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Abstract

This article reviews a number of recent contributions to estimation
and inference for models defined by moment condition restrictions.
The particular emphasis is on the generalized empirical likelihood
class of estimators as an alternative to the generalized method of
moments. Estimation methods for parameters defined through mo-
ment restrictions and their properties are described with tests of
overidentifying moment restrictions and parametric hypotheses.
Computational issues are discussed together with some proposals
for their amelioration. Higher-order and other properties are also
addressed in some detail. Models specified by conditional moment
restriction models are considered, and the adaptation of these meth-
ods to weakly dependent data is discussed.
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1. INTRODUCTION

Many, if not most, estimators commonly employed in empirical economic research may be
motivated and formulated as the solution to a suitably defined set of moment restrictions.
Indeed, the least squares estimator in the standard linear regression model is expressed in
terms of the requirement that the sample covariance or correlation between regression
residuals and the regressors is zero. Under correct specification, the parameters of the linear
regression model are defined by the population counterpart of this condition. Hence,
these moment estimators may be regarded as analog estimators based on the sample coun-
terparts of populationmoment conditions (seeManski 1988). The maximum likelihood (ML)
estimator is a further example that solves the likelihood equations (i.e., sets the first-order
conditions or score vector to zero), with its population version being the zero expectation of
the score (see, e.g., Goldberger 1991, chapter 12). A particular feature of these examples is that the
number of parameters is identical to the number of moment restrictions; in other words, the model
is just identified.

The models economists are often concerned with typically include explanatory variables
that are themselves endogenous, for example, in the regression context when the dependent
and one or more of the regressor variables or covariates are jointly determined. This may arise
because of the omission of relevant variables, measurement error, or the economic model under
investigation stipulating simultaneous determination. In such circumstances, in the regres-
sion context, the standard approach is to seek instruments or instrumental variables that are
correlated with regressor variables but are uncorrelated with the regression error. The mo-
ment condition for estimation is then described by the covariance or correlation between the
regression error and instruments being zero. The number of instruments, and thus moment
conditions, may exceed the number of parameters to be estimated, yielding an overidentified
model. Consequently, the sample analog of the moment restrictions can no longer be used
directly for parameter estimation.

The standard approach to deal with an overidentified model minimizes a distance mea-
sure expressed in terms of the sample covariance between the regression errors and instru-
ments. Of course, the resultant estimator will depend on the definition of distance adopted.
For computational purposes, a weighted Euclidean distance is often convenient. A particular
choice for the weight matrix results in the instrumental variable estimator introduced in
S. Wright (1925), P.G. Wright (1928), and Reiersøl (1941, 1945) (see also Sargan 1958, 1959).
Amemiya (1974) extends this approach to endogenous nonlinear regression models. Hansen
(1982) considers a general setup with nonlinear moment restrictions and introduces the gen-
eralized method of moments (GMM) estimation procedure. GMM is asymptotically efficient if
theweightmatrix is chosen as the inverse of the variancematrix of the samplemoments. Given an
initial consistent parameter estimator, this variance matrix may be straightforwardly estimated,
with the resultant two-step (2S)GMM estimator being asymptotically efficient.

There is now extensive simulation evidence that the statistical properties of 2SGMM for
the sample sizes typically available to the empirical investigator can be quite unsatisfactory,
which has stimulated intensive interest in other methods of estimation for moment condi-
tion models. Empirical likelihood (EL) was originally proposed by Owen (1988) for the es-
timation of a population mean and was introduced independently by Qin & Lawless (1994)
and Imbens (1997) for models specified by the type of moment conditions considered by
Hansen (1982). EL differs from GMM in that it is a nonparametric likelihood method of
estimation based on a multinomial density formulation that incorporates the moment conditions
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as restrictions. Consequently, EL displays obvious similarities to classical ML for fully para-
metric models.1

As is well known, classical ML possesses a number of optimality and other useful properties.
First, ML is asymptotically efficient; in other words, the asymptotic variance of the ML estimator
coincides with the Cramer-Rao lower bound for regular estimators. Second, bias-correctedML
is higher-order efficient (see Ghosh 1994). Third, the likelihood ratio (LR) test based on ML is
optimal with respect to a large deviation optimality criterion (see Hoeffding 1965). Finally,
Bartlett (1937) shows that the LR statistic for a test of a simple hypothesis may be scale
corrected by what is now commonly referred to as a Bartlett correction, thereby ensuring a more
rapid rate of convergence in distribution to the chi-squared distribution than the original LR
statistic. This result has subsequently been extended to more general forms of parametric hy-
potheses (see, e.g., Cribari-Neto & Cordeiro 1996, and references therein).

Given its similarity to classical ML, perhaps it is unsurprising that EL also possesses some
desirable and similar properties. Qin & Lawless (1994) and Imbens (1997) show that EL
shares the asymptotically efficiency property of 2SGMM. Newey & Smith (2004) prove that
bias-corrected EL is higher-order efficient. Kitamura (2001) and Kitamura et al. (2012) demon-
strate that the EL criterion function test statistic for overidentifying moment conditions is optimal
with respect to a large deviation optimality criterion. Chen&Cui (2006, 2007) andMatsushita&
Otsu (2013) show that the EL criterion function test statistic for parametric restrictions and
overidentifying moment conditions is Bartlett correctable.

Several alternatives to EL have also been proposed that share its first-order efficiency
properties, including exponential tilting (ET) (seeKitamura& Stutzer 1997, Imbens et al. 1998)
and the continuous updating estimator (CUE) (see Hansen et al. 1996). Corcoran (1998)
introduces a class of estimators that minimizes a discrepancy measure between the empirical
distribution function and the empirical distribution function constrained to satisfy the moment
restrictions in the sample, the latter thereby constituting a saddle point problem. Several estimators
belong to this class, including EL, ET, CUE, and those based on members of the Cressie-Read
(1984) (CR) class of divergence measures proposed by Baggerly (1998). Kitamura (2007) con-
siders a general class of f-divergencemeasures as defined byCsiszar (1963) andAli&Silvey (1966)
and defines the generalized minimum contrast (GMC) class of estimators.

Smith (1997, 2011) proposes a different class of estimators, motivated as a nonparametric
adaptation to the moment condition setting of Chesher & Smith’s (1997) approach, which
develops LR tests for parametric moment conditions in the likelihood framework. Although it
differs from GMC, the generalized empirical likelihood (GEL) class of estimators also requires
the solution of a saddle point problem and includes EL, ET, CUE, and the CR class as special cases
(see Smith 1997, Newey & Smith 2004). Newey & Smith (2004) prove that GEL contains a
subclass of estimators that shares the same asymptotic bias as EL; if this GEL subclass is restricted
further, bias-corrected GEL, similar to bias-corrected EL, is higher-order efficient.

1Evidence presented in the special section of the July 1996 issue of the Journal of Business Economics and Statistics indicates
that 2SGMM may be severely biased and initiated interest in alternative estimation methods. Most papers concerned with
moment condition models such as those considered in this review investigate finite sample mean and median estimator biases
via Monte Carlo studies. Ramalho (2005) considers covariance structure models; although estimators cannot be ranked in
terms of mean bias, median bias is lower for EL and related estimators than for 2SGMM. Guggenberger (2008) corroborates
these results but observes that the standard deviation of EL and other estimators appears very large, suggesting that these
estimatorsmay not possess finite samplemoments. Kitamura (2007) also studiesmean andmedianbias of several estimators in
a dynamic panel data model, a similar design to that analyzed by Imbens (2002); the conclusions are rather similar to those of
Ramalho (2005) andGuggenberger (2008). Readers are also referred to Imbens& Spady (2005),Mittelhammer et al. (2005),
and Newey et al. (2005).
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The review is organized as follows. Section 2 describes the moment condition framework.
Estimation methods for parameters defined through moment restrictions are given in Section 3.
Tests of overidentifyingmoment restrictions and parametric hypotheses are presented in Section 4.
In practice, although the large sample properties of (G)EL are attractive, computation may prove
to be difficult in comparison to GMM because (G)EL solves a saddle point problem. Section 5
discusses this issue and some proposals for its amelioration. Higher-order and other properties
of GEL are addressed in some detail in Section 6. Section 7 deals with conditional moment re-
striction models, whereas Section 8 considers how (G)EL, originally designed for cross-sectional
context, may be suitably adapted for weakly dependent data. Section 9 concludes with a brief out-
line of some open research areas, together with a short discussion of other topics not addressed in
this review because of space constraints. Useful additional references on (G)EL are Anatolyev &
Gospodinov (2011), Imbens (2002), and Kitamura (2007).

2. MOMENT CONDITIONS

This section outlines the general framework used in this review. Several empirically relevant
examples are provided as illustrations.

Let z denote a vector of dz observable random variables. To describe the moment condition
framework, let g(z, b)¼ (g1(z, b), . . . , gm(z, b))0 denote the moment indicator vector, anm-vector
of known functions of the data vector z and the p-vector of parameters b, which is of particular
inferential interest to the investigator. The dimensionmof themoment indicator vector is at least as
great asp that of the parameter vectorb; in otherwords, themodel is either just identified,m¼p, or
overidentified, m > p. It is assumed that the moment conditions

E
�
gðz,bÞ� ¼ 0 ð1Þ

are uniquely satisfied when b takes the unknown true value b0. Here E[×] denotes expectation
taken with respect to the distribution of z.

A number of well-known estimation problems fall within this setting.

Example 1 (maximum likelihood): Suppose that z is distributed with probability
density function f(z, b) twice differentiable in b. It is assumed that although the
function form of f(z, b) is known, the parameter vector b0 is not. The score vector
s(z, b) is the first-order derivative of the logarithm of the density f(z, b); in other
words, s(z, b) ¼ ∂ log f(z, b)/∂b, where log(×) is the natural logarithm. It may be
shown straightforwardly that

E
�
sðz,b0Þ

� ¼ 0,

where in this exampleE[×] denotes expectation taken with respect to f(z, b0) (see, e.g.,
Goldberger 1991, p. 128).

Example 2 (quantile regression): Let z ¼ (y, x0)0, where x is a random vector of
dimension dx¼dz�1. The u-quantile regressionmodel is defined by the probability
statement P{y � x0b0} ¼ u. The moment condition in Equation 1 defining the
standard quantile regression estimator is given by

E

h
x
�
u� Iðy� x 0b0Þ

�i ¼ 0,

where the indicator function I(A) ¼ 1 if A is true and zero otherwise. Here p ¼ dx.
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Examples 1 and 2 correspond to just-identified moment condition models, as m ¼ p in both
cases. The next example allows for underidentification, m < p, just identification, m ¼ p, and
overidentification, m > p, as possibilities.

Example 3 (instrumental variables): In this example, the observation vector z is
redefined as z ¼ (y, x0, w0)0, where w is a random dw-vector of instruments or in-
strumental variables that satisfies the moment condition

E½wðy� x0b0Þ� ¼ 0,

in other words, the standard instrument validity condition E[wu] ¼ 0 in which the
regression error u ¼ y � x0b0 is uncorrelated with the vector of instruments w (see
Equation 1). Here, as in Example 2, p ¼ dx, but now m ¼ dw.

3. ESTIMATION METHODS

In this section, zi, i ¼ 1, . . . , n, denotes a random sample of data observations drawn from
the distribution of z. Then, for a given b, the sample analog of the population expectation
E[g(z, b)] is given by the sample mean ĝðbÞ ¼Pn

i¼1giðbÞ=n, where gi(b) ¼ g(zi, b), i ¼ 1, . . . , n.
Additionally, letV(b)¼E[g(z, b)g(z, b)0], andV¼V(b0), the positive definite variance matrix

of g(z, b0); the sample counterpart of V(b) is denoted by V̂ðbÞ ¼Pn
i¼1giðbÞgiðbÞ0=n. It is

assumed in the following that the moment indicator vector g(z, b) is first-order differentiable
with respect to b with the consequent definitions of the full rank population Jacobian matrix

G¼G(b0), whereG(b)¼E[∂g(z, b)/b0], and the sample Jacobian ĜðbÞ ¼Pn
i¼1GiðbÞ=n, where

Gi(b) ¼ ∂gi(b)/∂b0, i ¼ 1, . . . , n.
Weuse the commonnotation b̂ for all efficient estimators of b0 described below because, under

suitable conditions, they share the same first-order large sample properties [i.e., consistency,

b̂→
p
b0, root-n asymptotic normality, and first-order asymptotic efficiency n1=2ðb̂� b0Þ→

d

Nð0,SÞ, where S¼ (G0V�1G)�1 is the semiparametric efficiency lower bound] (Chamberlain
1987).

3.1. Efficient Generalized Method of Moments

That the moment condition E[g(z, b)] ¼ 0 (Equation 1) is satisfied uniquely at b ¼ b0 and that
the sample mean ĝðbÞ should closely approximate the population mean E[g(z, b)] uniformly in b

for all n sufficiently large suggest that an appropriate estimator of b0 should minimize some
measure of distance between ĝðbÞ and 0. These arguments motivate the GMM estimator
originally proposed by Hansen (1982):

~b ¼ argmin
b2B

ĝðbÞ0Ŵ�1
ĝðbÞ, ð2Þ

where B denotes the parameter space, and Ŵ is a positive semidefinite matrix such that Ŵ
converges in probability to the positive definite matrix W.

Hansen (1982) shows that, under certain regularity conditions, the GMM estimator ~b is
consistent for b0 and asymptotically normally distributed with asymptotic variance matrix

given by avar½~b� ¼ ðG0W�1GÞ�1
G0W�1VW�1GðG0W�1GÞ�1

; in other words, n1=2ð~b� b0Þ
converges in distribution to an N(0, (G0W�1G)�1G0W�1VW�1G(G0W�1G)�1) distributed
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random vector. Additionally, among the class of GMM estimators defined by Equation 2, the

efficient GMM estimator setsW¼V. Given an initial consistent GMM estimate ~b for b0 (e.g.,

obtained by setting Ŵ ¼ Im), then an efficient 2SGMM estimator results from replacing Ŵ

with V̂ð~bÞ in Equation 2; that is,

b̂ ¼ argmin
b2B

ĝðbÞ0V̂ð~bÞ�1
ĝðbÞ, ð3Þ

with asymptotic variance matrix S ¼ (G0V�1G)�1. The matrices G and V may be consistently
estimated by Ĝðb̂Þ and V̂ðb̂Þ.

3.2. Empirical Likelihood

Owen (1988) originally proposed EL to define confidence regions for the population mean and
differentiable functionals of the mean (see also Owen 1990, 2001). A generalization of EL to
models specified by moment conditions of the form of Equation 1 is provided by Qin & Lawless
(1994) and Imbens (1997).

Essentially, EL is a nonparametric generalization of parametric ML to the moment condition
setting; indeed, if z is a vector of discrete distributed random variables, then EL is ML. EL treats
the data as if they were discrete with probabilities pi, i ¼ 1, . . . , n, assigned to each sample point,
and similar toML, EL estimates these probabilities so as to maximize the probability of observing
the sample but subject to the imposition of the additional condition that the moment conditions
are satisfied. To describe EL, we consider the multinomial log likelihoodXn

i¼1

logpi. ð4Þ

The EL estimator of b0 maximizes the criterion in Equation 4 subject to the unit simplex defi-
nitional constraint on the probabilities pi, i ¼ 1, . . . , n, that is, nonnegativity pi � 0, i ¼ 1, . . . , n,
and unit summability

Pn
i¼1pi ¼ 1, together with the moment restriction

Pn
i¼1pigiðbÞ ¼ 0 (see

Equation 1). After profiling out the probabilities pi, i ¼ 1, . . . , n, and the Lagrange multiplier
associated with the unit summability constraint, the EL criterion is

ELnðb, lÞ ¼
Xn
i¼1

logð1þ l0giðbÞ
��
n, ð5Þ

wherel is the Lagrange multiplier associated with the sample moment constraint
Pn

i¼1pigiðbÞ ¼ 0.
The EL estimator satisfies

b̂ ¼ argmin
b2B

sup
l2L̂nðbÞ

ELnðb, lÞ, ð6Þ

where L̂nðbÞ ¼ fl: l0giðbÞ > �1, i ¼ 1, . . . , ng ensuring that the log function is well defined. The
nonnegativity restriction is thus automatically satisfied because the estimated, typically referred to
as implied or empirical, probabilities are given by

p̂i ¼ 1

n
�
1þ l̂0gi

�
b̂
��, ði ¼ 1, . . . , nÞ;

the Lagrange multiplier estimator is l̂ ¼ argmaxl2L̂nðb̂Þ
Pn

i¼1log
�
1þ l0giðb̂Þ

�
.
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3.3. Minimum Discrepancy

Corcoran (1998) introduces a class of estimators based on the minimization of a discrepancy
measure defined by

I
�
pn, in

�
, ð7Þ

where pn ¼ (p1, . . . , pn)0 and in is an n-vector with all elements equal to the unrestricted
empirical probabilities 1/n. Minimum discrepancy (MD) estimators minimize Equation 7 with
respect to pn, and subject to pi � 0, i ¼ 1, . . . , n,

Pn
i¼1pi ¼ 1 and

Pn
i¼1pigiðbÞ ¼ 0 (see Section

3.2). Several estimators belong to this class, in particular, EL, CUE (Hansen et al. 1996), ET
(Kitamura& Stutzer 1997, Imbens et al. 1998), and the CR class of estimators (Cressie & Read
1984).

Kitamura (2007) suggests the use of f-divergence (seeCsiszar 1963,Ali&Silvey 1966) to define
the GMC class of estimators.2 Here the discrepancy measure in Equation 7 is redefined as

Iðpn, inÞ ¼
Xn
i¼1

iifðpi=iiÞ

¼ 1
n

Xn
i¼1

fðnpiÞ,

where ii ¼ 1/n, i ¼ 1, . . . , n, and f(×) is a convex function defined on the half line [0, 1) and
continuous at zero such thatf(1)¼ 0. For EL, one sees thatf(v)¼�log v; for ET,f(v)¼ v log v;
for CUE, f(v) ¼ (v � 1)2/2; and for CR, f(v) ¼ [vtþ1 � v � t(v � 1)]/[t(1 þ t)]. The non-
negativity condition pi � 0, i ¼ 1, . . . , n, essential for their interpretation as empirical
probabilities, is often ignored in practice for CUE and CR, although it must be imposed for EL
(see Section 3.2), and is automatically satisfied for ET. Kitamura (2007) shows that the dual of
Equation 7 is given by

b̂ ¼ argmin
b2B

sup
g,l

Xn

i¼1

	
g � 1

n
f�
�
g þ l0giðbÞ

�

,

wheref�(v)¼ supx[xv�f(x)] is the Legendre transform of f(×). It follows that for EL, f�(v)¼
�1 � log(�v); for ET, f�(v) ¼ exp(v � 1); for CUE, f�(v) ¼ v2/2 þ v; and for CR, f�(v) ¼
(tv þ 1)1/tþ1/(t þ 1) � 1/(t þ 1).

3.4. Generalized Empirical Likelihood

GEL (introduced in Smith 1997; see also Smith 2011) differs in general from MD and GMC.3

Although it is not explicitly defined in terms of a program based on empirical probabilities, GEL
also includes EL, ET, CUE, and the CR class of estimators as special cases.

The GEL class of estimators is defined as follows. Let

2The f-divergence between two discrete probability distributions p ¼ {p1, p2, . . .} and q ¼ {q1, q2, . . .} is defined by
Dfðp,qÞ ¼

P1
i¼1pifðqi=piÞ, where the function f(×) is defined below.

3Smith (1997, 2011) motivates GEL as a nonparametric generalization to the moment condition context of the approach
taken byChesher&Smith (1997) in a fully parametric likelihood setting. Chesher&Smith (1997) propose LR test statistics for
implied moment conditions in which the likelihood augments the null hypothesis parametric density multiplicatively by
a function of a weighted version of the moment indicators underpinning the implied moment conditions.
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P̂
r

nðb, lÞ ¼
Xn

i¼1

h
r
�
l0giðbÞ

�� r0

i.
n,

where the function r(×) is concave on its domain V, an open interval containing zero, with
derivatives rj(v) ¼ ∂ jr(v)/∂n j, rj(0) ¼ rj, j ¼ 0, 1, . . . , normalized without loss of generality as
r1 ¼ r2 ¼ �1. The GEL estimator of b0 is given by

b̂ ¼ argmin
b2B

sup
l2L̂nðbÞ

P̂
r

nðb, lÞ, ð8Þ

where L̂nðbÞ ¼ fl: l0giðbÞ 2V, i ¼ 1, . . . , ng with the Lagrange multiplier-like estimator l̂ ¼
argmaxl2L̂nðb̂Þ P̂

r

nðb̂, lÞ the first-order condition for which imposes the sample moment constraintPn
i¼1p̂igiðb̂Þ ¼ 0 (see Section 3.2). The implied GEL empirical probabilities p̂i, i ¼ 1, . . . , n, are

p̂i ¼
r1
�
l̂0̂gi
�

Xn

j¼1
r1
�
l̂0ĝj
�, ði ¼ 1, . . . , nÞ, ð9Þ

summing to one by construction, but are typically not all nonnegative in finite samples, where ĝi ¼
giðb̂Þ, i¼ 1, . . . , n.4 For any function a(z, b), a semiparametrically efficient estimator of the moment
E[a(z, b0)] is formed from the empirical probabilities as

Pn
i¼1p̂iaðzi, b̂Þ (see Brown&Newey 1998).

As noted above, GEL does not coincide with MD or GMC. Because GEL is the dual of the
f-divergence program for the CR class that includes EL, ET, and CUE (Smith 1997, Newey &
Smith 2004), GEL therefore yields the same estimators for this class (see Kitamura 2007).
Newey & Smith (2004), Kitamura (2007), and Smith (2007c) note that this result holds if
the inverse of f(×) defining the GMC class in Equation 8 is homogeneous. GEL includes
EL [r(v) ¼ log(1 þ v) and V ¼ (�1, þ1)], ET [r(v) ¼�exp(v)], CUE [r(v) ¼�(v þ 1)2/2], and
CR [r(v) ¼ �(1 þ tv)(1þt)/t/(1 þ t)].

Newey & Smith (2004) obtain the joint limit distribution of b̂ and l̂ as

n1=2
	
b̂� b0

l̂



→
d
Nð0, diagðS,PÞÞ,

where P ¼ V�1 � V�1GSG0V�1. Indeed, a first-order asymptotically equivalent Lagrange
multiplier-like estimator is obtained from the program l̂ ¼ argmax

l2L̂n

�
b̂
�P̂r

nðb̂, lÞ for any estimator

b̂ first-order asymptotically equivalent to GEL, for example, efficient 2SGMM, MD, or GMC, with

associated empirical probabilities consequently defined as in Equation 9 (see Brown&Newey 2002).

4. TESTS

4.1. Overidentifying Moment Conditions

An important hypothesis of interest to empirical researchers is whether the moment conditions in
Equation 1 hold. Consider the null hypothesis

4The shrinkage estimators ~pi ¼ ðp̂i þ n�1ɛnÞ�ð1þ ɛnÞ, i ¼ 1, . . . , n, where ɛn ¼ �n min½min1�i�n p̂i, 0�, deal with this
problem without affecting the large sample analysis (see Antoine et al. 2007, equations 2.8 and 2.9, p. 466). Empirical
probabilities are given for EL by Owen (1988), for ET by Kitamura & Stutzer (1997), for quadratic r(×) by Back & Brown
(1993), and for the general case by Brown & Newey (2002).
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H0 : E
�
gðz,bÞ� ¼ 0 for some b2B

and the associated alternative hypothesis

H1 : E
�
gðz,bÞ�� 0 for all b2B.

Hansen (1982) considers an overidentified setting in which the number of moment
restrictionsm exceeds the number of parameters p and proposes what is now commonly known
as the J -statistic to test H0 against H1, that is, the optimized efficient GMM criterion (see
Equation 3)

J n ¼ nĝ
�
b̂
�0V̂�~b��1

ĝ
�
b̂
�
.

Hansen (1982) demonstrates that if the moment restrictions in Equation 1 hold (and thus
H0 is true), then Jn has a limiting chi-squared distribution withm� p degrees of freedomwith

consequent asymptotic a-level critical or rejection region fJ n > cam�pg, where Pfx2
m�p >

cam�pg ¼ a.
Although the J -statistic is straightforward to compute, several simulation studies have cast

doubt on whether its asymptotic properties are a useful guide to its performance in finite samples.
Alternative test statistics based on GEL and associated criteria have also been proposed (see
Kitamura & Stutzer 1997; Smith 1997, 2000, 2011; Imbens et al. 1998; Newey & Smith 2004).
These statistics parallel the classical trinity of LR, Lagrangemultiplier, and score statistics, namely,
an LR form of statistic

LRn ¼ 2nP̂
r

n

�
b̂, l̂
�
, ð10Þ

a Lagrange multiplier statistic

LMn ¼ nl̂0V̂
�
b̂
�
l̂,

and a score statistic

Sn ¼ nĝ
�
b̂
�0V̂�b̂��1

ĝ
�
b̂
�
,

where b̂ and l̂ denote GEL or first-order equivalent estimators (see Section 3). All three forms of
test statistic are asymptotically equivalent to theJ -statisticwith a chi-squared limiting distribution
with m � p degrees of freedom if the moment restrictions in Equation 1 (and H0) hold.

4.2. Parametric Restrictions

Owen (1990) suggests an EL-based LR-type statistic to test the simple null hypothesis
H0 : b0 ¼ b0 against the alternative H0 : b0 � b0, where b0 is a known p-vector of constants,
when g(z, b) ¼ z � b and b0 denotes the population mean (i.e., m ¼ p):

LRr
n ¼ 2nP̂

r

n

�
b0, l̂

�
b0
��
, ð11Þ

where P̂
r

nðb, lÞ is the EL criterion ELn(b, l) (Equation 5), l̂ðbÞ ¼ argmaxl2L̂nðbÞP̂
r

nðb, lÞ, and
L̂nðbÞ ¼ fl : l0giðbÞ > �1, i ¼ 1, . . . , ng. If H0 : b0 ¼ b0 is true, LRr

n converges in distribution
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to a chi-squared random variable with p degrees of freedom (see Owen 1990, theorem 1,
p. 91).5

This framework may be straightforwardly generalized to enable the construction of tests of
functions of b0; that is,

H0 : rðb0Þ ¼ 0 against H1: rðb0Þ� 0,

where r(×) is a known differentiable s-vector of functions with dimension s � p; the moment
restrictions in Equation 1 E[g(z, b0)] ¼ 0 are maintained throughout.

Several classical-like GEL statistics have been proposed for testing H0 : r(b0) ¼ 0 against
H1 : r(b0) � 0, which are GEL counterparts of those suggested for GMM in Newey & West
(1987). Let R(b) ¼ ∂r(b)/∂b0 with R ¼ R(b0) of full rank s and define the restricted parameter
space Br ¼ {b 2 B : r(b) ¼ 0}. The restricted GEL estimator is given by

b̂
r¼ arg min

b2Br
sup

l2L̂nðbÞ
P̂
r

nðb, lÞ,

and l̂
r ¼ argmax

l2L̂n

�
b̂
r
�P̂r

n

�
b̂
r
, l
�
. Let R̂, Ĝ, and V̂ be H0-consistent estimates of G and V,

respectively [e.g., R̂ ¼ Rðb̂Þ, Ĝ ¼ Ĝðb̂Þ, and V̂ ¼ V̂ðb̂Þ]. Define Ŝ ¼
�
Ĝ 0V̂

�1
Ĝ
��1

and Ĥ ¼
ŜĜ0V̂

�1
.

GEL statistics for testingH0 : r(b0)¼ 0 againstH1 : r(b0)� 0 are (see Smith 1997, 2000, 2011)
an LR statistic,

LRr
n ¼ 2n

�
P̂
r

n

�
b̂
r
, l̂

r�� P̂
r

n

�
b̂, l̂
��
; ð12Þ

a Wald statistic,

W r
n ¼ nr

�
b̂
�0�R̂ŜR̂0��1

r
�
b̂
�
;

a Lagrange multiplier statistic,

LM r
n ¼ n

�
l̂
r� l̂

�0V̂�l̂r� l̂
�
;

and a score statistic,

Sr
n ¼ nĝ

�
b̂
r�0Ĥ0R̂0�R̂ŜR̂0��1

R̂Ĥĝ
�
b̂
r�
.

Under standard conditions, if H0 : r(b0) ¼ 0 holds, all the above statistics are asymptotically
equivalent and have a limiting chi-squared distribution with s degrees of freedom with [e.g., for
LRr

n (Equation 12)] asymptotic a-level critical or rejection region fLRr
n > cas g.

5Hjört et al. (2009) allow the number of parameters p to diverge and approach infinity with the sample size n. If the moment

indicator vector g(z, b) is uniformly bounded, then the critical region
�
2nP̂

r

n

�
b0, l̂ðb0Þ

�
> cap

�
is still valid for an asymptotic

a-level test provided that p3/n → 0 (see Hjört et al. 2009, theorem 4.1, p. 1098).

86 Parente � Smith



4.3. Nuisance Parameters

In some cases, themoment restrictions in Equation 1 may depend on nuisance parameters, such as
unknown functions or parameters that are not defined explicitly by the moment restrictions but
can be estimated using extraneous information. To describe this setting, we redefine the moment
restrictions in Equation 1 as

E
�
gðz,b0, h0Þ

� ¼ 0,

where, as before, the vector of moment indicators is known up to b0 but now includes the un-
known vector of functions or parameters h0.

The following examples are taken fromHjört et al. (2009), who adopt a plug-in approach
with an estimator ĥ, for example, substituted for the unknown h0 in the moment indicator
vector.

Example 4 (symmetry):The interest is in testing for the symmetryof thedistributionof
a random variable z around its median h0. Consider a particular point z0 in the range
of z. Then symmetry at z0 is expressed by the restriction

Fzðz0Þ ¼ 1� Fzð2h0 � z0Þ,
where Fz(×) is the distribution function of z. Define b0 ¼ Fz(z0). Then the moment
restrictions

E
�
Iðz� z0Þ � b0

� ¼ 0,

E
�
Iðz> 2h0 � z0Þ � b0

� ¼ 0

are equivalent to symmetry at z0 as defined above. The unknown population pa-
rameter h0 is estimated by the sample median of z.

Example 5 (nonparametric regression error distribution):Let z¼ (y,x)0,where y andx
are scalar random variables. Consider the nonparametric regression model

y ¼ h0ðxÞ þ u,

where h0(×) is the unknown conditional mean function E[yjx] of y given x; the
covariate x and the regression error u are assumed to be independent. Let Fu(×) denote
the unknown distribution function of the regression error u. Given a fixed z0, the
distribution function of u at z0 [i.e., b0¼ Fu(z0)] is of interest. The associatedmoment
condition is then given by

E

h
I
�
y� h0ðxÞ� z0Þ � b0

i
¼ 0.

A standard estimator for the unknown conditional mean function h0(×) is the
Nadaraya-Watson nonparametric estimator

ĥðxÞ ¼
Xn

i¼1
wiyi,

where wi ¼ Ki=
Pn

j¼1Kj, with Ki ¼ K�ðx� xiÞ=bn
�
, i ¼ 1, . . . , n, k(×) a symmetric

positive kernel function, and bn a bandwidth parameter.

Hjört et al. (2009) study the EL-based criterion function statistic 2nP̂
r

nðb0, l̂ðb0ÞÞ (Equation

11) for the hypothesisH0 : b0¼ b0 based on the moment indicator vector gðz,b, ĥÞ. The limiting
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distribution of the EL-based statistic is nonstandard for the above and other problems but can be
approximated using bootstrap methods.

5. COMPUTATION

Because the GEL objective function may be highly nonlinear after profiling out the auxiliary
parameter vector l, there may be severe difficulties associated with the computation of the
GEL estimator of b0. Imbens & Spady (2002), Mittelhammer et al. (2005), and Kitamura
(2007) advocate the following computational method. The profile GEL criterion function is
defined by

P̂
r

nðbÞ ¼ P̂
r

n

�
b, l̂ðbÞ

�
¼ max

l2L̂nðbÞ
P̂
r

nðb, lÞ.

Minimization of P̂
r

nðbÞ over b 2 B constitutes the outer-loop problem, which may be complex
because of nonlinearity. The Davidon-Fletcher-Powell (Imbens & Spady 2002) or the Nelder-
Mead simplex (Mittelhammer et al. 2005) methods may be efficacious for the minimization of
P̂
r

nðbÞ. The latter method is possibly more preferable because neither the computation of the
gradient nor the Hessian of P̂

r

nðbÞ nor numerical approximations to them are required, which
may sometimes be problematic in practice given the dependence of P̂

r

nðbÞ on the inner-loop
problem.

The inner-loop problem concerns the determination of l̂ðbÞ for a given b 2 B; in other
words,

l̂ðbÞ ¼ arg max
l2L̂nðbÞ

P̂
r

nðb, lÞ. ð13Þ

Computation of l̂ðbÞ is relatively simple, as P̂
r

nðb, lÞ is strictly concave on V and can easily be
achieved byNewton or related methods because the first-order derivative andHessian of P̂

r

nðb, lÞ
are straightforwardly obtained as

∂P̂
r

nðb, lÞ
∂l

¼
Xn

i¼1
r1ðl0giðbÞÞgiðbÞ=n,

and

∂2P̂
r

nðb, lÞ
∂l∂l0

¼
Xn

i¼1
r2ðl0giðbÞÞgiðbÞgiðbÞ0=n.

Because v > �1 is required for EL, where r(v)¼ log(1 þ v), Kitamura (2007) suggests solving
Equation 13 subject to the restriction l0gi(b) � �1 þ d for some small d > 0, i ¼ 1, . . . , n. An
alternative (see Owen 2001, equation 12.3, p. 235) replaces the logarithmic function by


logðxÞ if x� j

logðjÞ � 1:5þ 2ðx=jÞ � 0:5ðx=jÞ2 if x < j
, ð14Þ

which has support given by the real line for any small number j > 0. For ET, where r(v) ¼
�exp(v), Imbens et al. (1998) use a penalty function approach that consists of solving the following
problem:
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max
b2B,l

Kðb, lÞ� 1
2
AKlðb, lÞ0W�1Klðb, lÞ,

where Kðb, lÞ ¼ log
�Pn

i¼1exp
�
l0giðbÞ

�
=n
�
, Kl(b, l) ¼ ∂K(b, l)/∂l, W is a positive definite

matrix, and A is a positive scalar that can take large values. Imbens et al. (1998) choose W as
W ¼ Kll

�
~b, ~l

�
þ Kl

�
~b, ~l

�
Kl

�
~b, ~l

�0
, where Kll(b, l) ¼ ∂2K(b, l)/∂l∂l0, and

�
~b, ~l

�
are initial

estimates [e.g., the initial root-n consistent estimator ~b used in 2SGMM and ~l ¼ l̂
�
~b
�
obtained

from Equation 13].6

An additional computational issue is thatGEL requires the associated empirical probabilities to
be chosen so that, not only pi � 0, i ¼ 1, . . . , n, and

Pn
i¼1pi ¼ 1 hold, but also the first-order

condition
Pn

i¼1pigiðbÞ ¼ 0 is automatically satisfied (i.e., 02fPn
i¼1pigiðbÞjpi � 0, i ¼ 1, . . . , n,Pn

i¼1pi ¼ 1g the convex hull of fgiðbÞgni¼1
). In finite samples, this may not be possible for particular

data configurations, fgiðbÞgni¼1
. An attractive solution, adjusted EL, proposed recently by

Chen et al. (2008) and Liu & Chen (2010) is to add a new data point to fgiðbÞgni¼1
defined by

gnþ1ðbÞ ¼ �anĝðbÞ, where {an} denotes a positive sequence, that thereby guarantees that zero
is in the convex hull of gi(b), i ¼ 1, . . . , n þ 1, because ĝðbÞ and gnþ1(b) lie in this set and have
opposite sign. In addition, the nonnegativity of the empirical probabilities p̂i, i ¼ 1, . . . , n, in
Equation 9 may not hold without explicitly imposing this condition, although for large samples
p̂i � 0, i¼ 1, . . . , n, with probability close to one if themoment restrictions in Equation 1 are valid
(footnote 4 suggests another approach).

6. HIGHER-ORDER PROPERTIES

6.1. Asymptotic Bias

Newey & Smith (2004) investigate the asymptotic bias of efficient 2SGMM and GEL using the
stochastic expansion

ffiffiffi
n

p �
b̂� b0

�
¼ cn þQ1,n=

ffiffiffi
n

p þQ2,n=nþQ3,n=n
3=2,

where the quantitiesQj,n, j¼ 1, . . . , 3, are random vectors that are bounded in probability, and cn

has zero mean converging in distribution to an N(0, S) distributed random vector.
The asymptotic bias of 2SGMM and GEL to order O(n�1) requires only the analysis of

the behavior of the order 1=
ffiffiffi
n

p
term (i.e., Q1,n), because E[cn] ¼ 0, and to this order Q2,n also

has mean zero. More precisely, the asymptotic bias of 2SGMM and GEL is defined as
abias½b̂� ¼ E½Q1,n�=n. In general, theO(n�1) bias of 2SGMM and GEL may be decomposed into
four terms; for efficient 2SGMM,

abias
�
b̂
�
¼ BI þ BG þ BV þ BW ; ð15Þ

for GEL,

abias
�
b̂
�
¼ BI þ ð1þ r3=2ÞBV. ð16Þ

Each term inEquations 15 and 16 has an interpretation. The first term,BI, is the asymptotic bias of
an efficient GMM estimator based on the infeasible optimal combination of moment condition

6Chaussé (2010) discusses computation of GMM and GEL using R. Stata code for EL is provided by Y. Kitamura at http://
kitamura.sites.yale.edu/.

89www.annualreviews.org � Empirical Likelihood and Related Methods

http://kitamura.sites.yale.edu/
http://kitamura.sites.yale.edu/


indicatorsG0V�1g(z, b) with first-order conditions G0V�1ĝðbÞ ¼ 0. The term BG arises from the
(implicit) estimation of the population Jacobian matrixG, whereas the estimation of the moment
variance matrix V produces BV. The term BW appears because of the use of the preliminary
consistent estimator ~b for b0 in efficient 2SGMM and is thus absent for GEL.7

Newey & Smith (2004) show that not only is the term BW absent for GEL, but the Jacobian
contributionBG also vanishes. Clearly, if the third-order derivative r3¼�2, the moment variance
term BV disappears from Equation 16. Indeed, EL satisfies this condition.8 To illustrate these
results, Newey & Smith (2004, section 4.1, pp. 229–30) consider a model defined through the
conditional moment restriction E[u(z, b0)jx]¼ 0, where u(z, b0) is a scalar function; estimation of
b0 uses the unconditional moment indicators g(z, b0) ¼ q(x) 3 u(z, b0) with the unconditional
moment restrictions E[g(z, b0)] ¼ 0 of Equation 1, where q(×) is an m-vector of functions. In-
terestingly, in contradistinction to 2SGMM,ELasymptotic bias does not increasewith the number
of moment conditions m.

Schennach (2007) reconsiders exponentially tilted EL [EL(ET)], which incorporates the ET
empirical probabilities into the EL objective function and was originally proposed by Jing &
Wood (1996) and Corcoran (1998) for the population mean case. EL(ET) has the same
asymptotic bias as EL, is also higher-order efficient, and possesses desirable properties when the
moment conditions in Equation 1 are misspecified. An alternative approach is to embed the GEL

rather than ET empirical probabilities, namely, p̂iðbÞ ¼ r1
�
l̂ðbÞ0giðbÞ

�.Pn
j¼1r1

�
l̂ðbÞ0gjðbÞ

�
,

i¼ 1, . . . , n, where l̂ðbÞ ¼ argmaxl2L̂nðbÞP̂
r

nðb, lÞ, into the EL objective function, yielding the EL

(GEL) estimator (see Smith 2007c)

b̂ ¼ argmax
b2B

Xn
i¼1

logp̂iðbÞ=n.

Note that the empirical probabilities p̂iðbÞ, i ¼ 1, . . . , n, must be positive, a property satisfied by,
for example, members of the CR family with t � 0. EL(GEL) has the same asymptotic bias as
EL(ET) and thus EL, but whether bias-corrected EL(GEL) is also higher-order efficient remains
to be proven.

To alleviate the potential computational difficulties associated with the GEL class of
estimators (see Section 5), Fan et al. (2011) introduce an iterative scheme that yields esti-
mators with the same asymptotic bias asGEL,whichmay be regarded as a development for the
moment condition context of the classical likelihood approach in Robinson (1988b). Define
the scalar function k(v)¼ (r1(v)þ 1)/v, where v� 0, and k(0)¼�1 (see Newey& Smith 2004,

theorem 2.3, p. 224). Let b̂
0
denote any root-n consistent initial estimator of b0, for example,

GMMwith Ŵ ¼ Im, with, for j> 0, b̂
ðjÞ
the j-th iterate. Also let l̂

ðjÞ ¼ arg max
l2L̂n

�
b̂
ðjÞ�P̂r

n

�
b̂
ðjÞ
, l
�
.

Define p̂
ðjÞ
i ¼ p̂i

�
b̂
ðjÞ�

, ĝðjÞi ¼ gi
�
b̂
ðjÞ�

, i ¼ 1, . . . , n, ĝðjÞ ¼ ĝ
�
b̂
ðjÞ�

, Ĝ
ðjÞ ¼ Ĝ

�
b̂
ðjÞ�

, ~G
ðjÞ ¼

7Let a be the m 3 1 vector such that aj ¼ tr
�
SE
�
∂ 2gijðb0Þ=∂b∂b0���2, j ¼ 1, . . . , m, where gij(b) denotes the j-th ele-

ment of gi(b), gi¼ gi(b0), andGi ¼Gi(b0). Also letHW ¼ (G0W�1G)�1G0W�1,H¼ SG0V�1,Vbj
¼ E
�
∂
�
giðb0Þgiðb0Þ0

��
∂bj

�
,

and ej the j-th unit vector. Then BI ¼ H(�a þ E[GiHgi])/n, BG ¼ �SE½Gi
0Pgi�=n, BV ¼ HE½gigi0Pgi�=n, and BW ¼

�H
Pp

j¼1Vbj
ðHW� HÞ0ej=n.

8Bias-corrected EL is higher-order efficient in the sense that it has the least higher-order asymptotic variance (see Newey &
Smith 2004, theorem6.1, p. 234).Moreover, any bias-correctedGEL estimatorwith the same derivatives rj up to order four as
EL, in particular, r3 ¼ �2 and r4 ¼ �6, shares this property.
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Pn
i¼1p̂

ðjÞ
i Gi

�
b̂
ðjÞ�

, V̂
ðjÞ ¼ V̂

�
b̂
ðjÞ�

, and ~V
ðjÞ ¼Pn

i¼1k̂
ðjÞ
i gi
�
b̂
ðjÞ�

gi
�
b̂
ðjÞ�0, where k̂ðjÞi ¼ k

�
l̂
ðjÞ0ĝðjÞi

�.
Pn

i¼1k
�
l̂
ðjÞ0ĝðjÞi

�
, i ¼ 1, . . . , n. Then the j-th iterate b̂

ðjÞ
is defined as the solution to

Ĝ
ðjÞ0
h
V̂

ðj�1Þi�1

ĝðjÞ ¼
 
Ĝ

ðj�1Þ0
h
V̂

ðj�1Þi�1

� ~G
ðj�1Þ0

h
~V
ðj�1Þ
i�1
!
ĝðj�1Þ,

which may be interpreted as the recentered 2SGMM first-order conditions with weight matrix

V̂
ðj�1Þ

. Fan et al. (2011, theorems 4.1 and 4.2, p. 272) show that, for j > 0, b̂
ðjÞ

is asymptotically

equivalent to the corresponding GEL estimator and thereby asymptotically efficient. If b̂
ð0Þ

is it-

self asymptotically efficient, then b̂
ðjÞ

has the same asymptotic bias as GEL for j > 0.

6.2. Bartlett Correction

The asymptotic distributions of the test statistics described in Section 4 are approximately chi-
squared for sufficiently large sample sizes. As is widely recognized, the distribution of a statistic
for the sample sizes typically available in practice may differ substantially from that predicted by
large sample theory.

For fully parametric problems addressed by classical likelihood theory, a simple scale trans-
formation of the (log) LR statistic, known as a Bartlett correction, results in an improved accuracy
of the asymptotic chi-squared distribution theory for the finite sample behavior of the transformed
statistic (see, e.g., Bartlett 1937, Cribari-Neto & Cordeiro 1996).9 Similar results for the moment
condition context are scarce (see, e.g., Owen 2001, pp. 249–51).

DiCiccio et al. (1991) discuss the smooth functionmodel in which themoment indicator vector
takes the form g(z, b)¼ z� b, where b0 is the population mean, and consider the null hypothesis
H0 : u(b0) ¼ u0 against the alternative H1 : u(b0)� u0, where u0 is a known s-vector of constants
and u(×) is an s-vector of smooth functions of the population mean b0 such that s� p¼m; that is,
r(b0)¼ u(b0)� u0 (see Section 4.2). DiCiccio et al. (1991) show that the EL version of the criterion-

based statistic LRr
n ¼ 2n

�
P̂

r

n

�
b̂
r
, l̂

r�� P̂
r

n

�
b̂, l̂
��

(Equation 12) is Bartlett correctable.10 For the

same setup, Baggerly (1998) proves that only EL is Bartlett correctable in the CR class of
criteria. Chen & Cui (2007) provide the generalization to the overidentified moment con-
dition setting E[g(z, b0)] ¼ 0 (Equation 1), where m � p, dealing with the respective null and
alternative hypotheses H0 : b0 ¼ b0 and H1 : b0 � b0, demonstrating that the EL criterion
statistic in Equation 12 is also Bartlett correctable in this case.11 In cases in which interest

solely concerns the null hypothesisH0:b10 ¼ b0
1 expressed in terms of a subvector of b ¼

�
b1
0,b2

0�0,
Chen & Cui (2006) show that, if the nuisance parameter vector b2 is first profiled out from

the EL criterion, then the resultant EL statistic forH0 : b10 ¼ b0
1 againstH1:b10 � b0

1 is Bartlett
correctable.

9Briefly, the Bartlett correction of the classical LR statistic LR takes the form LRc ¼ LR/(1 þ Bc/n), where the factor Bc is
a function of moments of derivatives of the log-likelihood function that typically can be consistently estimated.
10Jing & Wood (1996) demonstrate that the EL(ET) criterion test statistic is not Bartlett correctable.
11Liu & Chen (2010) show that the test based on the adjusted EL criterion (see Section 5) achieves the same accuracy as the
Bartlett-corrected EL statistic if the adjustment factor is set as an ¼ Bc /2, where Bc denotes the Bartlett correction.
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Matsushita & Otsu (2013) prove that the EL criterion function statistic in Equation 10
for overidentifying moment conditions is Bartlett correctable (see Section 4.1). Moreover, the
adjusted EL criterion statistic (Chen et al. 2008, Liu & Chen 2010) (see Section 5) for testing
overidentifying moments achieves the same accuracy as the Bartlett-corrected EL criterion statis-
tic if the adjustment factor an is chosen such that an ¼ Bc /2, where Bc is the Bartlett correction.

6.3. Large Deviations

Consider twodistinct simplehypothesesH0 :b0¼b0 andH1 :b0¼b1, whereb0 andb1 are known
p-vectors of constants and b0 � b1. Let d0 and d1 denote the respective probabilities of type I and
type II errors. Ideally, these probabilities should be set as low as possible. Because these prob-
abilities are inversely related, Neyman-Pearson theory advises minimizing d1 (or equivalently
maximizing power 1� d1) for fixed d0. As iswell knownby theNeyman-Pearson lemma for a given
size d0, the LR test of H0 : b0 ¼ b0 against H1 : b0 ¼ b1 is the most powerful.

Hoeffding (1965) considers a similar setting but with both type I and type II error probabilities,
d0n and d1n, respectively, depending on the sample size n and approaching zero exponentially as n
increases. Thus, the type I and II errors correspond to extreme tail events for sufficiently large n.
Hoeffding (1965) shows the large deviation result that, among those tests ofH0 : b0 ¼ b0 against
H1 : b0 ¼ b1 that satisfy

lim sup
n→1

n�1 log d0n ��h ð17Þ

for h fixed, the LR test minimizes

lim sup
n→1

n�1 log d1n; ð18Þ

that is, the LR test minimizes the probability of a type II error.
Kitamuraetal. (2012)apply the largedeviation theoryofHoeffding (1965) to testsofoveridentifying

moment restrictions (see Section 4.1). In general, there is no test that satisfies Equation 17. However,
if certainprobabilitydistributions that satisfy themoment restrictions inEquation1are eliminated, then
the following results hold: (a) The test of overidentifying moment restrictionsH0 : E[g(z, b)]¼ 0 for
some b 2 B formed from the EL-based criterion LRn ¼ 2nP̂

r

nðb̂, l̂Þ (Equation 10) satisfies Equation
17; (b) among all tests that satisfy Equation 17, the EL-based criterion test minimizes Equation 18
if the alternative hypothesis H1 : E[g(z, b)] � 0 for all b 2 B deviates sufficiently from H0.

6.4. Robustness

The robustness properties of the ML estimator are examined by Beran (1977). Small devia-
tions from the assumed parametric density function can lead to large variations in the log-
likelihood function, demonstrating a lack of robustness of ML in this sense. Beran (1977)
shows that an alternative parametric estimator based on the minimization of a discrepancy
measure formulated in terms of Hellinger distance is robust but also shares the asymptotic
efficiency property of ML.

Let f0(×) denote the density function of the data observation z commensurate with the moment
condition E[g(z, b)] ¼ 0 (Equation 1) satisfied at the unique value b0 of b 2 B. Based on random
samples drawn from density functions in a neighborhood of f0(×), Kitamura et al. (2013) analyze
the robustness properties of estimators of a known scalar function m(×) of b0 in terms of their
asymptotic maximum bias and mean squared error. In the class of Fisher consistent and regular
estimators, which includes GMM and GEL, maximum bias is minimized by the minimum
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Hellinger distance estimator (MHDE) computed using the trimmed moment indicators
g(z, b)I(supb2B jjg(z, b)jj �mn), where {mn} is a positive-valued sequence that approaches infinity
with sample size n. Additionally, themean squared error is alsominimized byMHDEbased on the
moment indicator vector g(z, b). MHDE corresponds to the CR discrepancy measure with pa-
rameter t ¼�1/2; thus,MHDE is also GEL and is thereby asymptotically efficient (see Section 3).

7. CONDITIONAL MOMENTS

Many empirical problems concern models defined through conditional rather than unconditional
moment restrictions. Let u(z, b) be a known J-vector of functions of the random vector of
observables z and the unknown p-vector of parametersb, which, as before, constitute the object of
inferential interest. We consider models defined by the following conditional moments:

E
�
uðz,b0Þjx

� ¼ 0, ð19Þ

where x is a dx-dimensional subvector of z.
The following examples illustrate this framework.

Example 6 (quantile regression continued): The quantile regression model is rede-
fined by the conditional probability statement P{y � x0b0jx} ¼ u. The conditional
moment condition in Equation 19 defining u-conditional quantile regression is
E[u � I(y � x0b0)jx] ¼ 0 or

E
�
u� Iðu� 0Þjx� ¼ 0,

whereu¼ y� x0b0.Hereb0 is the unique value ofb that satisfiesE[u� I(y� x0b)jx]¼
0. Similar to that described in Section 2, the unconditional moment restriction
E[x(u� I(u� 0))] ¼ 0 holds as does E[q(x)(u� I(u� 0))] ¼ 0 for suitably defined
vectors of functions q(×) of x.

Example 7 (instrumental variables continued): The conditional mean restriction
E[y � x0b0jw] ¼ 0 or E[ujw] ¼ 0 (see Equation 19), where u ¼ y � x0b0, is often
assumed in a linear regression setting (see, e.g., Davidson & MacKinnon 2004,
Greene 2008). Here b0 is the unique value of b that satisfies E[y � x0bjw] ¼ 0.
Similar to Example 6 above, the unconditionalmoment restrictionE[q(w)u]¼0 is
implied, where q(×) is a vector of functions of the instruments w; in particular,
E[wu] ¼ 0 holds. For standard linear regression, the conditional mean restriction
E[yjx]¼ x0b0 or E[ujx]¼ 0 would be the standard assumption. It is well known (see
Cragg 1983) that unless the linear regression model is conditionally homoscedastic
(i.e., var[ujx] is constant or invariant to x), instrumental variable estimation of
b0 based on the unconditional moment restriction E[q(x)u]¼ 0 when q(x) includes x
is more efficient than least squares.

GMM- and EL-type estimators of b0 that achieve the semiparametric efficiency lower bound
(Chamberlain 1987) are proposed by Donald et al. (2003), Kitamura et al. (2004), and Zhang &
Gijbels (2003). Donald et al. (2003) use unconditional moment restrictions based on particular
classes of approximating functions, such as splines and power series, whereas Kitamura et al.
(2004) and Zhang & Gijbels (2003) employ kernel smoothed moment indicator functions. Otsu
(2007) extends the conditionalELapproachofKitamuraet al. (2004)andZhang&Gijbels (2003) to
conditional moment restriction models that incorporate unknown infinite-dimensional functions
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requiring nonparametric estimation, models studied previously by Ai & Chen (2003) using the
method of sieves applied to GMM.

7.1. Approximating Functions

Donald et al. (2003) note that any function can be approximated arbitrarily well by linear com-
binations of certain basis or approximating functions when the number of functions is allowed
to approach infinity with sample size n. Particular examples of admissible classes of approximat-
ing functions are splines, power series, and Fourier series (see, e.g., Powell 1981).

More specifically, let K be the number of approximating functions and define qK(x) ¼
(q1K(x), . . . , qKK(x))0 as the K-vector of approximating functions. The consequent vector of
unconditional moment indicators is given by (see Equation 1)

gKðz,bÞ ¼ uðz,bÞÄ qKðxÞ. ð20Þ

Donald et al. (2003, lemma 2.1, p. 58) demonstrate a formal equivalence between the sequence of
unconditional moment constraints E[gK(z, b0)] ¼ 0 (Equation 20), K → 1, and the conditional
moment restriction E[u(z, b0)jx] ¼ 0 (Equation 19). More precisely, by the law of iterated ex-
pectations, one obtainsE[gK(z, b0)]¼ 0 for allK ifE[u(z, b0)jx]¼ 0 and, moreover,E[gK(z, b0)]� 0
for all K large enough if E[u(z, b0)jx] � 0.

Consequently, EL, GMM, and GELmay be applied using the unconditional moment indicator
vector gK(z, b) (Equation 20). Donald et al. (2003) show that if K approaches infinity at an
appropriate rate dependent on the approximating functions and the estimator employed,
the resultant estimators are consistent and achieve the semiparametric efficiency lower bound
E[D(x)0S(x)�1D(x)]�1 (Chamberlain 1987), where D(x) ¼ E[∂u(z, b0)/∂b0jx] and S(x) ¼
E[u(z, b0)u(z, b0)0jx].

7.2. Conditional (G)EL

Let ui(b) ¼ u(zi, b), i ¼ 1, . . . , n. Kitamura et al. (2004) (see also Zhang & Gijbels 2003)
modify EL by scaling the standard EL criterion in Equation 5 using the positive weights
wij, i, j ¼ 1, . . . , n; that is,

CELnðb, lÞ ¼
Xn
i¼1

Ti,n

Xn
j¼1

wij log
�
1þ li

0 ujðbÞ
�.

n, ð21Þ

where l ¼
�
l1
0, . . . , ln

0�0, wij ¼ Kij=
Pn

k¼1Kik, Kij ¼ K�ðxi � xjÞ=bn
�
, K(×) is a symmetric positive

kernel, and bn is a bandwidth parameter. The trimming function Ti,n is required to ensure that

the denominator of the weightswij is bounded away from zero; that is,Ti,n ¼ I
�
ĥðxiÞ� btn

�
for

some t 2 (0, 1), where ĥðxÞ ¼Pn
j¼1K

�ðx� xj
�
=bn
�
=nbdxn is the standard kernel estimator for

the density h(×) of x and I(×) is an indicator function.12 Note that CELn(b, l) employs the

Nadaraya-Watson estimator
Pn

j¼1wij log
�
1þ li

0ujðbÞ
�

of the conditional expectation of

12The criterionCELn(b, l) (Equation 21) is obtained from the programmaxb,fpijgni,j¼1

Pn
i¼1Ti,n

Pn
j¼1wij logpij subject topij� 0,Pn

j¼1pij ¼ 1, and
Pn

j¼1pijujðbÞ ¼ 1, i, j ¼ 1, . . . , n. Note that pij has the interpretation as the probability P{z ¼ zjjx ¼ xi},

i, j¼ 1, . . . , n, and li is the Lagrange multiplier associated with the sample moment constraint
Pn

j¼1pijujðbÞ ¼ 1, i¼ 1, . . . , n.
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log
�
1þ li

0ujðbÞ
�
given xi (i.e.,E

h
logð1þ li

0ujðbÞÞjxi
i
, i¼1, . . . , n) and thusmay be regarded as

an estimator of the average conditional expectation
Pn

i¼1E

h
log
�
1þ li

0uiðbÞ
���xii.n.

Let Ln ¼ fl2RJ: jjljj �Cn�1=mg for some finite constant C > 0.13 The conditional EL esti-
mator is the solution to a saddle point problem

b̂ ¼ arg inf
b2B

Xn
i¼1

Ti,n sup
li2Ln

Xn
j¼1

wij log
�
1þ li

0ujðbÞ
��
n ð22Þ

with the Lagrange multiplier estimator l̂iðbÞ defined by l̂iðbÞ ¼ arg maxli2Ln

Pn
j¼1wij ln

�
1þ

li
0 uðzj,bÞ

�
. The conditional EL estimator b̂ (Equation 22) is consistent and achieves the semi-

parametric efficiency lower bound E[D(x)0S(x)�1D(x)]�1 (see Kitamura et al. 2004).14

Conditional EL was subsequently generalized in Smith (2007a,b) for GEL and the
CR power divergence family with criterion

Pn
i¼1Ti,n

Pn
j¼1wij

�
r
�
li
0ujðbÞ

�� rð0Þ
��
n, where r(×)

is defined in Section 3.4 (see also Antoine et al. 2007, which proposes a similar conditional estimator
based on CUE).

7.3. Unknown Functions

Consider the generalized form of the vector of conditional moment restrictions E[u(z, b)jx] ¼
0 (Equation 19) given by

E
�
u
�
z,b0, h0ðxzÞ

���x� ¼ 0: ð23Þ

Here, as above, u(z, b0, h0(xz)) is a J-vector of known functions but now includes the unknown
vector h0(×) of smooth functions of the subvector xz of the conditioning variables x as an argument.
Although b0 remains of central inferential interest, the unknown function h0(×) is of interest
too. Examples of this general framework include partially linear regression u

�
z,b0, h0ðxzÞ

� ¼
y� x1

0
b0 � h0ðxzÞ, where x ¼ ðx10, xz0 Þ0 (Robinson 1988a), and single index regression u

�
z,b0,

h0ðxzÞ
� ¼ y� h0ðxz0 b0Þ, where x ¼ xz (Powell et al. 1989, Ichimura 1993).

Let the true parameter vector a0 ¼ �b0
0 , h0

0�0 with parameter space A ¼ B 3H. Consequently,
the conditional moment restriction in Equation 23 may be rewritten as E[u(z, a0)jx] ¼ 0.
Although with this redefinition the conditional moment restriction in Equation 23 now
superficially resembles Equation 19, Kitamura et al.’s (2004) conditional EL estimator clearly
cannot be applied without modification, as a0 contains the infinite-dimensional parameter h0(×).

Let ui(a) ¼ u(zi, a), i ¼ 1, . . . , n. The penalized EL criterion proposed by Otsu (2007) adopts
Shen’s (1997) approach, modifying the conditional EL criterion CELn(b, l) (Equation 21) as

PELnða, lÞ ¼
Xn
i¼1

Ti,n

Xn
j¼1

wij log
�
1þ l0ujðaÞ

��
n� fnJ ðhÞ,

with the incorporation of the penalty function J (×) to impose some restrictions on the parameter
spaceA; the positive-valued sequence {fn} of penalization constants is chosen so as to converge to

13For technical reasons, m is a positive integer such that m � 8.
14Tripathi & Kitamura (2003) propose a test statistic based on conditional EL (see also Smith 2007a,b for conditional GEL-
based test statistics).
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zero with sample size n at rate o(n�1/2). Examples of penalty functions J (×) may be found in Shen
(1997, section 3), for example, to impose twice differentiability on the resultant estimator of h0.
The penalized EL estimator â is the solution to a saddle point problem

â ¼ arg inf
a2A

Xn
i¼1

Ti,n sup
li2RJ

Xn
j¼1

wij log
�
1þ li

0 ujðbÞ
�.

n, ð24Þ

with the Lagrange multiplier estimator l̂iðbÞ defined by l̂iðbÞ ¼ arg maxli2RJ

Pn
j¼1wij log

�
1þ

li
0 uðzj,bÞ

�
. Otsu (2007) proves the consistency of the penalized EL estimator â ¼

�
b̂0, ĥ0

�
0 for

a0 ¼
�
b0
0 , h0

0�0 together with the respective convergence rates of b̂ and ĥ. Moreover, the penalized
EL estimator b̂ (Equation 24) of b0 is asymptotically normal and achieves the semiparametric
efficiency lower bound E[D(x)0S(x)�1D(x)]�1, where nowD(x)¼ E[∂u(z, a0)/∂b0jx] and S(x)¼
E[u(z, a0)u(z, a0)0jx].

In an earlier paper, Ai & Chen (2003) suggest a sieve minimum distance approach similar to
GMM in which the conditional moment indicator vector ui(×) is estimated using sieves rather than
kernel functions and the unknown functions comprising h0 are also likewise approximated. Unlike
Otsu (2007), Ai & Chen (2003) assume A is compact, which has the advantage of allowing the
unknown vector of functions h0 to depend on z rather than solely a subvector of x, thus permitting
the inclusion of endogenous variables. More recently, for a similar setup permitting endogenous
components of the unknown function vector h0, Otsu (2011) applies Kitamura et al.’s (2004)
conditional EL method with h0 approximated by sieves as in Ai & Chen (2003). Chen & Pouzo
(2009) generalize Ai & Chen’s (2003) sieve minimum distance method to allow for nonsmooth
functions to comprise h0 together with a bootstrap procedure for improved inference.15 All these
methods result in consistent and asymptotically equivalent normally distributed estimators of
b0 that achieve the semiparametric efficiency lower bound E[D(x)0S(x)�1D(x)]�1.

8. WEAKLY DEPENDENT DATA

In this section, zt, t ¼ 1, . . . , T, denotes T observations on a finite-dimensional stationary and
strongly mixing process fztg1t¼1. The moment indicator vector g(zt, b) is defined, as previously, as
an m-vector of known functions of the data observation zt and the p-vector b of unknown
parameters that are the object of inferential interest, where m � p. It is assumed that the true
parameter vector b0 uniquely satisfies the moment condition

E
�
gðzt,bÞ

� ¼ 0, ð25Þ

where E[×] denotes expectation taken with respect to the unknown distribution of zt. Because
Equation 25 may arise in many cases from conditional moment restrictions, zt may also include
lagged endogenous and current and lagged values of exogenous variables.

Definegt(b)¼ g(zt,b), t¼ 1, . . . ,T, and ĝðbÞ ¼ T�1PT
t¼1gtðbÞ. Letk(×) denote a kernel function

that satisfies the mild regularity conditions stated in Smith (2011) and define kj ¼
Z 1

�1
kðaÞjda,

j¼ 1, 2, 3, with k¼ k1/k2. The bandwidth parameter ST diverges to infinity at an appropriate rate
dependent on the kernel function k(×) and sample size T.

15For stationary and ergodic data, Chen & Pouzo (2012) establish convergence rates for a penalized sieve minimum distance
estimator of h0 in circumstances that similarly permit nonsmooth unknown functions and the possible inclusion of endogenous
variables. The penalization (see Otsu 2007) avoids the necessity of restricting the parameter spaceA to be compact and may ease
computational difficulties associatedwith the sieve minimumdistance methods of Ai&Chen (2003) and Chen& Pouzo (2009).
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8.1. Efficient (G)EL

Kitamura & Stutzer (1997) observed that applying standard ET to the moment indicators

fgtðbÞgTt¼1 results in a consistent but asymptotically inefficient estimator ofb0 if there is dependence.
To deal with this problem, they modify the ET criterion by basing it on a smoothed version of the

moment indicators fgtðbÞgTt¼1 obtained using the truncated or uniform kernel function. Smith
(1997, 2011) discusses GEL employing general kernel functions. For suitable choices of the kernel
function k(×), GEL is asymptotically efficient.16 Kitamura (1997) suggests an alternative approach
using blockwise EL. The exposition that follows is based on the approach in Smith (2011).

Define the smoothed moment indicators

gtTðbÞ ¼
1
ST

Xt�1

s¼t�T

k
	

s
ST



gt�sðbÞ, t ¼ 1, . . . ,T. ð26Þ

Examples of admissible kernel functions k(×) are the truncated or uniform kernel kTR(x) ¼
I(jxj � 1) and the Bartlett kernel kBT(x) ¼ (1 � jxj)I(jxj � 1).

GEL criteria appropriate for weakly dependent data are defined by (see Section 3.4)

P̂
r

Tðb, lÞ ¼
XT

t¼1

h
rðkl0gtTðbÞÞ � rð0Þ

i.
T,

with the GEL estimator then given by

b̂ ¼ argmin
b2B

sup
l2LT

P̂
r

Tðb, lÞ,

whereLT¼ {l : jjljj �CT}, withCT a positive sequence that depends onT and converges to zero at
an appropriate rate [see Smith 2011, assumption 2.4(b), p. 1200]. Let l̂ðbÞ ¼ arg supl2LT

P̂
r

T ðb, lÞ
with l̂ ¼ l̂

�
b̂
�
.

Define S ¼ (G0V�1G)�1 and P ¼ V�1 � V�1GSG0V�1. Then, under standard regularity
conditions,

T1=2ðb̂� b0Þ→d Nð0,SÞ,
�
T=S2T

�1=2
l̂→

d
Nð0,PÞ,

and theGEL estimator b̂ and the auxiliary parameter estimator l̂ are asymptotically uncorrelated.
Consequently, GEL is asymptotically equivalent to asymptotically efficient GMM.

8.2. Higher-Order Properties

The literature on the higher-order properties of (G)EL for time series data is relatively limited.
Kitamura (1997) shows the Bartlett correctability of the blockwise EL criterion statistic in the time
series context for smooth functions of the mean (see Section 6.2). Anatolyev (2005) investigates
the asymptotic bias of 2SGMM and GEL estimators based on the smoothed moment indicators
in Equation 26.

16In general, the first-order condition for the GEL estimator ~b using the unsmoothed moment indicators fgtðbÞgTt¼1 may be ex-

pressed as
hPT

t¼1 ~ptGt
�
~b
�i0hPT

t¼1
~ptgt

�
~b
�
gt
�
~b
�0i�1

ĝð~bÞ ¼ 0,whereGt(b)¼ ∂gt(b)/∂b0, ~pt ¼ r1

�
~l0gt

�
~b
��.PT

s¼1r1

�
l̂0gs

�
~b
��

,

~pt ¼ p
�
~l0gt
�
~b
��.PT

s¼1p
�
~l0gs
�
~b
��

, t¼ 1, . . . ,T, with the function p(×) defined as p(v)¼ [r1(v)þ 1]/v, v� 0, p(0)¼�1, and

~l ¼ supl2LT

PT
t¼1

�
r
�
l0gt

�
~b
��� rð0Þ

��
T (see Equation 8, with LT defined below). Although

PT
t¼1 ~ptGtð~bÞ is a consistent

estimator for G,
PT

t¼1
~ptgtð~bÞgtð~bÞ0 consistently estimates the short-run variance matrix E[gt(b0)gt(b0)0] rather than the

long-run variance matrix V required for asymptotic efficiency.
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Anatolyev (2005) considers the 2SGMM estimator with the weighting matrix the inverse
of the HAC (heteroscedastic autocorrelation consistent) estimator ST

PT
t¼1gtT

�
~b
�
gtT
�
~b
�0=T

(Smith 2005) of the moment indicator vector long-run variance matrix V, where ~b is
a preliminary root-T consistent estimator of b0; CUE with the same form of weighting matrixh
ST
PT

t¼1gtTðbÞgtTðbÞ0=T
i�1

; and GEL as in Section 8.1. Anatolyev (2005) confines consideration

to kernels k(×) with bounded support (i.e., nonzero on an open interval including zero and zero
elsewhere). Similarly to the discussion in Section 6.1, the asymptotic bias of GMM and GEL may
be decomposed into a number of factors, each of which has the same interpretation as in Section
6.1; that is, for GMM,17

abias½b̂� ¼ BI þ BG þ BV þ BW ,

and for GEL,

abias½b̂� ¼ BI þ
�
1þ r3k1k3=2k

2
2

�
BV.

Note that, becauser3¼ 0, the CUE asymptotic bias isBIþBV (see Section 6.1). For further details,
readers are referred to Anatolyev (2005, theorem 1, p. 988).

The interpretation of these asymptotic bias terms is similar to those given above for the
cross-sectional setting, although their mathematical expressions differ. In particular, as be-
fore, BI coincides with the asymptotic bias for an infeasible GMM estimator obtained from
the first-order conditions G0V�1ĝðbÞ ¼ 0, BG results from the estimation of G and is absent
for GEL, BV is for (implicit) estimation of V, and BW is from the preliminary consistent esti-
mation of b0 in 2SGMM.

Unlike cross-sectional data, theBV term does not vanish for EL unless k22 ¼ k1k3, which occurs
for the truncated or uniformkernel considered byKitamura&Stutzer (1997).More generally, this
term is not present for GEL criteria r(×) and kernel functions k(×) such that r3 ¼ �2ðk22Þ=ðk1k3Þ.
For the GEL class r(v) ¼ �(1 þ tv)(1 þ t)/t/(1 þ t) equivalent to the CR power divergence family,

the choice t ¼
�
k1k3 � 2

�
k22
��.

ðk1k3Þ is required.

9. CONCLUSIONS

Several open research areas remain. For example, as noted in Section 5, although (G)EL
methods have attractive theoretical large sample properties, their computation raises serious
practical difficulties because of the induced nonlinearity arising from the necessity to solve
a saddle point problem. Fast and reliable algorithms for (G)EL when the number of moment
restrictions and parameters to be estimated are large would enable (G)EL to be applied to
a wider variety of empirical problems than is currently the case and would allow for more
substantial and detailed simulation studies of these techniques to be undertaken. Bootstrap
methods specifically designed for the application of (G)EL are scarce, although a notable
exception is provided by Canay (2010). As noted in Section 3, (G)EL imposes the moment

17Let a be them3 1 vector such that aj ¼ trðSE�∂2g j
t ðb0Þ=∂b∂b0�Þ�2, j ¼ 1, . . . ,m, where g j

t ðbÞ denotes the j-th element
of gt(b), gt ¼ gt(b0), GtðbÞ ¼ ∂gtðbÞ=∂b0, and Gt ¼ Gt(b0). Also let HW ¼ (G0W�1G)�1G0W�1, H ¼ SG0V�1,

Vbj
ðuÞ ¼ E

h
∂
�
gtðb0Þgt�uðb0Þ0

��
∂bj

i
, and ej the j-th unit vector. Then BI¼H

��aþP1
u¼�1E½GtHgt�u�

��
T, BG ¼

�S
P1

u¼�1E
�
Gt

0Pgt�u
��
T, BV ¼ H

P1
u,v¼�1E

�
gtgt�u

0 Pgt�v
��
T, and BW ¼ �H

Pp
j¼1

P1
u¼�1Vbj

ðuÞðHW �HÞ0ej=T.
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restrictions in the sample. Brown & Newey (2002) exploit this feature for the cross-sectional
setting by reweighting moment indicator observations using the empirical probabilities.
Therefore, unlike Hall & Horowitz’s (1996) method, their bootstrap method based on the
resampling of the reweighted moment indicators does not require moments to be explicitly
centered. In general, the higher-order properties of this and other related procedures remain to
be investigated.

The literature on estimation and inference for models specified by moment condition con-
straints is vast. Hence, because of space limitations, this review can only be partial in terms of its
coverage. Several other important areas are also currently exciting considerable research effort.

This review concentrates above on models in which parameters are point identified. Moment
conditionmodels in which parameters are only set or partially identified have received a great deal
of attention in the recent literature (see, e.g., Andrews & Shi 2013, which considers moment
inequality restrictions, and references therein).

The extensive literature on weak identification, in particular, weak instruments in the re-
gression context, was initiated by Angrist & Krueger (1991), who study the returns to education.
Weak identification essentially concerns the lack of correlation between the moment indicator
vector and the (implicit) score vector associated with the true model. Standard inferential tools
such as LR and Wald test statistics no longer have the standard limiting normal or chi-squared
distributions. Severalmethods have been proposed to ameliorate this problem, primarily related to
score or Lagrange multiplier statistics, as discussed in Section 4 (see, e.g., Kleibergen 2005, Otsu
2006, Guggenberger et al. 2012). Newey & Windmeijer (2009) obtain the limiting properties of
GMMand (G)ELwhen there aremanyweakmoments and, in particular, show that the respective
variance matrices are inflated in comparison to the standard variance matrix expression given in
Section 3 for efficient 2SGMM and GEL.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

LITERATURE CITED

Ai C, ChenX. 2003. Efficient estimation ofmodels with conditional moment restrictions containing unknown
functions. Econometrica 71:1795–843

Ali SM, Silvey SD. 1966.A general class of coefficient of divergence of one distribution fromanother. J. R. Stat.
Soc. B 28:131–42

Amemiya T. 1974. The nonlinear two-stage least-squares estimator. J. Econom. 2:105–10
Anatolyev S. 2005. GMM, GEL, serial correlation, and asymptotic bias. Econometrica 73:983–1002
Anatolyev S, Gospodinov N. 2011. Methods for Estimation and Inference in Modern Econometrics. Boca

Raton, FL: Chapman & Hall/CRC
Andrews DWK, Shi X. 2013. Inference based on conditional moment inequalities. Econometrica

81:609–66
Andrews DWK, Stock JH, eds. 2005. Identification and Inference for Econometric Models: Essays in Honor

of Thomas Rothenberg. Cambridge, UK: Cambridge Univ. Press
Angrist JD, Krueger AB. 1991. Does compulsory school attendance affect schooling and earnings?Q. J. Econ.

106:979–1014
Antoine B, Bonnal H, Renault E. 2007. On the efficient use of the informational content of estimating

equations: implied probabilities and Euclidean empirical likelihood. J. Econom. 138:461–87
Back K, Brown DP. 1993. Implied probabilities in GMM estimators. Econometrica 61:971–75
Baggerly K. 1998. Empirical likelihood as a goodness-of-fit measure. Biometrika 85:535–47

99www.annualreviews.org � Empirical Likelihood and Related Methods



Bartlett MS. 1937. Properties of sufficiency and statistical tests. Proc. R. Soc. A 160:268–82
Beran R. 1977. Minimum Hellinger distance estimates for parametric models. Ann. Stat. 5:445–63
Brown BW, Newey WK. 1998. Efficient semiparametric estimation of expectations. Econometrica

66:453–64
Brown BW, Newey WK. 2002. Generalized method of moments, efficient bootstrapping, and improved

inference. J. Bus. Econ. Stat. 20:507–17
Canay IA. 2010. EL inference for partially identified models: large deviations optimality and bootstrap vali-

dity. J. Econom. 156:408–25
Chamberlain G. 1987. Asymptotic efficiency in estimation with conditional moment restrictions. J. Econom.

34:305–34
Chaussé P. 2010. Computing generalized method of moments and generalized empirical likelihood with R.

J. Stat. Softw. 34(11):1–35
Chen J, Variyath AM, Abraham B. 2008. Adjusted empirical likelihood and its properties. J. Comput. Graph.

Stat. 17:426–43
Chen SX, CuiH-J. 2006.On Bartlett correction of empirical likelihood in the presence of nuisance parameters.

Biometrika 93:215–20
Chen SX, Cui H-J. 2007. On the second order properties of empirical likelihood with moment restrictions.

J. Econom. 141:492–516
Chen X, Pouzo D. 2009. Efficient estimation of semiparametric conditional moment models with possibly

nonsmooth residuals. J. Econom. 152:46–60
Chen X, Pouzo D. 2012. Estimation of nonparametric conditional moment models with possibly nonsmooth

generalized residuals. Econometrica 80:277–321
Chesher A, Smith RJ. 1997. Likelihood ratio specification tests. Econometrica 65:627–46
Corcoran S. 1998. Bartlett adjustment of empirical discrepancy statistics. Biometrika 85:965–72
Cragg JG. 1983. More efficient estimation in the presence of heteroscedasticity of unknown form. Econo-

metrica 51:751–63
Cressie N, Read T. 1984. Multinomial goodness-of-fit tests. J. R. Stat. Soc. B 46:440–64
Cribari-Neto F, Cordeiro GM. 1996. On Bartlett and Bartlett-type corrections. Econom. Rev. 15:339–67
Csiszar I. 1963. Eine informations theoretische ungleichungen und ihre anwendung auf den beweis der

ergodicitat von Markoffschen ketten. Publ. Math. Inst. Hung. Acad. Sci. 8:85–108
Davidson R, MacKinnon JG. 2004. Econometric Theory and Methods. New York: Oxford Univ. Press
DiCiccio T, Hall P, Romano J. 1991. Empirical likelihood is Bartlett-correctable. Ann. Stat. 19:1053–61
Donald SG, Imbens GW, Newey WK. 2003. Empirical likelihood estimation and consistent tests with con-

ditional moment restrictions. J. Econom. 117:55–93
FanY, GentryM, Li T. 2011. A new class of asymptotically efficient estimators for moment conditionmodels.

J. Econom. 162:268–77
Ghosh JK. 1994.Higher Order Asymptotics. NSF-CBMSReg. Conf. Ser. Probab. Stat. 4. Hayward, CA: Inst.

Math. Stat.
Goldberger AS. 1991. A Course in Econometrics. Cambridge, MA: Harvard Univ. Press
Greene WH. 2008. Econometric Analysis. Upper Saddle River, NJ: Pearson Prentice Hall. 6th ed.
Guggenberger P. 2008. Finite sample evidence suggesting a heavy tail problem of the generalized empirical

likelihood estimator. Econom. Rev. 27:526–41
Guggenberger P, Ramalho JJS, Smith RJ. 2012. GEL statistics under weak identification. J. Econom.

170:331–49
Hall P, Horowitz JL. 1996. Bootstrap critical values for tests based on generalized-method-of-moment

estimators. Econometrica 64:891–916
Hansen LP. 1982. Large sample properties of generalized method of moments estimators. Econometrica

50:1029–54
Hansen LP, Heaton J, Yaron A. 1996. Finite-sample properties of some alternative GMM estimators. J. Bus.

Econ. Stat. 14:262–80
Hjört NL, McKeague IW, Van Keilegom I. 2009. Extending the scope of empirical likelihood. Ann. Stat.

37:1079–111

100 Parente � Smith



HoeffdingW. 1965. Asymptotically optimal tests for multinomial distributions.Ann.Math. Stat. 36:369–408
Ichimura H. 1993. Semiparametric least squares (SLS) and weighted SLS estimation of single index models.

J. Econom. 58:71–120
ImbensGW.1997.One-step estimators for over-identified generalizedmethodofmomentsmodels.Rev. Econ.

Stud. 64:359–83
Imbens GW. 2002. Generalized method of moments and empirical likelihood. J. Bus. Econ. Stat. 20:493–506
Imbens GW, Spady RH. 2002. Confidence intervals in generalized method of moments models. J. Econom.

107:87–98
Imbens GW, Spady RH. 2005. The performance of empirical likelihood and its generalizations. See Andrews &

Stock 2005, pp. 216–44
Imbens GW, SpadyRH, Johnson P. 1998. Information theoretic approaches to inference inmoment condition

models. Econometrica 66:333–57
Jing B-Y,WoodATA. 1996. Exponential empirical likelihood is not Bartlett correctable.Ann. Stat. 24:365–69
Kitamura Y. 1997. Empirical likelihood methods with weakly dependent processes. Ann. Stat. 25:2084–102
Kitamura Y. 2001. Asymptotic optimality of empirical likelihood for testing moment restrictions. Econo-

metrica 69:1661–72
Kitamura Y. 2007. Empirical likelihood methods in econometrics: theory and practice. In Advances in

Economics and Econometrics, Theory and Applications: Ninth World Congress of the Econometric
Society, Vol. 3, ed. RW Blundell, WK Newey, T Persson, pp. 174–237. Cambridge, UK: Cambridge
Univ. Press

Kitamura Y, Otsu T, EvdokimovK. 2013. Robustness, infinitesimal neighborhoods, andmoment restrictions.
Econometrica 81:1185–201

Kitamura Y, Santos A, Shaikh AM. 2012. On the asymptotic optimality of empirical likelihood for testing
moment restrictions. Econometrica 80:413–23

Kitamura Y, Stutzer M. 1997. An information-theoretic alternative to generalized method of moments es-
timation. Econometrica 65:861–74

KitamuraY, TripathiG, AhnH. 2004. Empirical likelihood-based inference in conditional moment restriction
models. Econometrica 72:1667–714

Kleibergen FR. 2005. Testing parameters in GMM without assuming that they are identified. Econometrica
73:1103–23

Liu Y, Chen J. 2010. Adjusted empirical likelihood with high-order precision. Ann. Stat. 38:1341–62
Manski CF. 1988. Analog Estimation Methods in Econometrics. New York: Chapman & Hall
Matsushita Y, Otsu T. 2013. Second-order refinement of empirical likelihood for testing overidentifying

restrictions. Econ. Theory 29:324–53
Mittelhammer RC, Judge GG, Schoenberg R. 2005. Empirical evidence concerning the finite sample per-

formance of EL-type structural equation estimation and inference methods. See Andrews & Stock 2005,
pp. 282–305

Newey WK, Ramalho JJS, Smith RJ. 2005. Asymptotic bias for GMM and GEL estimators with estimated
nuisance parameters. See Andrews & Stock 2005, pp. 245–81

Newey WK, Smith RJ. 2004. Higher order properties of GMM and generalized empirical likelihood esti-
mators. Econometrica 72:219–55

NeweyWK,West KD. 1987. Hypothesis testing with efficient method of moments estimation. Int. Econ. Rev.
28:777–87

Newey WK, Windmeijer F. 2009. Generalized method of moments with many weak moment conditions.
Econometrica 77:687–719

Otsu T. 2006. Generalized empirical likelihood inference for nonlinear and time series models under weak
identification. Econ. Theory 22:513–27

Otsu T. 2007. Penalized empirical likelihood estimation of semiparametric models. J. Multivar. Anal.
98:1923–54

Otsu T. 2011. Empirical likelihood estimation of conditional moment restriction models with unknown
functions. Econ. Theory 27:8–46

Owen A. 1988. Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75:237–49

101www.annualreviews.org � Empirical Likelihood and Related Methods



Owen A. 1990. Empirical likelihood ratio confidence regions. Ann. Stat. 18:90–120
Owen A. 2001. Empirical Likelihood. New York: Chapman & Hall
Powell J, Stock JH, Stoker T. 1989. Semiparametric estimation of index coefficients. Econometrica

57:1403–30
Powell MJD. 1981. Approximation Theory and Methods. Cambridge, UK: Cambridge Univ. Press
Qin J, Lawless J. 1994. Empirical likelihood and general estimating equations. Ann. Stat. 22:300–25
Ramalho JJS. 2005. Small sample bias of alternative estimationmethods formoment conditionmodels:Monte

Carlo evidence for covariance structures. Stud. Nonlinear Dyn. Econom. 9:1–20
Reiersøl O. 1941. Confluence analysis by means of lag moments and other methods of confluence analysis.

Econometrica 9:l–24
Reiersøl O. 1945. Confluence analysis by means of instrumental sets of variables. Ark. Mat. Astron. Fys.

32A:1–119
Robinson PM. 1988a. Root-N-consistent semiparametric regression. Econometrica 56:931–54
Robinson PM. 1988b. The stochastic difference between econometric estimators. Econometrica 56:531–48
Sargan JD. 1958. The estimation of economic relationships using instrumental variables. Econometrica

26:393–415
Sargan JD. 1959. The estimation of relationships with autocorrelated residuals by the use of the instrumental

variables. J. R. Stat. Soc. B 21:91–105
Schennach SM. 2007. Point estimation with exponentially tilted empirical likelihood. Ann. Stat. 35:634–72
Shen X. 1997. On methods of sieves and penalization. Ann. Stat. 25:2555–91
Smith RJ. 1997. Alternative semi-parametric likelihood approaches to generalized method of moments

estimation. Econ. J. 107:503–19
Smith RJ. 2000. Empirical likelihood estimation and inference. In Applications of Differential Geometry to

Econometrics, ed. P Marriott, M Salmon, pp. 119–50. Cambridge, UK: Cambridge Univ. Press
SmithRJ. 2005.Automatic positive semi-definiteHACcovariancematrix andGMMestimation.Econ.Theory

21:158–70
Smith RJ. 2007a. Efficient information theoretic inference for conditional moment restrictions. J. Econom.

138:430–60
Smith RJ. 2007b. Local GEL estimation with conditional moment restrictions. In The Refinement of

Econometric Estimation and Test Procedures: Finite Sample and Asymptotic Analysis, ed. GDA Phillips,
E Tzavalis, pp. 100–22. Cambridge, UK: Cambridge Univ. Press

Smith RJ. 2007c. Weak instruments and empirical likelihood: a discussion of the papers by D.W.K. Andrews
and J.H. Stock andY. Kitamura. InAdvances in Economics and Econometrics, Theory andApplications:
Ninth World Congress of the Econometric Society, Vol. 3, ed. RW Blundell, WK Newey, T Persson, pp.
238–60. Cambridge, UK: Cambridge Univ. Press

Smith RJ. 2011. GEL criteria for moment condition models. Econ. Theory 27:1192–235
Tripathi G, Kitamura Y. 2003. Testing conditional moment restrictions. Ann. Stat. 31:2059–95
Wright PG. 1928. The Tariff on Animal and Vegetable Oils. New York: Macmillan
Wright S. 1925. Corn and hog correlations. Bull. 1300, US Dep. Agric., Washington, DC
Zhang J, Gijbels I. 2003. Sieve empirical likelihood and extensions of generalized least squares. Scand. J. Stat.

30:1–24

102 Parente � Smith


	ar: 
	logo: 



