ are called asymptotic biases. The word bias applies to

the asymptotic distributions of dn1
h
f̂Xðx, hÞ � fXðxÞ

i
, dn2

h
f̂ ðx, cÞ � fXðxÞ

i
, and dn3

�
ĝJðxÞ � gðxÞ�,

which are not centered at zero if the corresponding functions Dnj (j ¼ 1, . . . , 3Þ are nonzero. It
follows from Equations 34–36 that asymptotic 1� a confidence intervals for fXðxÞ in density
estimation and deconvolution and gðxÞ in nonparametric IV estimation, respectively, are

f̂Xðx, hÞ� d�1
n1 Dn1ðxÞ� d�1

n1 za=2sn1ðx, hÞ� fXðxÞ� f̂Xðx, hÞ� d�1
n1 Dn1ðxÞþd�1

n1 za=2sn1ðx, hÞ,
ð37Þ

f̂Xðx, cÞ � d�1
n2 Dn2ðxÞ � d�1

n2 za=2sn2ðx, cÞ� fXðxÞ� f̂Xðx, cÞ � d�1
n2 Dn2ðxÞ þ d�1

n2 za=2sn2ðx, cÞ,
ð38Þ

and

ĝJðxÞ � d�1
n3 Dn3ðxÞ � d�1

n3 za=2sn3ðx, JÞ� gðxÞ� ĝJðxÞ � d�1
n3 Dn3ðxÞ þ d�1

n3 za=2sn3ðx, JÞ. ð39Þ

The asymptotic bias terms DnjðxÞ (j ¼ 1, . . . , 3Þ depend on population parameters that are un-
known in applications, and the standard errors snk (k ¼ 1, . . . , 3) converge to nonzero limits as
n→1. Therefore, the confidence intervals in Equations 37–39 cannot be used in applications
unless the bias terms converge to zero asn→1more rapidly than the inverses of the normalization
factors, d�1

nj ðj ¼ 1, . . . , 3Þ. Equivalently, the feasibility of Equations 37–39 in applications
requires DnjðxÞ2 ¼ oðd�2

nj Þ as n→1. However, the optimal values of the regularization param-
eters, h, c, and J, minimize the mean-square errors (MSEs) of the corresponding estimators or,
possibly, integrals of theMSEs over the range of x. TheMSEs are the squares of the biases plus the
variances of the estimators. Thus, for example, the MSE of the kernel nonparametric density
estimator f̂Xðx, hÞ is
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E
h
f̂Xðx, hÞ � fXðxÞ

i2
� Dn1ðxÞ2 þ d�2

n1 sn1ðx, hÞ2

when n is large. Similar expressions hold for deconvolution and nonparametric IV estimators.
Because the asymptotic variance term s2nj ðj ¼ 1, . . . , 3Þ converges to a nonzero limit as n→1,

the optimal value of the regularization parameter equates the rates of convergence of DnjðxÞ2 and
d�2
nj . Therefore, the asymptotic bias is nonnegligible. Moreover, it can be shown that the optimal

regularization parameter also achieves the fastest possible rates of convergence in probability of
f̂Xðx, hÞ, f̂Xðx, cÞ, and ĝJðxÞ to fXðxÞ, fXðxÞ, and gðxÞ, respectively. Because the choices of regu-
larization parameters that produce asymptotically optimal point estimators of fXðxÞ and gðxÞ have
nonnegligible asymptotic biases, these estimators cannot be used to form confidence intervals
in applications. In contrast to the situation with finite-dimensional parametric models, non-
parametric point estimation of fXðxÞ and gðxÞ and confidence interval formation for these
quantities are distinct tasks. Methods for dealing with asymptotic bias are described in the
paragraphs below. All methods produce confidence intervals that are wider than the intervals that
would be obtained from Equations 37–39 if the Dnj’s were known and asymptotically optimal
values of the regularization parameters were used. Relatively wide confidence intervals are un-
avoidable in nonparametric estimation.

The asymptotic bias terms in Equations 37–39 are caused by regularization. They decrease as
the amount of regularization decreases (that is, as h decreases and c or J increases). In addition, the
dnj’s decrease as the amount of regularization decreases. Therefore, the asymptotic bias terms can
be made negligible by using less than the optimal amount of regularization (that is, choosing
a value of h that decreases more rapidly than the optimal rate for kernel nonparametric density
estimation and choosing values of c and J that increase more rapidly than the optimal rates for
deconvolution density estimation and nonparametric IV estimation). This is called under-
smoothing. The main problem with undersmoothing is that although empirical methods are
available for estimating the optimal value of the regularization parameter in many applications,
there is no satisfactory empirical way to choose an undersmoothed value. At present, the
undersmoothed parameter value must be chosen by using an essentially arbitrary rule of thumb.
For example, onemight use the estimated optimal parameter value to a power that is less than one
in the case of kernel density estimation and greater than one in the case of deconvolution density
estimation or nonparametric IV estimation.

Having selected an undersmoothed value of the regularization parameter by using a rule of
thumb or other method, one can construct a confidence interval by dropping the asymptotic bias
terms from Equations 37–39. Methods for calculating the required standard errors are presented
by Silverman (1978), among others, for kernel nonparametric density estimation; Fan (1991b) for
deconvolution density estimation; and Horowitz (2007), Horowitz & Lee (2012), and Newey
(2013) for nonparametric IV estimation.

Another way to deal with asymptotic bias is to estimate DnjðxÞ and subtract the estimated bias
from the estimator of fXðxÞ or gðxÞ. In the case of kernel nonparametric density estimation, for
example, this procedure replaces f̂XðxÞ with f̂XðxÞ � D̂n1ðxÞ, where D̂n1ðxÞ is the estimator of
Dn1ðxÞ. This procedure is called explicit bias correction. Schucany & Sommers (1977) describe
a simple procedure for carrying out explicit bias correction in kernel nonparametric density
estimation. Similar procedures can be developed for deconvolution density estimation and
nonparametric IV estimation, although this has not been done. Explicit bias correction requires
selection of an auxiliary value of the regularization parameter for use in estimating the bias.
Satisfactory empirical methods for doing this have not been developed.
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A third way to deal with asymptotic bias is to modify the critical value, za=2, so that a con-
fidence interval that is based on a conventional estimate of the asymptotically optimal regu-
larization parameter but ignores asymptotic bias has the correct asymptotic coverage probability.
In the case of kernel nonparametric density estimation, the resulting 1� a confidence interval is

f̂Xðx, hÞ � ~zd�1
n1 sn1ðxÞ� fXðxÞ� f̂Xðx, hÞ þ ~zd�1

n1 sn1ðxÞ,

where ~z is the modified critical value. Hall &Horowitz (2013) present a bootstrap-based method
for selecting ~z for nonparametric density estimation. This method has the advantage of not re-
quiring the selection of a value of h that undersmooths or an auxiliary value for bias estimation. It
is likely that the method can be extended to deconvolution and nonparametric IV estimators,
but the required research has not yet been carried out.

Regardless of how asymptotic bias is handled, confidence intervals based on Equations
37–39 are pointwise intervals. That is, they have the correct asymptotic coverage probabilities at
only one value of x. They do not have correct coverage probabilities simultaneously at several
values or a continuum of values of x. A band that contains fXðxÞ or gðxÞ with known probability
for all values of x is called a uniform confidence band. A uniform confidence band is wider than
a pointwise confidence band with the same coverage probability. The general form of a uniform
confidence band is

jEstimated functionðxÞ � True functionðxÞj � zðxÞ for all x, ð40Þ
where zðxÞ depends on the details of the estimation problem and is chosen so that Equation 40
holds asymptotically with a specified probability.

Bickel & Rosenblatt (1973) derive a uniform confidence band for fX based on kernel non-
parametric density estimation. Bissantz et al. (2007) derive a uniform band for fXðxÞ based on
a deconvolution density estimator and present a bootstrap method for implementing the band. The
bands for nonparametric density estimation and deconvolution are obtained by showing that suitably
centered and normalized differences between the estimated and true functions converge to
a Gaussian process as n→1. Horowitz & Lee (2012) present a bootstrap method for obtaining
a uniform confidence band for g in nonparametric IV estimation. They use the bootstrap to obtain
joint confidence intervals for a normalized version of ĝJðx1Þ � gðx1Þ, . . . , ĝJðxKÞ � gðxKÞ on a dis-
crete set of points x1, . . . , xK. They then show that a uniform confidence band for g can be obtained
by letting the number of points, K, increase to 1 and the distance between points decrease to zero
as n→1.

5.2. Hypothesis Tests

This section discusses tests of hypotheses about a function whose estimation presents an ill-posed
inverse problem. The discussion focuses on nonparametric IV estimation and shows that it is
possible to construct powerful tests of hypotheses about the function g in Equation 13, despite the
imprecision of estimates of g that is an unavoidable consequence of the ill-posed inverse problem.
As is discussed briefly at the end of this section, methods similar to those described here for
nonparametric IV estimation are available for kernel nonparametric density estimation and
deconvolution density estimation.

A hypothesis about g in Equation 13 (the null hypothesis) can be written

H0 : g2G,
where G is a set of functions in L2½0, 1�. For example, the hypothesis that g belongs to a specified,
finite-dimensional parametric family corresponds to
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G ¼ �
Gðx, uÞ : u2Q

�
, ð41Þ

for almost every x in the support ofX, whereG is a known function andQ is a compact subset of
a finite-dimensional Euclidean space. The hypothesis that X in Equation 13 is exogenous cor-
responds to letting G consist of the single function

GðxÞ ¼ EðYjX ¼ xÞ. ð42Þ

Inwhat follows, the hypothesis in Equation 41 is denotedbyH0a. The hypothesis in Equation 42 is
denoted by H0b.

The alternative hypothesis is

H1 : gÏG.

For example, if H0 is that g ¼ Gðx, uÞ for some u2Q, H1 is that there is no u2Q such that
gðxÞ ¼ Gðx, uÞ for almost every x in the support of X. If H0 is that X is exogenous, then H1 is
that gðxÞ�EðYjX ¼ xÞ on some set of x values with nonzero probability.

Let ĝ be a nonparametric IV estimator of g. Let û be an estimator of u that is consistent under
H0a, and let ÊðYjX ¼ xÞ be a nonparametric estimator of EðYjX ¼ xÞ. UnderH0a, one finds that
kg�Gð×, uÞk ¼ 0 for some u2Q, and kg� EðYjX ¼ ×Þk ¼ 0 under H0b. Therefore, H0a can be
tested by determining whether

��ĝ�Gð×, ûÞ�� is larger than can be explained by random sampling
error in ĝ and û. H0b can be tested by determining whether

��ĝ� ÊðYjX ¼ ×Þ�� is large. However,
these tests have low power because ĝ is an unavoidably imprecise estimator of g.

Tests that are more powerful can be obtained by observing that because the operatorA defined
in Equation 28 is one-to-one, g2G is equivalent to

Ag2H ¼ fh ¼ Ag : g2Gg.

Because r ¼ Ag by Equation 29, H0a is equivalent to

H0a
� : r� AG

�
×, u

� ¼ 0

for some u2Q. H0b is equivalent to

H0b
� : r� AE

�
YjX ¼ ×

� ¼ 0.

A is a continuous operator, so there is no ill-posed inverse problem in estimating r� AG or
r� AEðYjX ¼ × Þ. Consequently, it is possible to construct tests based on H0a

� and H0b
� that are

much more powerful than tests based directly on H0a and H0b.
Horowitz (2006) presents a statistic for testing H0a

� based on data fYi,Xi,Zi : i ¼ 1, . . . , ng
that are a random sample of ðY,X,ZÞ. The statistic is

Tna ¼ kSnak2,

where

SnaðvÞ ¼ n�1=2
Xn
i¼1

�
Yi �G

�
Xi, û

��
f̂XZ

�
v,Zi

�
.

Here f̂XZ is a kernel nonparametric estimator of the probability density function of (X,ZÞ, and û

is a generalizedmethod ofmoments estimator of u.Tna can be understood intuitively by observing
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that n�1Pn
i¼1Yif̂XZðv, ZiÞ is a consistent estimator of rðvÞ and n�1Pn

i¼1GðXi, ûÞf̂XZðv,ZiÞ is a
consistent estimator of

�
AGð×, uÞ�ðvÞ. Blundell & Horowitz (2007) present a statistic for testing

H0b
� . The statistic is

Tnb ¼ kSnbk2,

where

SnbðvÞ ¼ n�1=2
Xn
i¼1

h
Yi � Ĝ

�
Xi

�i
f̂XZ

�
v,Zi

�
.

Here f̂XZ is again a kernel nonparametric estimator of the probability density function of (X,ZÞ, and
Ĝð×Þ is a kernel nonparametric regression estimator ofEðYjX ¼ ×Þ.Tnb can be understood intuitively
by observing that n�1Pn

i¼1ĜðXiÞf̂XZðv,ZiÞ is a consistent estimator of
�
AEðYjX ¼ × Þ�ðvÞ.

UnderH0a
� andH0b

� (or, equivalently,H0a andH0b), the statisticsTna andTnb are asymptotically
distributed asweighted sums of independent random variables that have chi-squared distributions
with one degree of freedom. Horowitz (2006) and Blundell & Horowitz (2007) present methods
for computing critical values for Tna and Tnb. In addition, Horowitz (2006) and Blundell &
Horowitz (2007) show that tests based on Tna and Tnb have nontrivial power against alternative
hypotheses whose distances from H0a

� and H0b
� (or, equivalently, H0a and H0b) are Oðn�1=2Þ.

Nontrivial power means that the probability of rejecting a false null hypothesis exceeds the level
of the test. Tna and Tnb have nontrivial power against alternatives that are much closer to
the null hypotheses of these statistics than is possible with tests based on

��ĝ�Gð× , ûÞ�� and��ĝ� ÊðYjX ¼ ×Þ��.
Because of the unavoidable imprecision of estimates of g in the model in Equation 13, the half

width of a confidence interval for g is always larger than Oðn�1=2Þ and can be as large as
O½ðlog nÞ�s� for some finite s > 0. In contrast, tests based on Tna and Tnb have nontrivial power
against alternative hypotheses whose distance from the null hypothesis is Oðn�1=2Þ and power
approaching one as n→1 against alternatives whose distance from the null hypothesis exceeds
Oðn�1=2Þ. Therefore, these tests can detect an erroneous null hypothesis about g whose distance
from the correct alternative hypothesis is much smaller than the half width of a confidence interval
for g. This is the sense in which a hypothesis test can be more precise than a confidence region.

Methods similar to those just discussed are applicable to testing hypotheses about fX in kernel
nonparametric density estimation and deconvolution density estimation. Both estimation
problems begin with an operator equation of the form

h ¼ BfX,

whereh is an easily estimated function, andB is a continuous, one-to-one operator that is known in
the cases of kernel density estimation and deconvolution density estimation. Accordingly, testing
the hypothesis fX 2H for a suitable setH is equivalent to testing the hypothesis that kh� BfXk ¼ 0
for some fX 2H. Statistics similar to Tna and Tnb can be used to test this hypothesis.

6. AN EMPIRICAL ILLUSTRATION

This section presents an empirical example consisting of nonparametric IV estimation of an Engel
curve for food. The data are 1,655 household-level observations from the British Family Ex-
penditure Survey. The households consist ofmarried couples with an employed head of household
between the ages of 25 and 55. The model is specified as in Equation 13. In this model, Y denotes
a household’s expenditure share on food, X denotes the logarithm of the household’s total
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expenditures, and Z denotes the logarithm of the household’s gross earnings. The basis functions
are B-splines with four knots. The estimation method is that of Section 4.3.

The Engel curve estimated here is the same as the one reported byHorowitz (2011). The results
presented in this section include a uniform 95% confidence band as well as the estimated Engel
curve. Blundell et al. (2007) use data from the Family Expenditure Survey in nonparametric IV
estimation of Engel curves and investigate the validity of Z as an instrument for X.

The estimated Engel curve and a uniform 95% confidence band for the unknown true Engel
curve are shown in Figure 1. The uniform confidence band is obtained using the methods of
Horowitz & Lee (2012). It can be seen from Figure 1 that the estimated curve is nonlinear and
different from what would be obtained with a linear, quadratic, or cubic model. The hypotheses
that the Engel curve is quadratic or cubic are rejected by Horowitz’s (2006) test of hypothesisH0a

(p < 0:05 in both cases). Thus, the nonparametric estimate provides information about the shape
of the Engel curve that would be difficult to obtain using conventional parametric methods.

The average half width of the confidence band is approximately 40% of the estimated value of
ĝ. The band is wide because of the unavoidable imprecision of nonparametric IV estimates. These
estimates are imprecise because the data contain little information about g in themodel in Equation
13.Of course, a sufficiently careful specification searchmayproduce a parametricmodel that gives
a curve similar to the nonparametric one and the appearance of greater precision. However,
a specification search provides no information about the accuracy of the curve it produces, and its
results cannot be used for statistical inference. A confidence band based on amodel found through
a specification searchwould bemisleadingly narrow. Its apparent or nominal coverage probability
would be much larger than its true coverage probability.
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Figure 1

Nonparametric IV estimate of an Engel curve. The solid line is the estimated curve, and the dashed lines
indicate a uniform 95% confidence band for the unknown true curve.
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7. CONCLUSIONS

The term ill-posed inverse problem refers to a condition inwhich themapping from the population
distribution of observables to the object identified by a statistical or econometric model is dis-
continuous. Moreover, in an ill-posed inverse problem, the identified object cannot be estimated
consistently by replacing the population distribution with a consistent sample analog. Above
this article presents examples of ill-posed inverse problems in economics and other fields and
explains how ill-posedness arises, why it causes difficulty for estimation and inference, and how
estimation and inference can be carried out.

Ill-posed inverse problems have been studied in mathematics and related fields for over 100
years and have recently been the objects of intensive research in econometrics. Methods for esti-
mation and inference in ill-posed inverse problems are used routinely in many fields, but there
have been few economic applications of these methods. This is undoubtedly in part a result of
the newness of methods such as nonparametric IV estimation. Another possible reason is that
models that give rise to ill-posed inverse problems are semi- or nonparametric, whereas economists
tend to prefer finite-dimensional parametric models for empirical research. However, economic
theory does not provide parametric models. A parametric model is arbitrary and can be highly
misleading. This is true even if it is obtained through a specification search in which several dif-
ferent models are estimated and conclusions are based on the one that appears to fit the data best.
There is no guarantee that a specification search will include the correct model or a good ap-
proximation to it, and there is no guarantee that the correct model will be selected if it happens
to be included in the search. Moreover, a model obtained through a specification search cannot
be used for valid statistical inference.

Applications of nonparametric methods, including methods for ill-posed inverse problems,
that have been carried out so far demonstrate the feasibility of these methods in empirical eco-
nomics and the ability of the methods to provide results that differ in important ways from those
obtainedwith standard parametric models (see, e.g., Blundell et al. 2007, 2012; Haag et al. 2009;
Hausman & Newey 1995; Hoderlein & Holzmann 2011; Horowitz 2011; Horowitz & Härdle
1996). Even an imprecise semi- or nonparametric estimate can be useful by revealing the extent
to which conclusions drawn from a parametric model are consequences of the parametric
assumptions as opposed to information contained in the data (Horowitz 2011). Thus, semi- and
nonparametric methods, including methods for estimation and inference in ill-posed inverse
problems, have much to offer empirical economics.

8. APPENDIX

8.1. An Example That Illustrates the Discontinuity of the Inverse of Mapping in
Equation 15

Let

fXZðx, zÞ ¼
X1
j¼1

l
1=2
j fjðxÞfjðzÞ; 0� x, z� 1,

where f1ðvÞ ¼ 1, fjðvÞ ¼
ffiffiffi
2

p
cos

�ð j� 1Þpv� for j� 2, l1 ¼ 1, and lj ¼ 0:2ð j� 1Þ�4 for j� 2.
With this fXZ, the marginal distributions of X and Z are uniform on ½0, 1�, but X and Z are not
independent of one another. Moreover, the functions fj are orthonormal. That is,
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Z 1

0
fjðvÞfkðvÞdv ¼

�
1 if j ¼ k
0 if j�k

.

Under very general conditions, rðzÞ has the infinite series representation

rðzÞ ¼
X1
j¼1

cjfjðzÞ,

where the coefficients fcjg satisfy
P1

j¼1c
2
j < 1. It follows from Picard’s theorem for integral

equations (Kress 1999, theorem 15.18) that

gðxÞ ¼
X1
j¼1

cj

l
1=2
j

fjðxÞ. ð43Þ

Now, let d > 0 be an arbitrary constant, and define

~rjðzÞ ¼ rðzÞ þ d
X1
j¼2

ð j� 1Þ�3=2fjðzÞ.

Then sup0�z�1j~rðzÞ � rðzÞj can be made arbitrarily small by letting d be sufficiently small.
However, it follows from Equation 43 that with ~r in place of r, the solution to Equation 15 is

~gðxÞ ¼ gðxÞ þ d
X1
j¼2

1

l
1=2
j ð j� 1Þ3=2

fjðxÞ

and that

Z 1

0

�
gðxÞ � gðxÞ�2dx ¼ 1.

Thus, the difference between ~gðxÞ and gðxÞ is infinite on a set of x values with positive Lebesgue
measure, although the difference between ~rðxÞ and rðxÞ may be arbitrarily small.

8.2. Procedure for Regularizing and Estimating g in the Model in Equation 13

Theprocedure has two steps: (a) Form finite-dimensional approximations to r andA and form the
regularized version of Equation 31; (b) consistently estimate unknownpopulation quantities in the
approximations to obtain the regularized estimator of g.

8.2.1. Step 1. To form the desired approximations to r and A, let fcj : j ¼ 1, 2, . . . g be an or-
thonormal basis for L2½0, 1�. Then we can write

r
�
z
� ¼ X1

j¼1

rjcjðzÞ ð44Þ

and
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fXZðx, zÞ ¼
X1
j¼1

X1
k¼1

ajkcjðxÞckðzÞ, ð45Þ

where rj ¼ hr,cji and

ajk ¼
Z 1

0

Z 1

0
cjðxÞckðzÞfXZðx, zÞdxdz.

Moreover, for any h2L2½0, 1�,

ðAhÞðzÞ ¼
X1
j¼1

X1
k¼1

ajk
�
h,cj

�
ckðzÞ.

In particular,

ðAgÞðzÞ ¼
X1
j¼1

X1
k¼1

ajk
�
g,cj

�
ckðzÞ.

The finite-dimensional approximations to r and A are obtained by truncating the series in
Equations 44 and 45 at J < 1 terms. Let rJ and AJ denote the resulting approximations. Then

rJðzÞ ¼
XJ
j¼1

rjcjðzÞ,

and for any h2L2½0, 1�,

ðAJhÞðzÞ ¼
XJ
j¼1

XJ
k¼1

ajk
�
h,cj

�
ckðzÞ.

Note that AJ is a J3 J matrix and ðAJhÞðzÞ is a J3 1 vector of functions of z. The regularized
versions of Equations 30 and 31 are

rJ ¼ AJ~gJ ð46Þ

and

~gJ ¼ A�1

J r. ð47Þ

The notation ~gJ is used instead of g to emphasize that the function identified by Equations 46 and
47 is a finite-dimensional approximation to g and is not the same as the function identified by
Equations 30 and 31. Let ajk (j, k ¼ 1, . . . , J) denote the ðj, kÞ element of the inverse of the J3 J
matrix ½ajk�. Then it follows from Equation 47 that

~gJ ¼
XJ
j¼1

~gjcj,

where

~gj ¼
XJ
k¼1

ajkrk. ð48Þ

To estimate ~gJ consistently, it suffices to estimate the ajk’s and rk’s consistently.
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8.2.2. Step 2. Let the data used to estimate g be a random sample fYi,Xi,Zi : i ¼ 1, . . . , ng from
the distribution of ðY,X,ZÞ. It follows from Equation 15 and rj ¼ hr,cji that

rj ¼ E
�
YcjðZÞ

�
.

Therefore, rj is a population moment and is estimated n�1=2 consistently by the analogous sample
average

r̂j ¼ n�1
Xn
i¼1

Yicj
�
Zi
�
.

In addition, ajk is the population moment

ajk ¼ E
�
cjðXÞckðZÞ

�

and is estimated n�1=2 consistently by the sample average

âjk ¼ n�1
Xn
i¼1

cj
�
Xi

�
ck

�
Zi
�
.

AJ is estimated consistently by the operator ÂJ, which is defined by

�
ÂJh

�
ðzÞ ¼

XJ
j¼1

XJ
k¼1

âjk
�
h,cj

�
ckðzÞ

for any function h2L2½0, 1�. Let âjk (j, k ¼ 1, . . . , J) denote the ðj, kÞ element of the inverse of the
J3 J matrix ½âjk�. Then the sample analog of Equation 48 is

ĝj ¼
XJ
k¼1

âjkr̂k.

Moreover, for any J < 1, ~gJ is estimated consistently by

ĝJ ¼
XJ
j¼1

ĝjcj. ð49Þ

In particular, as n→1, one finds that
��ĝJ � ~gJ

��→ p0, and
��ĝJ � g

��→ p0 if J→1 at a suitable
rate.

The estimator ĝJ in Equation 49 can be put into the form of a conventional linear IV estimator,
whichmakes it easy to compute ĝJ using standard software. LetZ andX denote the n3 Jmatrices

whose ði, jÞ elements arecjðZiÞ andcjðXiÞ, respectively. Define the n3 1 vectorY ¼ ðY1, . . . ,YnÞ0.
Define the J3 1 vector Ĝ ¼ ðĝ1, . . . , ĝJÞ0. Then Equation 49 is equivalent to

Ĝ ¼ ðZ0XÞ�1Z0Y.

Ĝ has the form of an IV estimator for a linear model in which the matrix of variables is X
and the matrix of instruments is Z.
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