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Abstract

Yves Couder, Emmanuel Fort, and coworkers recently discovered that a
millimetric droplet sustained on the surface of a vibrating fluid bath may
self-propel through a resonant interaction with its own wave field. This ar-
ticle reviews experimental evidence indicating that the walking droplets ex-
hibit certain features previously thought to be exclusive to the microscopic,
quantum realm. It then reviews theoretical descriptions of this hydrody-
namic pilot-wave system that yield insight into the origins of its quantum-
like behavior. Quantization arises from the dynamic constraint imposed
on the droplet by its pilot-wave field, and multimodal statistics appear to
be a feature of chaotic pilot-wave dynamics. I attempt to assess the po-
tential and limitations of this hydrodynamic system as a quantum analog.
This fluid system is compared to quantum pilot-wave theories, shown to
be markedly different from Bohmian mechanics and more closely related to
de Broglie’s original conception of quantum dynamics, his double-solution
theory, and its relatively recent extensions through researchers in stochastic
electrodynamics.
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1. INTRODUCTION

Long may Louis de Broglie continue to inspire those who suspect that what is proved by impossibility
proofs is lack of imagination.

J.S. Bell (1982)

Both fluid dynamics and quantum mechanics attempt to describe the motion of particles and waves
in continuous media, albeit on vastly different scales. Given the relative familiarity and accessibility
of fluid systems, it is only natural to draw analogies with them as one attempts to come to grips
with the oddities of quantum mechanics. Newton (1979) described photons skipping through the
ether like stones on the surface of a pond. Young (1804) demonstrated the wave nature of light
via analogy with ripple tank experiments. Berry et al. (1980) examined plane waves sweeping over
a vortex as a hydrodynamic analog of the Aharonov-Bohm effect (Coste et al. 1999). A recent
hydrodynamic analog of the Casimir effect suggests that Faraday waves can mimic the role of
vacuum fluctuations in generating forces between neighboring objects (Denardo et al. 2009). The
theories of fluid and quantum mechanics converge in the realm of superfluids (Donnelly 1993)
and Bose-Einstein condensates (Pitaevskii & Stringari 2003). The first hydrodynamic analogs of
single-particle quantum systems have emerged in the past decade from the Paris laboratory of
Yves Couder.

When placed on a vibrating fluid bath, a millimetric drop may interact with the surface in
such a way as to walk steadily across it at a characteristic speed of 1 cm/s, guided or piloted by its
own wave field (Couder et al. 2005b, Protière et al. 2006) (Figure 1c). The resulting walkers are
spatially extended objects comprising both the droplet and wave (Eddi et al. 2011b). By virtue of
their spatial delocalization, they exhibit several features previously thought to be peculiar to the
microscopic quantum realm (Bush 2010). Specifically, the walkers exhibit behavior reminiscent of
single-particle diffraction (Couder & Fort 2006), tunneling (Eddi et al. 2009b), quantized orbits
(Fort et al. 2010, Harris & Bush 2014a, Perrard et al. 2014a,b), orbital level splitting (Eddi et al.
2012, Oza et al. 2014a), and spin states (Oza et al. 2014a). Coherent, multimodal statistics have
been observed to emerge in single-particle diffraction (Couder & Fort 2006), motion in confined
geometries (Harris et al. 2013), orbital motion in a rotating frame (Harris & Bush 2014a), and
orbital motion in a central force (Perrard et al. 2014a,b). The basic mechanics and quantum-like
features of the walker system are reviewed in Section 2. The theoretical models developed to
rationalize the walker dynamics are reviewed in Section 3.

Section 4 explores the relation between this fluid system and realist descriptions of quantum
systems, the majority of which are rooted in the hydrodynamic formulation of quantum me-
chanics (Madelung 1926). The walker system bears a notable resemblance to an early conception
of relativistic quantum dynamics, Louis de Broglie’s (1926, 1930, 1956, 1987) double-solution

a b c d

Figure 1
Image gallery of (a) Faraday waves, just above threshold; (b) a bouncing drop; (c) a walker; and (d ) a trio of bouncers. Photographs
courtesy of Dan Harris.
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pilot-wave theory, according to which microscopic particles move in resonance with their own
wave field. The extensions of de Broglie’s mechanics through researchers in stochastic electrody-
namics (SED) (Kracklauer 1992, de la Peña & Cetto 1996, Haisch & Rueda 2000) are also touched
on, and their relation to the walker system is discussed. Although this review is written from the
perspective and in the language of a fluid mechanician, my hope is that it will encourage interest
in revisiting and reappraising realist quantum theories from the fluid dynamics community and
beyond.

2. WALKING DROPLETS

The phenomena of interest arise when a millimetric drop is levitated on the surface of a vibrat-
ing fluid bath (Walker 1978) (Figure 1), an understanding of which requires familiarity with
both noncoalescence phenomena (Neitzel & Dell’Aversana 2002) and Faraday waves (Miles &
Henderson 1990).

2.1. The Faraday Levitator

Casual observation indicates that water drops may skip across the water surface ( Jayaratne &
Mason 1964). The drop bounces if the collision time is less than the time taken for the intervening
air layer to drain to the thickness at which coalescence is initiated by the attractive van der Waals
forces acting between the drop and bath. Although this critical thickness generally depends on the
liquid and gas phase properties, as well as the system cleanliness, it is typically ∼100 nm (Couder
et al. 2005a; Terwagne et al. 2007, 2009). In the case of rebound, the air layer communicates
lubrication stresses (Reynolds 1886) between the drop and bath, causing the drop to deform,
decelerate, and reverse direction (Gilet et al. 2007, Gilet & Bush 2012).

Let us consider a fluid of density ρ, kinematic viscosity ν, and surface tension σ in a horizontal
bath of depth H, driven by a vertical vibration of amplitude A0 and frequency f = ω/(2π ).
The effective gravity in the bath’s frame of reference is g + γ sin ωt, where g is the gravitational
acceleration and γ = A0ω

2. At low γ , the fluid remains quiescent; however, above the Faraday
threshold γF , the layer becomes unstable to a field of Faraday waves (Faraday 1831) (Figure 1a).
The frequencies of the resulting waves are quantized, being integer multiples of half the driving
frequency (Benjamin & Ursell 1954). Although higher harmonics may be excited, for the silicone
oils used in the walker system, the most unstable waves are subharmonic, with half the frequency
of the imposed vibrational forcing, ωF = ω/2 (Douady 1990, Edwards & Fauve 1994, Kumar &
Tuckerman 1994, Kumar 1996). Thus, as γF is crossed from below, the first waves to appear are
subharmonic, with a wavelength λF = 2π/kF prescribed by the water-wave dispersion relation:
ω2

F = ( gkF + σk3
F /ρ) tanh kF H . The experimental system comprises a bath of silicone oil (ν ∼

10−100 cS, H ∼ 4−10 mm) subject to vertical vibrations ( f ∼ 20−150 Hz, A0 ∼ 0.1−1 mm)
that induce vibrational accelerations γ ≤ 5g and wavelengths λF ∼ 3−10 mm. For f ≥ 80 Hz
and H ≥ 7 mm, the Faraday waves are effectively deep-water capillary waves with the dispersion
relation ω2

F = σk3
F /ρ.

The walker experiments are performed for γ < γF , so the fluid interface would remain flat in
the absence of the drop; nevertheless, the Faraday forcing is critical. First, it powers the system,
providing the energy for both the droplet motion and the resulting wave field. Second, it precon-
ditions the bath for a monochromatic wave field. Eddi et al. (2011b) characterized the form of the
wave field generated by particle impact on a vibrating bath (γ < γF ) using a free-surface synthetic
schlieren technique (Moisy et al. 2009). Following impact, a transient wave propagates away from
the impact site at a speed of ∼6 cm/s, and in its wake persists a field of standing Faraday waves,
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whose longevity depends on the proximity to the Faraday threshold. A demonstration of walking
drops may be simply realized using a petri dish glued onto a woofer from a loudspeaker. Drops of
the desired size (diameter D ∼ 0.6−1.0 mm) may be produced by breaking the interface with a
toothpick. Illuminating with a strobe light makes for a striking demonstration.

Precision experiments require careful leveling and control of the vibrational forcing (Goldman
2002, Harris & Bush 2014b). Any variation from level, nonuniform vibration or spurious resonance
results in a spatial dependence of the Faraday threshold. The walker dynamics and statistics are
highly sensitive to all the system parameters, drop size, fluid properties, and forcing; consequently,
repeatable experiments require the simultaneous control and documentation of each. Studies of
the walker statistics are typically performed just below the Faraday threshold (Couder & Fort 2006,
Harris et al. 2013, Harris & Bush 2014a, Perrard et al. 2014a,b). The duration of the experiments is
thus limited by the constancy of the lab temperature, changes in which alter the Faraday threshold
through the concomitant change in viscosity (Bechhoeffer et al. 1995). The bath should be covered
with a fixed lid to eliminate air currents, a signature of which is curved rather than straight walker
trajectories. Another concern in gathering reliable statistical data is the longevity of the droplet
(Terwagne et al. 2007). Even in a controlled environment, rogue coalescence events arise, with
a period on the order of an hour, presumably owing to the settling of impurities onto the bath.
Such interruptions make clear the value of a mechanism for creating identical droplets on demand
(Yang et al. 1997, Terwagne 2012).

Couder’s group characterized the drop’s bouncing behavior in terms of the drop diameter
D = 2a and dimensionless forcing acceleration γ /g (Protière et al. 2005), with viscosity-frequency
combinations of 50 cS–50 Hz (Protière et al. 2006) and 20 cS–80 Hz (Eddi et al. 2008). Moláček &
Bush (2013a,b) and Wind-Willassen et al. (2013) extended these studies to guide their theoretical
developments. They introduced the vibration number, Vi = ω

√
ρa3/σ , the relative magnitude of

the forcing frequency and the drop’s natural oscillation frequency, and characterized the droplet
behavior in the Vi − γ /g plane for various viscosity-frequency combinations. Figure 2 presents
a synthesis of their results for the 20 cS–80 Hz combination, which exhibits the most extensive
walking regime. This presentation highlights a key feature of the system: A droplet most readily
bounces or walks when forced at its natural frequency, when Vi ≈ 0.65. Different bouncing states
are denoted by (m, n), where m/f indicates the period of the bouncing mode, during which the
drop contacts the surface n times.

Below the bouncing threshold, the drop coalesces into the bath. Just above it, bouncing arises
in the (1, 1) mode: The drop hits the bath once per driving period. Increasing the acceleration
then leads to a (2, 2) bouncing mode, in which the drop repeats a pair of bounces of unequal
height. For relatively small and large drops, a period-doubling cascade may follow, culminating
in chaotic bouncing or walking. For drops within a limited size range, typically 0.6 mm < D <

1.0 mm, a period-doubled (2, 1) bouncing mode emerges and then destabilizes into a (2, 1) walker
at the walking threshold γw. These (2, 1) walkers bounce in synchrony with their monochromatic
Faraday wave field, the underlying fluid behaving like a damped oscillator forced at resonance.
However, more complex gaits may also arise within the walking regime, including mode-switching
and chaotic walkers (Wind-Willassen et al. 2013). Section 3 reviews the theoretical rationale for
this behavior.

2.2. New Classical Behavior

A critical feature of the walker system is that of path memory (Eddi et al. 2011b). The walker
receives a lateral force at impact that depends on the local slope of the interface (Protière et al.
2006), whose form depends in turn on the previous impacts (Eddi et al. 2011b). In the low-memory
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Figure 2
Regime diagram indicating the dependence of the drop’s bouncing behavior on the driving acceleration, γ /g, and vibration number,
Vi = ω/

√
σ/ρa3. The fluid bath is 20-cS silicone oil driven at f = ω/2π = 80 Hz. The associated Faraday threshold is γF /g = 4.2. A

drop in the (m, n)i mode bounces n times in m forcing periods, with the integer subscript i ordering multiple (m, n) states according to
their total mechanical energy, with i = 1 being the lowest. Colors indicate predicted bouncing and walking modes; data indicate
measured thresholds between them (Moláček & Bush 2013b, Wind-Willassen et al. 2013).

limit, the waves are quickly damped, and the walker feels only the wave from its most recent impact.
At high memory, the waves are relatively persistent, and the walker’s trajectory depends on its
distant past. Although this physical picture is quantified by the theoretical developments described
in Section 3, it suffices now to say that the quantum-like features of the walkers emerge at high
memory, as arises when the Faraday threshold is approached.

2.2.1. Single-particle diffraction. The first evidence of the walker’s quantum-like behavior was
provided by Couder & Fort’s (2006) study of walker diffraction through slits. In their single-slit
study, walkers were directed, one at a time, toward a slit in a barrier (Figure 3). When walkers
passed through the slit, they were diverted from their original path owing to the interaction
between their pilot-wave field and the barrier. The authors directed 125 walkers toward the slit
with uniform spatial density at normal incidence, providing the best approximation to an incident
plane wave. The walker diffraction was quantified by the deflection angle α in the far field. The
histogram for α was wavelike, with three peaks, and roughly consistent with the amplitude expected
from the interference of a monochromatic wave with wavelength λF (Figure 3b). A qualitatively
similar distribution was obtained with their simulations. This system represents a hydrodynamic
analog of the single-photon diffraction experiments that constituted the doctoral thesis of G.I.
Taylor (1909).
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Figure 3
Single-particle diffraction. (a) A walker passing through a single slit. (b) The histogram for the deflection angle α from the single-slit
experiments. (c) The histogram for α from the double-slit experiments. Figure adapted with permission from Couder & Fort (2006),
courtesy of Yves Couder.

Couder & Fort’s (2006) second study examined a hydrodynamic analog of the double-slit ex-
periment with photons or electrons (Davisson & Germer 1927, Bach et al. 2013), the inscrutability
of which is widely accepted (Feynman et al. 1964). A wavelike histogram for α emerged, roughly
consistent with the amplitude of a monochromatic wave of wavelength λF diffracted by the double
slit. The proposed mechanism is as follows. While the walker passes through one slit or the other,
its guiding wave passes through both; thus, the walker effectively feels the second slit by virtue
of its pilot wave. The feasibility of such an interaction, which relies on the spatial delocalization
of the walker, is readily checked by comparing the decay time of the pilot wave to the walker’s
translation time.

Couder & Fort (2006) point out that, if one could not directly observe the walker, one might
infer an uncertainty principle in position and momentum by virtue of the diffraction of the pilot
wave. Thus, if an observer cannot ascertain the crossing point, he or she would be unable to
predict the walker’s final trajectory, hence the resulting uncertainty in momentum. An additional
uncertainty might be inferred if one could not resolve the walker’s bouncing phase, specifically
when it is in contact with the bath and when it is in free flight. Given the complex interaction
between the walker and its wave field as it passes through the slit, one expects its path to depend
on this bouncing phase. Such a dependence is suggested by the apparent independence of α on the
crossing point. The experiments of Couder & Fort (2006) indicate that the pilot-wave dynamics
within the slit is sufficiently complex to be chaotic, with the deflection angle α sensitive to both
the crossing point and the bouncing phase.

2.2.2. Tunneling. Eddi et al. (2009b) examined the interaction of a walker with barriers over-
laid by a thin fluid layer. The incidence of the pilot-wave field on the barrier generates partial
reflection and an evanescent tail that decays across the barrier. The reflected wave typically causes
the reflection of an approaching walker; however, the drop-wave-barrier interaction occasionally
permits the droplet to tunnel across. The tunneling probability decreases exponentially with the
barrier width and increases as the Faraday threshold is approached. Once again, the quantum-like
behavior (Gamow 1928) results from the pilot-wave dynamics, and the unpredictability is rooted
in the complex interaction between the droplet and its spatially extended guiding wave.
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Figure 4
A walker in a circular corral of radius R = 14.3 mm. (a) Trajectories of increasing length in the high-memory regime are color coded
according to droplet speed. (b) The histogram of the walking droplet’s position corresponds roughly to the amplitude of the corral’s
Faraday wave mode. Figure adapted with permission from Harris et al. (2013). Copyright 2013, AIP Publishing LLC.

2.2.3. Motion in confined geometries. The second experimental arrangement in which a co-
herent statistical behavior was reported was for walkers in confined geometries, specifically circu-
lar corrals (Harris & Bush 2013, Harris et al. 2013) (see Supplemental Video 1; follow the
Supplemental Material link from the Annual Reviews home page at http://www.
annualreviews.org). At low memory, the walkers loop around the walls of the corral. As the mem-
ory is increased, progressively more complex orbits arise: wobbling circular orbits, drifting elliptical
orbits, or epicycles. At very high memory, the trajectories become complex and presumably chaotic
owing to the complexity of the wave field resulting from reflections off the boundaries (Figure 4a).

The histogram presented in Figure 4b indicates the emergence of a coherent statistical behavior
from this chaotic pilot-wave dynamics. The probability of finding a walker at a given point in
the corral is roughly prescribed by the amplitude of the Faraday wave mode of the cavity at the
prescribed forcing frequency. As was the case for single-particle diffraction (Couder & Fort 2006),
the histogram has approximately the same wavelength as the pilot wave but a form prescribed by
the system geometry. Because the corral was tuned to fit a single Faraday mode, the statistics might
thus have been anticipated with no knowledge of the dynamics other than the guiding wavelength
λF and the corral geometry. The observed statistical behavior is thus roughly analogous to that
reported in the quantum corral experiments (Crommie et al. 1993a,b), in which the density of
electrons trapped on a copper substrate was found to have a wavelike pattern with the de Broglie
wavelength, λdB, and a form prescribed by the corral shape (Fiete & Heller 2003).

2.2.4. Motion in a rotating frame. An object moving horizontally with uniform speed u0 in
a frame rotating about a vertical axis with angular frequency 
 executes an inertial orbit of ra-
dius ri = u0/2
, at which the inertial force mu2

0/ri is balanced by the Coriolis force 2m
u0.
Fort et al. (2010) examined walkers on a rotating, vibrating bath and characterized the depen-
dence of the orbital radii ro on 
. In the low-memory regime, the walker’s orbital radii decrease
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Measured orbital radius ro as a function of the bath’s rotation rate 
 (Harris & Bush 2014a): (a) low memory (γ /γF = 0.822),
(b) intermediate memory (γ /γF = 0.954), and (c) high memory (γ /γF = 0.971). The dashed curve in panel a indicates pure inertial
orbits, ri = u0/2
, the offset from which is prescribed by the droplet’s hydrodynamic boost factor: ro = γBri (Bush et al. 2014). The
solid curves are the theoretical predictions of Oza et al. (2014a). The blue segments are linearly stable, the red linearly unstable, and the
dark yellow linearly unstable oscillatory branches. Data on the unstable dark yellow branches indicate the nonlinear stability of the
wobbling states. Error bars denote wobbling amplitudes. Figure adapted with permission from Oza et al. (2014a).

monotonically with the rotation rate according to ro = c o ri , where c o ≈ 1.3 is a fitting param-
eter. At high memory, ro no longer varies continuously with 
: Instead, certain orbital radii are
forbidden. Orbital quantization then emerges through the walker’s interaction with its own wake
(Figure 5).

Because the Coriolis force 2mẋp × � acts on a mass m in a rotating frame as does the Lorentz
force q ẋp × B on a charge q in a uniform magnetic field B (Weinstein & Pounder 1945), Fort
et al. (2010) proposed a correspondence between the quantized inertial orbits of walkers and the
Landau levels of electrons. In the high-memory regime, the orbital radii are roughly quantized
on the Faraday wavelength, just as Landau levels are quantized on the de Broglie wavelength.
Eddi et al. (2012) further explored this correspondence by examining the influence of rotation on
a pair of orbiting droplets. They found that the orbital radii increased or decreased according to
whether the pair rotated in the same or opposite sense relative to the bath, indicating an analogy
with Zeeman splitting of atomic energy levels.

The rotating system was revisited by Harris & Bush (2014a), who demonstrated that orbital
quantization arises only for a limited range of forcing accelerations. The emergence of orbital
quantization was detailed (Figure 5), along with the relatively rich behavior arising at higher
memory. As the memory is increased progressively, the orbital states become unstable, giving way
to wobbling orbital motions and then more complex periodic or aperiodic trajectories. In the high-
memory limit, irregular chaotic trajectories emerge as the walker drifts between unstable orbits
(Figure 6). The histogram of the trajectory’s radius of curvature is characterized by a multimodal
form, with peaks corresponding to the radii of the unstable orbits, which suggests their persistent
dynamical influence.
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Figure 6
Chaotic walking in a frame rotating at 
 = 0.79 rad/s. (a) Chaotic trajectory at high memory, γ /γF = 0.990. (b) Time trace of the
radius of curvature R of the trajectory shown in panel a. (c) Probability distribution of R as a function of the vibrational forcing γ /γF .
The brightness of a segment corresponds to the relative probability within a single column. (d ) Histograms of the local radius of
curvature along the three vertical columns indicated in panel c at γ /γF = 0.975 (dark yellow), 0.985 (red ), and 0.990 (blue). The gray
dashed vertical lines represent the zeros of the Bessel function J0(kF r). Figure adapted with permission from Harris & Bush (2014a).

2.2.5. Motion in a central force. Couder’s group has succeeded in encapsulating ferrofluids
with silicone oil. The resulting two-component drops can walk just as do their homogeneous
counterparts. By applying a vertical magnetic field with a radial gradient, Perrard et al. (2014a,b)
examined the dynamics of walkers in the central force field resulting from a harmonic potential.
In addition to circular orbits, more complex orbital states arose, including ovals, lemniscates, and
trefoils, all of which may either be stationary or precess azimuthally. The authors characterized
the resulting family of complex orbits in terms of the mean radius R̄ and angular momentum
L̄z (Figure 7). The results indicate that the dynamic constraint imposed on the walker by its
pilot-wave field imposes on its orbital states a double quantization in the mean energy and angular
momentum.

Perrard et al. (2014b) presented a theoretical rationale for the quantized orbital states (or
eigenstates) in terms of the energy landscape, specifically the wave field generated by the orbiting
walker (see also M. Labousse, S. Perrard, Y. Couder & E. Fort, submitted manuscript). When the
walker did not settle onto a pure eigenstate, it oscillated between nearby eigenstates, for example,
an oval and a lemniscate. Thus, as was the case in the rotating walker system (Harris & Bush
2014a), complex trajectories emerged in the high-memory limit: The walker drifted between the
system’s unstable eigenstates, the result being multimodal statistics (Perrard et al. 2014a).

2.2.6. Bound states and other oddities. Pairs of bouncing drops may interact through their wave
fields to form bound states (Protière et al. 2005). Likewise, crystalline structures may form from
aggregates of nearly identical bouncers (Figure 1d ). Lieber et al. (2007) reported both stationary
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Double quantization for walkers in a central force field. Observed orbits include circles, lemniscates, dumbbells, and trefoils. Orbits are
classified according to their mean radius R̄ =

√
〈R2〉/λF and angular momentum L̄z = 〈Lz〉/(mλF u). Figure adapted with permission

from Perrard et al. (2014b).

and spontaneously spinning lattices. Eddi et al. (2009a) achieved 8 of the 11 Archimedean tilings
of the plane with arrays of bouncers, the stability of which was also examined (Eddi et al. 2011a).
For pairs of bouncers of different size, the asymmetry of the resulting wave field may lead to
self-propelling, ratcheting states (Eddi et al. 2008). Dynamic bound states may also arise from
the interaction of walking droplets, their form depending on both the size and bouncing phase
of the walkers (Protière et al. 2005). Protière et al. (2008) explored the exotic orbits arising from
the interaction of walkers of different size. Pairs of identical walkers may scatter, lock into orbit,
or translate together side by side in the promenade mode, in which the distance between them
fluctuates periodically (C. Borghesi, J. Moukhtar, M. Labousse, A. Eddi, Y. Couder & E. Fort,
submitted manuscript).

Gilet et al. (2008) and Dorbolo et al. (2008) examined the bouncing of relatively large oil
drops (D ∼ 1.5 mm, ν < 100 cS) on a highly viscous bath (ν = 1,000 cS). Levitation criteria
were deduced, and nonaxisymmetric modes of droplet vibration excited, leading to propulsion
via tumbling. More complex fluid topologies have also been explored. Terwagne et al. (2010)
examined the bouncing of a two-phase droplet, elucidating the criterion for emulsification. Gier
et al. (2012) studied the levitation of polymeric droplets. Pucci et al. (2011, 2013) examined the
dynamics of a floating lens of alcohol on a vibrating bath of relatively viscous oil. When the lens
becomes unstable to Faraday waves, the resulting radiation pressure may deform the lens, leading
to striking static and dynamic forms.

3. THEORETICAL DEVELOPMENTS: AN EXPOSED
VARIABLE THEORY

The charm of the hydrodynamic pilot-wave system is its accessibility: All the properties of the
walker, the droplet and its guiding wave field, are visible. That is not to say that it is simply
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described: The walker system is remarkably subtle, with its dynamical and statistical behavior
strongly dependent on all the system parameters.

3.1. Bouncing Mechanics

Considerable effort has been devoted to elucidating the high–Reynolds number (Re = Ua/ν)
impact of millimetric drops on solids (de Gennes et al. 2002, Yarin 2006). At small Bond number
Bo = ρga2/σ , surface tension dominates gravity, so a drop remains nearly spherical unless distorted
by impact. For low–Weber number impacts, We = ρU 2a3/σ � 1, the distortion is weak, and
the drop behaves roughly like a linear spring with a spring constant proportional to σ (Okumura
et al. 2003): During impact, kinetic energy is converted to surface energy, and then back to kinetic
energy, with only a small viscous loss provided Re 	 1. Moláček & Bush (2012) demonstrated
that for the parameter regime of walkers (Re ∼ 20, Bo ∼ 0.1, We ∼ 0.1), the distortion induced
by impact on a rigid substrate may be described in terms of a family of quasi-static forms, and the
collision dynamics in terms of a logarithmic spring.

The walkers are millimetric, and the principal force imparted to them during impact on the
bath is associated with curvature rather than hydrostatic pressure. Thus, the dominant physics
of impact is captured through the consideration of drop impact on a soap film, a configuration
examined by Gilet & Bush (2009a,b), who demonstrated that the soap film acts on the drop like a
linear spring, with a spring constant proportional to σ . Their investigation of a drop on a vibrating
film revealed and rationalized a number of complex bouncing states. Drop impact on a vibrating
fluid bath is complicated by the influence of the bath’s inertia (Prosperetti & Oguz 1993).

To describe the impact of a bouncing drop on a vibrating liquid bath, Moláček & Bush (2013a,b)
developed a hierarchy of models of increasing complexity, building on their model of impact on a
rigid substrate (Moláček & Bush 2012) through consideration of the bath deformation. A logarith-
mic spring model again emerged, their model incorporating the measured logarithmic dependence
of the coefficient of restitution CR and contact time TC on We. Although thus semiempirical, the
resulting model has no free parameters. It correctly predicts the bouncing threshold, as well as
the thresholds between the more energetic bouncing states (Figure 2). The bouncer must satisfy
a resonance condition. For the (1, 1) bouncer, this is simply stated: The impact time plus the
time of flight must equal the Faraday period. As γ increases progressively, the phase of impact
changes continuously until the resonance condition can no longer be satisfied without the bouncer
changing modes. For a description of the low-energy bouncing states, it was adequate to assume
that the interface recovered to horizontal before the next impact. Modeling the more vigorous
bouncing and walking states required consideration of the wave field.

Moláček & Bush (2013b) calculated the form of the wave field generated for the small-drop
parameter regime of interest. Because a drop in the period-doubled bouncing state lands on the
crest of its wave (Protière et al. 2006), it may be destabilized into a walking state. Modeling the
resulting horizontal dynamics required the dependence of the coefficient of tangential restitution
CT on We, which was again deduced empirically. The resulting model successfully rationalized
the observed walking thresholds (Figure 2), as well as the dependence of the walking speed on the
system parameters (Moláček & Bush 2013b). Their study underscored the subtle role of impact
phase on the walker dynamics: As the forcing acceleration is increased progressively, the impact
phase shifts, and the walker may switch from one walking mode to another.

Terwagne et al. (2013) developed a relatively simple mass-spring-dashpot model of a droplet
bouncing on a bath. Wind-Willassen et al. (2013) built upon the models of Moláček & Bush
(2013a,b) to present the most complete study to date. New complex bouncing modes and different
gaits arising within the walking regime were reported and rationalized (Figure 2). The dynamics of
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droplets on a vibrating bath in the parameter regime relevant to walkers is now well characterized
and understood. Existing regime diagrams provide a valuable resource for benchmarking new
experimental studies.

3.2. Trajectory Equation

Protière et al. (2006) developed the first theoretical description of walking droplets. The model
captures the essential physics of the problem, specifically the propulsion of the drop by virtue of a
resonant interaction with a monochromatic wave field centered on the drop and generated at each
impact. It reproduced several qualitative features of droplet behavior, including the bifurcation
from bouncing to walking and the increase of walking speed with forcing acceleration. However,
the model incorporated only the wave field of the most recent impact. A similar low-memory
approximation was used to model walkers in corrals (Shirikoff 2013). Variable memory has been
incorporated in Emmanuel Fort’s numerical model, which has captured many features of the
walker system, including single-particle diffraction (Couder & Fort 2006), quantized orbits (Fort
et al. 2010), and doubly quantized orbits (Perrard et al. 2014a,b). This model provides a valuable
exploratory tool that illustrates the critical role of memory on the walker dynamics; however, it
does not capture the detailed dependence of the system on the fluid parameters.

Moláček & Bush (2013b) developed a hydrodynamically consistent equation of motion for a
drop of mass m at a position xp (t) walking in resonance with its wave field of shape h(x, t). By time
averaging over the bouncing period, they eliminated the vertical dynamics from consideration and
so deduced the trajectory equation:

mẍp + Dẋp = −mg∇h(xp , t). (1)

The second term represents the time-averaged drag resulting from both flight and impact, with
D being a drag coefficient that depends on the system parameters in a known fashion (Moláček &
Bush 2013b). The third term is the propulsive wave force resulting from the drop’s landing on
an inclined surface. As h(x, t) depends on the history of the drop, so too does the wave force. The
surface wave generated by a single impact may be approximated as a monochromatic radial Bessel
function of the first kind, J0(kFr) (Eddi et al. 2011b, Moláček & Bush 2013a, Oza et al. 2013), so
the interface height generated by all previous bounces required for this time-averaged model is

h(x, t) = A
�t/T F �∑
n=−∞

J0(kF |x − xp (nT F )|)e−(t−nT F )/(T F M ). (2)

The dimensionless memory parameter M = Td /[TF (1 − γ /γF )] depends on the Faraday
period TF , the decay time of unforced waves Td , and the proximity to the Faraday threshold γ F

(Eddi et al. 2011b). The wave amplitude A likewise depends in a known fashion on the system
parameters, including the impact phase (Moláček & Bush 2013b). The wave force becomes
increasingly important at high memory, as γ → γF , when the waves are relatively persistent.

With a wave field in the form of the discrete sum (Equation 2), the trajectory equation shown
in Equation 1 is difficult to analyze. Oza et al. (2013) demonstrated that, as the vertical dynamics
is fast relative to the horizontal dynamics, one may approximate this sum by an integral. The
resulting stroboscopic approximation yields the dimensionless trajectory equation

κ0(1 − �)ẍp + ẋp = 2
(1 − �)2

∫ t

−∞

J1(|xp (t) − xp (s )|)
|xp (t) − xp (s )| (xp (t) − xp (s ))e−(t−s )ds . (3)

This formulation includes two dimensionless parameters. The first, � = (γ − γW )/(γF − γW ),
indicates the vigor of the forcing, the relative distance from the walking (� = 0) and Faraday
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(� = 1) thresholds. The second contains all the fluid parameters appearing in Equations 1 and
2: κ0 = (m/D)3/2kF

√
g A/2T F . The nonlocal form of the dynamics is apparent: The wave force

acting on the walker is a function of its past, specifically its path, along which it lays down a field
of Faraday waves.

The trajectory equation shown in Equation 3 describes the dynamics evident when the system
is strobed at ωF , when the walker appears to be pushed along continuously by its pilot-wave field
(Harris & Bush 2013) (see Supplemental Video 1). Through its neglect of the vertical dynamics
and impact phase, it is relatively amenable to analysis. Oza et al. (2013) showed that the stationary
bouncing state ẋp = 0 is stable until the walking threshold γw, beyond which steady walking
solutions arise. The resulting theoretical predictions for both the walking threshold γw and the
dependence of the walker speed on γ for γ > γw adequately describe the existing data. The only
fitting parameter in this strobed model is the impact phase, reasonable bounds on which are known
from experiments (Moláček & Bush 2013b).

The trajectory equation shown in Equation 3 also yields insight into the stability of the walking
state, the robustness of which is not obvious, given that the drop is riding the crest of its wave
field. Linear stability analysis demonstrates that the walker is stable to colinear perturbations but
is neutrally stable to transverse perturbations: If perturbed laterally from rectilinear motion, it will
simply change course and proceed in a new direction (Oza et al. 2013). This result is consistent
with the skittishness of the walker, the sensitivity of its path to perturbation, and its evidently
chaotic motion in complex geometries, including corrals and slits.

3.3. Orbital Dynamics

The strobed model of Oza et al. (2013) has also allowed for an assessment of the stability of the
quantized orbits in a rotating frame (Fort et al. 2010, Harris & Bush 2014a). To describe this
configuration, the trajectory equation shown in Equation 3 is augmented by the Coriolis force.
Circular orbital solutions with constant radius ro and frequency ωo are sought, and their linear
stability assessed (Oza et al. 2014a). Figure 5 illustrates the predicted dependence of the orbital
radius on the rotation rate for three memory values. The predicted stability of orbits along the
solution curves is indicated by their color. At low memory (Figure 5a), all circular orbits are
stable, with orbital radii decreasing monotonically with 
. At intermediate memory (Figure 5b),
two unstable solution branches arise, corresponding to forbidden radii, the origins of the orbital
quantization. At high memory (Figure 5c), the solution curve has linearly stable, linearly unstable,
and linearly unstable oscillatory branches.

Numerical simulation of the trajectory equation has revealed the behavior of the walkers in the
linearly unstable regions (Oza et al. 2014b). Figure 8 summarizes the dependence of the orbital
dynamics on γ /γF and the initial orbital radius ro. As γ /γF is increased progressively, the stable
circular orbits are typically succeeded by wobbling orbits with, in turn, stationary and translating
orbital centers. In the high-memory limit, all but the smallest orbits become unstable, and chaotic
trajectories arise. Although the trajectories are irregular, they exhibit coherent statistics. As in the
experiments of Harris & Bush (2014a) (Figure 6), the walker has a tendency to follow arcs with
radii of curvature corresponding to the unstable orbital states; thus, the histograms for the radius
of curvature exhibit peaks at these radii, the number and relative magnitudes of which depend
on the system memory. A coherent multimodal statistics thus emerges owing to the persistent
dynamical influence of the unstable orbital states. These recent studies elucidate the origins of
two key quantum-like behaviors, quantization and multimodal statistics, in orbital pilot-wave
dynamics (Fort et al. 2010; Harris & Bush 2014a; Oza et al. 2014a,b; Perrard et al. 2014a,b;
M. Labousse, S. Perrard, Y. Couder & E. Fort, submitted manuscript).
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Figure 8
Numerical simulations of walker trajectories in a rotating frame indicate the dependence of their form on the vibrational forcing γ /γF
and the initial orbital radius ro. Blue regions denote stable orbital regions, the boundaries of which are defined by the linear stability
analysis of Oza et al. (2014a). Traverses B and C correspond to the solution curves illustrated in Figure 5b,c. Trajectories are color
coded according to the legend. Note the windows of periodicity within the chaotic regime. Figure adapted with permission from Oza
et al. (2014b). Copyright 2014, AIP Publishing LLC.

Another intriguing feature of the rotating system revealed through the analysis of Oza et al.
(2014a) is the possibility of hydrodynamic spin states. As memory increases, the solution curves
touch down on the 
 = 0 axis (Figure 5c), indicating the existence of orbital solutions even in the
absence of rotation. The wave force generated by the walker is then sufficient to balance the radial
inertial force and so sustain its circular motion, a physical picture reminiscent of classical models
of the electron (Schrödinger 1930, Burinskii 2008). When rotation is applied, as in the two-walker
orbits of Eddi et al. (2012), a hydrodynamic analog of Zeeman splitting occurs. Although such
hydrodynamic spin states are unstable in the parameter regime explored in our experiments, they
are stable in other regions of the (κ0, �) parameter space accessible in our more general pilot-wave
framework (Equation 3).

An important conclusion of Harris & Bush (2014a) is that the statistics are extremely sensitive
to all of the fluid parameters, their form changing drastically as γ /γF changes by as little as 1%
(Figure 6d ). Although the studies of single-particle diffraction (Couder & Fort 2006) and corrals
(Harris et al. 2013) suggested that a unique Schrödinger-like wave function emerges in the high-
memory limit (Figures 3 and 4), this relatively systematic study suggests otherwise. Rather, it is
anticipated that a systematic reexamination of the diffraction and corral experiments will reveal
multimodal statistics whose form will be strongly dependent on the system parameters.

3.4. Future Directions

The strobed model (Oza et al. 2013) successfully describes the motion of a single walker in un-
bounded domains. Having been benchmarked against the experiments of Harris & Bush (2014a),
it is currently being applied to describe walker motion in central force fields, including har-
monic and Coulomb potentials. A salient question is why the double quantization evident in the
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harmonic potential (Perrard et al. 2014a,b; M. Labousse, S. Perrard, Y. Couder & E. Fort, sub-
mitted manuscript) was not apparent in the rotating system (Harris & Bush 2014a, Oza et al.
2014a,b). The principal shortcoming of the strobed model is that the wave field (Equation 2) does
not incorporate the transient wave emitted during impact (Eddi et al. 2011b) and so cannot reliably
capture the interaction of walkers with barriers (Eddi et al. 2009b, Harris et al. 2013, Carmigniani
et al. 2014) or other walkers (Protière et al. 2005, 2008; C. Borghesi, J. Moukhtar, M. Labousse,
A. Eddi, Y. Couder & E. Fort, submitted manuscript). This shortcoming is being addressed in
the next generation of pilot-wave models (P. Milewski, C. Galeano-Rios, A. Nachbin & J.W.M.
Bush, submitted manuscript).

The theoretical developments have provided a more general framework for studying pilot-wave
dynamics. In the stroboscopic model (Equation 3), only two dimensionless parameters appear. We
have seen that certain quantum-like features, such as spin states, are unstable in the parameter
regime accessible to this hydrodynamic pilot-wave system but are stable in others. The question
then arises: For what values of (κ0, �) does this generalized pilot-wave system exhibit behavior
most reminiscent of quantum mechanics?

Fort & Couder (2013) took another intriguing step away from this hydrodynamic pilot-wave
system and introduced the concept of an inertial walker. Whereas the real walker lays down a field
of waves along its path, the inertial walker’s wave field continues at the walker’s velocity at the
time of emission. For a discrete set of orbits, nonradiative resonant wave modes are excited; when
circular, these orbits satisfy the Bohr-Sommerfeld quantization condition.

It is also interesting to consider how the walker motion might be described if the system were
observed from above with no knowledge of the vibrational forcing, the bouncing, or the wave field.
Labousse & Perrard (2014) highlighted the non-Hamiltonian features of the walker, describing
its motion at low memory in terms of a Rayleigh oscillator. For a certain class of motions, Bush
et al. (2014) demonstrated that the influence of the propulsive wave field and dissipation cancel
to leading order, and the walker motion may be described in terms of the inviscid dynamics of a
particle whose mass depends on its speed. They thus computed a hydrodynamic boost factor γB

for the walker in terms of the system parameters: The effective inertial mass of a walker is γBm.
This perspective rationalizes the anomalously large orbital radii evident in Figure 5a in terms
of the walker’s wave-induced added mass. Its value in more general settings is currently being
explored.

4. RELATION TO QUANTUM MECHANICS

Realist interpretations of quantum mechanics assert that there is a real dynamics underlying the
statistical description provided by standard quantum theory; thus, microscopic particles follow
trajectories as do their classical counterparts (Bohr 1935, Einstein et al. 1935). This perspective
suffered an early setback when von Neumann (1932) published a proof that erroneously suggested
the impossibility of such a dynamics. It was over 30 years before Bell (1966) discredited von
Neumann’s and subsequent impossibility proofs. On such matters, I am inclined to give Bell
(1987) the final word, to entertain the possibility of a real quantum dynamics underlying the well-
established statistical theory. It is then only natural to ask what relation this hydrodynamic system
might have to existing realist models of quantum dynamics.

4.1. The Madelung Transformation

The Madelung (1926) transformation allows the linear Schrödinger equation (LSE) to be recast in
hydrodynamic form. Let us consider the standard quantum mechanical description of a particle of
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mass m confined to a plane in the presence of a potential V(x). Expressing the probability function
in polar form, (x, t) = R(x, t)e i S(x,t)/ h̄ , and substituting into the LSE, we obtain

Dρq

Dt
+ ρq ∇ · vq = 0, (4a)

∂S
∂t

+ 1
2

m v2
q + Q + V = 0, (4b)

where vq (x, t) = ∇S(x, t)/m is the quantum velocity of probability, S(x, t) is the action,
ρq (x, t) = R2 is the probability density, and Q(x, t) = −(h̄2/ 2m)(1/R)∇2 R is the quantum po-
tential. Equation 4a indicates the conservation of probability, and Equation 4b corresponds to
the quantum Hamilton-Jacobi equation. Taking the gradient of the latter yields the evolution
equation for vq:

m
Dvq

Dt
= −∇Q − ∇V . (5)

From the perspective of the fluid mechanician, the Madelung formulation (Equation 4) has two
attractive features (Spiegel 1980). First, Planck’s constant h̄ appears only once, as the coefficient
on the quantum potential. Second, the system corresponds to that describing the evolution of a
shallow, inviscid fluid layer if one associates ρq with the fluid depth and vq with the depth-averaged
fluid velocity. When Q is linearized about a state of uniform ρq , it assumes the form of the curvature
pressure in shallow-water hydrodynamics (Bühler 2010). One thus sees the relation between h̄ in
quantum statistics and surface tension σ in shallow-water hydrodynamics.

The Madelung transformation simply indicates that one can model quantum statistics hydrody-
namically. For example, the statistics reported in the quantum corral experiments (Crommie et al.
1993a,b) might in principle be modeled with a Faraday wave system (see Supplemental Video 1)
(Harris et al. 2013, Harris & Bush 2013). Specifically, provided the corrals can be tuned to fit a
single mode, given the energy of the particle E = h̄ω, one can deduce the de Broglie wavelength,
λdB = 2π/k, from the quantum dispersion relation ω = h̄k2/2m, from which one might antic-
ipate the probability distribution. Similarly, given the driving frequency, we know the Faraday
wavelength from the water-wave dispersion relation (e.g., ωF = √

σ/ρ k3/2
F for deep-water capil-

lary waves), on the basis of which we might deduce the cavity’s Faraday wave mode (Figure 4b).
However, the corral experiments (Harris et al. 2013) indicate that one can also predict the statis-
tics of walkers hydrodynamically; specifically, the histogram of a walker in a circular cavity is
prescribed by the cavity’s Faraday wave mode. Thus, in certain parameter regimes, walkers and
quantum particles display similar statistical behavior, with the fluid properties (σ, ρ) standing
in for (h̄, m). What then can we make of the relation between walker motion and quantum
dynamics?

4.2. Pilot-Wave Theories

The first pilot-wave theory was proposed by de Broglie (1923), who envisaged microscopic
particles being guided by an accompanying wave field, pushed in a direction perpendicular to
surfaces of constant phase (de Broglie 1926, 1930; Bacchiagaluppi & Valentini 2009). His original
conception, his “double-solution theory” (de Broglie 1956), involved two waves, a real pilot wave
centered on the particle and the statistical wave predicted by standard quantum theory. He asserted
that quantum mechanics was intrinsically relativistic and proposed that the pilot wave originates
in internal particle oscillations at the Compton frequency, ωc = mc 2/ h̄, at which rest mass energy
is exchanged with wave energy. He proposed that the guiding wave field evolves according to
the Klein-Gordon equation and consists of a monochromatic wave field in the particle’s frame of
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reference. The de Broglie relation, p = h̄k, then relates the particle momentum to the de Broglie
wavelength, λdB = 2π/k. Finally, he stressed the importance of the harmony of phases, by which
the particle’s internal vibration, seen as that of a clock, stays in phase with its guiding wave (de
Broglie 1930, 1987). Thus, according to his conception, the wave and particle maintain a state of
resonance.

Bohm (1952a,b) proposed a single-wave pilot-wave theory, according to which the guiding
wave is precisely equivalent to the solution of Schrödinger’s equation, and the particle velocity
is identical to the quantum velocity of probability vq . Provided one takes an ensemble of initial
conditions consistent with a solution to the LSE, the predictions of Bohmian mechanics are iden-
tical to those of standard quantum mechanics (Keller 1953). The result represented an important
counterexample to the impossibility proofs of von Neumann (1932) and others that held sway
at the time. Bohmian mechanics has since been developed substantially (Holland 1993, Towler
2009, Durr et al. 2012) and over time has been conflated with de Broglie’s theory into what is
now commonly referred to as the de Broglie–Bohm theory. The walking drop system suggests the
potential value of disentangling these two pilot-wave theories.

The walker system is closer to de Broglie’s double-solution theory than to Bohmian mechan-
ics (Couder & Fort 2012). In the double-solution theory, as in this hydrodynamic system, the
statistical wave must be augmented by the real pilot wave: The standard wave–particle duality
must be extended to the wave–particle–pilot-wave trinity. The distinction is particularly evident
in the corral geometry. According to Bohmian mechanics, the guiding wave is the statistical wave.
In the walker system, conversely, the drop is piloted by the instantaneous wave field within the
corral, whose form is relatively complex (Harris et al. 2013). Although both the real and statis-
tical waves are characterized by the Faraday wavelength, the former is effectively centered on
the particle and the latter is prescribed by the corral geometry (Figure 4b). The marked dif-
ference between the walker system and Bohmian mechanics is also evident in the diffraction
experiments (Couder & Fort 2006). In quantum single-particle diffraction, Bohmian trajectories,
as guided by the symmetric statistical wave, are necessarily symmetric: No particles cross the
centerline (Philippidis et al. 1979). Conversely, the walker is guided by the complex pilot wave
arising as it enters the gap. Its trajectory is complex, chaotic, and decidedly asymmetric: Walkers
often cross the centerline. Although analog Bohmian trajectories could be defined for walkers
on the basis of the statistics, they would simply represent ensemble averages of the real chaotic
trajectories.

Table 1 compares de Broglie’s double-solution theory and the walker system. Both systems
are characterized by three timescales: a short time associated with a high-frequency oscillation,
an intermediate time associated with the pilot-wave dynamics, and a long time over which the
coherent statistics emerge (Harris & Bush 2013) (see Supplemental Video 1). Both systems
are characterized by a single length scale that appears in both the dynamics and the statistics.
The walker diffraction and corral experiments provide the first evidence that a particle-centered
pilot-wave dynamics may give rise to a statistical wave with the same wavelength, but with a form
prescribed by the bounding geometry.

De Broglie (1956) specified neither the physical origin nor the geometric form of his pilot wave.
He proposed that it was linearly related to the statistical wave in the far field but was nonlinear (in
an unspecified fashion) in the vicinity of the particle (de Broglie 1987). As he saw the particle as
the source of the field, he invoked a singularity at the particle position. Three key features of the
walker system are absent from de Broglie’s conception. First, the walker interacts with an existing
field (the interface) and so need not represent a singularity. Second, its monochromatic pilot-wave
field is generated by parametric forcing. Third, the relation between the real and statistical waves
emerges through chaotic pilot-wave dynamics.
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Table 1 A comparison among the walking droplet system, de Broglie’s double-solution pilot-wave
theory (de Broglie 1956, 1987), and its extension to stochastic electrodynamics (SED) (Kracklauer
1992, de la Peña & Cetto 1996, Haisch & Rueda 2000)

Walkers de Broglie SED pilot wave
Pilot wave Faraday capillary Unspecified Electromagnetic (EM)
Driving Bath vibration Internal clock Vacuum fluctuations
Spectrum Monochromatic Monochromatic Broad
Trigger Bouncing Zitterbewegung Zitterbewegung
Trigger frequency ωF ωc = mc 2/ h̄ ωc = mc 2/ h̄
Energetics GPE ↔ wave mc 2 ↔ h̄ω mc 2 ↔ EM
Resonance Droplet—wave Harmony of phases Unspecified
Dispersion ω(k) ω2

F ≈ σk3/ρ ω2 = ω2
c + c 2k2 ω = c k

Carrier λ λF λdB λc

Statistical λ λF λdB λdB

In the walker system, energy is exchanged at ωF between the drop’s gravitational potential energy (GPE) and the capillary
Faraday wave field. Zitterbewegung denotes particle oscillations at the Compton frequency ωc .

4.3. Stochastic Electrodynamics

Soon after its inception (Bohm 1952a,b), Bohmian mechanics was extended to incorporate the
influence of a stochastic subquantum realm (Bohm & Vigier 1954). According to this physical
picture, stochastic particle motion underlies the quantum velocity of probability vq , the Madelung
flow, just as Brownian motion underlies the streamlines within a fluid flow. This perspective,
also pursued by de Broglie (1964) in his later years, led to a considerable literature (Goldstein
1987, Chebotarev 2000). Of particular interest is the result of Nelson (1966), who derived the
LSE from consideration of a stochastic classical system, namely the Brownian motion of a mass
m with diffusion coefficient h̄/(2m). A recent review of the successes and failures of the resulting
stochastic interpretation of quantum mechanics is presented by Nelson (2012).

Stochastic electrodynamics (SED) posits a zero-point field (ZPF), electromagnetic vacuum
fluctuations with an energy spectral form: U (ω) = h̄ω/2 (Boyer 2011). Notably, these fluctuations
represent a natural means of introducing Planck’s constant h̄ into a classical theory. SED has
provided rationale for the Casimir effect, the stable ground state of the hydrogen atom (Cole &
Zhou 2003), and the blackbody radiation spectrum (Boyer 2010). Surdin (1974) proposed the
ZPF as a source of stochasticity in the subquantum realm. The resulting physical picture is being
advanced: Grossing et al. (2012a,b) have taken inspiration from the bouncing droplets, referring
to microscopic particles as bouncers.

De la Peña & Cetto (1996) suggested that vacuum fluctuations may generate a quantum parti-
cle’s zitterbewegung (Schrödinger 1930, Hestenes 1990), specifically oscillations at the Compton
frequency ωc = mc 2/ h̄. They further suggested that, as a particle translates, this vibrational
motion interacts selectively with waves in the ambient vacuum field, a resonant interaction that
amplifies an electromagnetic pilot wave. According to this physical picture, the carrier wave has
the Compton wavelength λc = 2π h̄/mc , and the de Broglie wavelength prescribes its modulation
(Kracklauer 1992, 1999). This conception of a particle as a ZPF-driven oscillating charge with
a resonance at ωc has been further explored by Haisch & Rueda (2000), who suggested that it
may offer insight into the origins of inertial mass, thereby linking the ZPF with the quantum
wave nature of matter and relativistic mechanics (Haisch et al. 2001, Rueda & Haisch 2005). The
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similarities between the resulting physical picture and the walker system are intriguing: The vac-
uum fluctuations would play the role of the vibrating bath in powering the system, with the
particle’s zitterbewegung that of the bouncing drop in triggering the pilot wave. This SED-based
physical picture is also included in Table 1.

5. DISCUSSION

The hydrodynamic pilot-wave system discovered by Yves Couder, Emmanuel Fort, and cowork-
ers is a fascinating new dynamical system in which a drop self-propels by virtue of a resonant
interaction with its own wave field. It is the first macroscopic realization of a pilot-wave system
of the form envisioned by de Broglie in his double-solution theory, and has extended the range
of behaviors accessible to classical systems. It exhibits features reminiscent of quantum single-
particle diffraction, tunneling, singly and doubly quantized orbits, orbital level splitting, spin, and
multimodal statistics, all of which may be rationalized in terms of pilot-wave dynamics. Willful
misinterpretation based on either intrusive measurement or impaired observation might lead to
the inference of uncertainty relations and hydrodynamic boost factors. Likewise, exclusion princi-
ples might be inferred; for example, certain multiple-walker orbital states are forbidden by virtue
of the fact that walkers must share the same wave field.

What features are critical to the quantum-like behavior? Quantization emerges from the dy-
namic constraint imposed on the walker by its monochromatic pilot-wave field. For example,
quantized orbits may be understood in terms of the interaction of the walker with its own wake:
Quantization emerges only when the wave field lasts longer than the orbital period. The dispersion
relation of the wave field is not important. What is important is that the wave be monochromatic,
hence the critical importance of the Faraday forcing and the resonance between the bouncing drop
and its pilot wave. Studies of orbital motion suggest that multimodal statistics are a generic feature
of chaotic pilot-wave dynamics: Unstable eigenstates serve as attractors that leave an imprint on the
statistics. The general validity of this perspective needs to be explored through further examina-
tion of walkers in corrals (T. Gilet, submitted manuscript), single-particle diffraction, and entirely
new geometries. Characterizing the transitions to chaos in this new pilot-wave system poses an
exciting challenge to the dynamical systems community. The influence of stochastic forcing on
this chaotic pilot-wave dynamics is also of considerable interest. Such a forcing may arise nat-
urally in the laboratory through the influence of air currents or when the drop is in a chaotic
walking state, and might be imposed in a controlled fashion through noise in the vibrational
forcing.

The hydrodynamic system has numerous limitations as a quantum analog; however, some
may be circumvented. Although the experiments can capture only two-dimensional pilot-wave
dynamics, the attendant theoretical developments can be generalized to three dimensions. The
wavelength of the walker’s pilot wave is imposed by the frequency of the vibrational forcing and
is independent of its speed; conversely, in quantum mechanics, the de Broglie relation, p = h̄k,
dictates a speed-dependent de Broglie wavelength. Such a dependence could be incorporated into
existing pilot-wave models. Finally, we have seen that intrusive measurement, a defining feature
of quantum mechanics, can be artificially imposed on the walker system. The question remains
open as to whether some combination of intrusive measurement and chaotic pilot-wave dynamics
might give rise to a hydrodynamic analog of entanglement.

Bell (1987) championed the de Broglie–Bohm pilot-wave theory on the grounds that it presents
a conceptual framework for a mechanistic understanding of quantum dynamics, a framework that
a purely statistical theory cannot possibly provide. Whatever its shortcomings and limitations,
the new physical picture suggested by the walkers, that of a relatively complex chaotic pilot-wave
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dynamics, also has this appealing feature. Moreover, it has precursors in a continuous arc of
literature that leads back to de Broglie and Einstein, both of whom sought to reconcile quantum
mechanics and relativity through consideration of the wave nature of matter (Bohm & Hiley 1982,
Chebotarev 2000). The relation among this physical picture, quantum chaos (Gutzwiller 1990),
and quantum field theory (Weinberg 1995) is left to the interested reader.

And lest the longevity of the quantum paradoxes be mistaken for their insurmountability,
fluid mechanics has a cautionary tale to tell. In 1749, d’Alembert’s paradox indicated that an
object moving through an inviscid fluid experiences no drag, a prediction that was clearly at
odds with experiments on high–Reynolds number gas flows. The result was a longstanding rift
between experimentalists and theorists: For much of the nineteenth century, the former worked
on phenomena that could not be explained, and the latter on those that could not be observed
(Lighthill 1956). D’Alembert’s paradox stood for over 150 years, until Prandtl’s developments
(Anderson 2005) allowed for the resolution of the dynamics on the hitherto hidden scale of the
viscous boundary layer.

Finally, as concerns my alignment vis-à-vis quantum interpretations, I remain steadfastly ag-
nostic; however, if forced to choose, I would be inclined to back, by virtue of its inclusivity, the
logical extension of the Many-Worlds interpretation (Everett 1957), the Many-Many-Worlds
interpretation, according to which each quantum interpretation is realized in some edition of the
multimultiverse, and there is even one world in which there is only one world, a world in which
quantum statistics are underlaid by chaotic pilot-wave dynamics, there is no philosophical schism
between large and small, and beables be.
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