
FL47CH02-Curtis ARI 24 November 2014 8:46

Discrete Element Method
Simulations for Complex
Granular Flows
Yu Guo and Jennifer Sinclair Curtis
Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611-6005;
email: guoyu03@gmail.com, jcurtis@che.ufl.edu

Annu. Rev. Fluid Mech. 2015. 47:21–46

First published online as a Review in Advance on
June 23, 2014

The Annual Review of Fluid Mechanics is online at
fluid.annualreviews.org

This article’s doi:
10.1146/annurev-fluid-010814-014644

Copyright c© 2015 by Annual Reviews.
All rights reserved

Keywords

particle shape, particle cohesion, particle breakage, particle flexibility

Abstract

This review article focuses on the modeling of complex granular flows em-
ploying the discrete element method (DEM) approach. The specific topic
discussed is the application of DEM models for the study of the flow behav-
ior of nonspherical, flexible, or cohesive particles, including particle break-
age. The major sources of particle cohesion—liquid induced, electrostatics,
van der Waals forces—and their implementation into DEM simulations are
covered. These aspects of particle flow are of great importance in practical
applications and hence are the significant foci of research at the forefront
of current DEM modeling efforts. For example, DEM simulations of non-
spherical grains can provide particle stress information needed to develop
constitutive models for continuum-based simulations of large-scale indus-
trial processes.
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1. INTRODUCTION

Processes involving particulate or granular flows are prevalent throughout the pharmaceutical,
chemical, energy, food handling, mineral processing, powder metallurgy, and mining industries.
In addition, numerous phenomena found in nature involve such material flows. To understand the
complex, macroscopic behavior of granular materials and then reliably design, scale up, control,
or optimize their flow, researchers need details about the interactions between individual particles
(i.e., the microscopic mechanisms that control the macroscopic behavior). One simulation tech-
nique, the discrete element method (DEM), has become widely implemented over the past three
decades for the study of granular flows since it was introduced by Cundall & Strack (1979).

In the DEM technique, the motion of each individual particle is governed by Newton’s second
law of motion,

mi
dvi

dt
= FC

i + mi g + Ffp
i

and

Ii · dωi

dt
− (Ii · ωi ) × ωi = Ti ,

where vi and ωi are the translational and angular velocities, respectively, of the particle i of mass
mi and moment of inertia tensor Ii . The translational motion of the particle is normally driven by
the interparticle contact force FC

i , gravitational force mi g, and the fluid-particle interaction force
Ffp

i if fluid media exist in the particulate system. Also, the particle rotation may be induced by
the torque Ti arising from particle-particle contact and fluid-particle interaction. The evolution
of some particle-scale quantities, such as the particle velocity, position, orientation, and contact
force, can be obtained by the time integration of the equations of motion, which is implemented in
the DEM code based on a computational sequence, as illustrated in Figure 1. Based on knowledge
of these particle-scale quantities, one can predict bulk behaviors of interest—the particle packing
density, angle of repose, mass flow or discharge rate, agglomerate size, blend uniformity, and
particle phase stress. To date, DEM simulations have been successfully applied to a wide gamut
of applications and have successfully reproduced well-known particle flow features observed in
practice.

Owing to the widespread research developments in this field and the application of the DEM
as a core tool for their studies, several excellent articles have been published regarding granular
flows and the DEM. Forterre & Pouliquen (2008), Campbell (1990, 2006), Jenkins (2006), and
Goldhirsch (2003) reviewed the flow regimes, microstructure, and development of constitutive
relations for granular media based on theoretical analyses, DEM simulations, and experimental
studies. Li et al. (2011), Luding (2008), Zhu et al. (2007, 2008), and Kruggel-Emden et al. (2007)
have provided recent reviews of the DEM. These articles focus on the governing equations,
normal and tangential (frictional) contact force models, and several applications of the DEM
(e.g., particle packing, flows in hoppers, mixers, rotating drums, and ball mills). Li et al. (2011)
and Zhu et al. (2007, 2008) also discussed the simulation of discrete particle flow coupled with
fluid (gas and/or liquid) via the computational fluid dynamics–DEM approach and emphasized
fluid-particle interaction forces. The basic mechanics of DEM, including the choice of contact
parameters and the implementation of the numerical scheme, are outlined by Mishra (2003),
Williams & O’Connor (1999), Thornton (1999), Barker (1994), and Walton (1994).

Therefore, this article outlines some of the most recent and significant topics in DEM develop-
ment and application that have not been reviewed more comprehensively before. Hence, it is not
intended to provide or represent an exhaustive survey of the subject. The topics discussed include
DEM models for the study of the complex flow behavior associated with nonspherical, flexible, or

22 Guo · Curtis



FL47CH02-Curtis ARI 24 November 2014 8:46

START

Compute motion of all particles
from forces acting in current time step Δt

Perform contact detection
to determine all pairs of contacting particles

Compute contact forces
for all pairs of contacting particles

Fluid present?

NO

NO

YES

YES

Compute fluid motion
in time step Δt

Compute fluid-particle
interaction forces

END

Stop?

Figure 1
Flow chart of computational sequence in a typical discrete element method code.

cohesive particles. Major sources of particle cohesion—liquid induced, electrostatics, and van der
Waals forces—and their implementation into DEM simulations are covered. Because of compu-
tational limitations, early DEM simulations considered only interactions of circular disks in two
dimensions or spheres in three dimensions owing to the well-established contact force model,
the simplicity of contact detection, and the extremely limited number of particles that could be
simulated. However, current developments in the DEM focus on the effect of particle shape
using ellipsoids, cylinders or spherocylinders, superquadrics, polyhedra, or glued-sphere clus-
ters involving linking and overlapping spheres. Descriptions for nonspherical particles have also
been recently extended to model flexible grains and particle breakage. All these aspects—particle
cohesion, sphericity, flexibility, and breakage—are of great importance in practical/industrial ap-
plications involving granular flows, and these are the subjects emphasized here.
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Figure 2
Schematic illustration of three shape descriptors: (a) form, (b) angularity, and (c) surface texture. Figure adapted with permission from
Tafesse et al. (2012), c© 2012 the authors. Journal compilation c© 2012 International Association of Sedimentologists.

2. EFFECT OF PARTICLE SHAPE

As particle shape is recognized as one of most important parameters influencing the behavior
of granular materials, the DEM has been advanced for the modeling of nonspherical particles,
including ellipses (Cleary 2008), polygons (Peña et al. 2007), spheroids (Campbell 2011), cylinders
(Guo et al. 2012, 2013c; Kodam et al. 2010), polyhedra (Azéma et al. 2013), and the irregularly
shaped particles represented by sphere clusters (Katagiri et al. 2010). To quantify the particle
shape, researchers (Krumbein & Pettijohn 1938; Tafesse et al. 2012) have proposed three major
morphological descriptors: form, angularity, and surface texture (Figure 2). Form is used to
describe the dimensional difference of a particle in the principal axes and is usually quantified in
terms of sphericity. Sphericity is the ratio of the surface area of the equivalent volume sphere (the
same volume as the particle) to the surface area of the particle. In particular, the elongation of a
spheroid is quantified using the aspect ratio, defined as the length ratio of the major axis to the
minor axis. Angularity is a descriptor of the variations in corners and faces. Several definitions of
angularity have been proposed and compared (Tafesse et al. 2012). A typical angularity index is
defined as follows (Lees 1964):

AI =
n∑

i=1

(180 − αi )
xi

r
,

where αi is the angle measured between planes bounding corner i, xi is the distance from the center
of the maximum inscribed circle to the tip of corner i, r is the radius of the maximum inscribed
circle, and n is the number of corners. For a three-dimensional particle, one can estimate the
degree of angularity by the average value of the angularity index of the projected images in three
perpendicular directions. Surface texture describes the roughness of the surface of a particle,
reflecting the small-scale details on the particle surface.

DEM modeling provides the microstructural information of a bulk granular material, facilitat-
ing the understanding of the effect of particle shape on granular texture and interparticle contacts.
It has been found that the packing density initially increases and then decreases with the increase

24 Guo · Curtis



FL47CH02-Curtis ARI 24 November 2014 8:46

Dilute flow
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Figure 3
An illustration of dilute flow, dense flow, and quasi-static flow in the process of pouring steel beads on a pile.
Figure adapted with permission from Forterre & Pouliquen (2008) from the Annual Review of Fluid
Mechanics, Volume 40, by Annual Reviews (http://www.annualreviews.org).

in particle elongation (Azéma & Radjaı̈ 2010, 2012; Guises et al. 2009; Wouterse et al. 2007),
angularity (Azéma et al. 2013), or platyness (Boton et al. 2013, Wouterse et al. 2007). The slight
shape deviation from a sphere can improve the particle tessellating capability and increase the
packing density. However, larger void space may be created owing to the formation of bridging
and arching structures as the particles become more elongated, more angular, or flatter.

Granular flows can be classified into three regimes: dilute flow, dense flow, and quasi-static
flow (Figure 3). In dilute flow, binary and instantaneous collisions are dominant, and the stress is
proportional to the square of the shear rate. Dilute flow is also known as gas-like flow or inertial
flow. In dense flow, multiple and enduring contacts are dominant, and the stress is proportional
to the shear rate. Dense flow is also recognized as liquid-like flow or elastic-inertial flow. In quasi-
static flow, a densely packed bed of particles is sheared at a low rate, and the stress is independent
of the shear rate. Quasi-static flow behavior is also recognized as solid-like behavior or elastic-
quasi-static behavior.

DEM simulations have been performed to study the effect of particle shape on all three flow
regimes. Guo et al. (2013c) simulated three-dimensional periodic shear flows of elongated rods
and flat disks at various solid volume fractions and discussed the effects of particle elongation and
flatness. Figure 4 shows the normalized shear stress as a function of the solid volume fraction for
cylindrical particles of different aspect ratios. The particle phase stress tensor σ can be expressed
as the sum of a kinetic component and a collisional component. The kinetic component, which
arises from the momentum transfer by particles as they move through the bulk material, is given
by

σkin = ρν 〈VV〉 ,

where ρ and ν represent the particle density and solid volume fraction, respectively. The brackets
represent an average over time and volume, and V = vi −〈v〉 is the fluctuating velocity of particle i.
The average velocity 〈v〉 is the local steady-state, shear velocity. The collisional component, which
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Figure 4
Normalized shear stress as a function of solid volume fraction for cylindrical particles of different aspect
ratios (ARs) with and without friction. The coefficient of restitution e is 0.95, and Young’s modulus E is
8.7 × 109 Pa. Figure reproduced with permission from Guo et al. (2012, 2013c).

arises from the momentum transfer from one point to another in the material by interparticle
collisions, is written as

σcol = 〈F j
i li j 〉,

where F j
i is the contact force exerted on particle i by particle j, and li j represents the vector from

the mass center of particle i to the mass center of particle j. In the simulations, the stress measure-
ments were made by calculating the kinetic and collisional components and summing them. In
Figure 4, the magnitude of the shear stress component |σxy | is normalized by ρd 2

v γ 2, where dv is
the equivalent volume diameter of the particle and γ is the shear rate. The aspect ratio of a particle
is defined as the ratio of cylinder length L to the diameter of circular end face df (i.e., AR = L/d f ).
Rods and disks correspond to aspect ratios greater than 1 and less than 1, respectively. It is evident
that particle shape has an impact on granular stresses with and without friction.

2.1. Dilute Flow

For dilute flow, the main contributor to its stress is the kinetic stress, which is proportional to the
particle fluctuating velocity squared. According to recent DEM simulation work (Guo et al. 2012),
the elongation of particles leads to an increase in the effective projected area of the particles on
the plane perpendicular to the flow direction; therefore, the particle collision frequency increases.
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Figure 5
Normalized shear stresses as a function of the negative square of the normalized particle projected area for
dilute flow at different low solid volume fractions. Figure adapted with permission from Guo et al. (2012).

Actually, the effective projected area can also be increased by making the particles flatter. Because
the particle fluctuating velocity is inversely proportional to the particle collision frequency, the
stress in dilute flow is reduced as the particles are elongated. As shown in Figure 5, the stress and
the particle projected area at lower solid volume fractions (e.g., ≤0.1) follow a relationship for all
particle aspect ratios,

σxy

ρd 2
v γ 2

∝ 1
(Aeff )2

,

where Aeff is the normalized effective projected area:

Aeff = Seff

Ssph
,

where Seff is the effective projected area of a particle on the plane perpendicular to the flow di-
rection, and Ssph is the effective projected area of the sphere of the same volume to the particle
(Guo et al. 2012). Scaling relationships of this kind are convenient for the development of consti-
tutive relations for stress, which can subsequently be employed in continuum-based simulations
for particle flow. However, the linear relationship between the stress and (Aeff )−2 is violated as the
solid volume fraction reaches 0.2, when the collisional stress contributes a significant portion to
the total granular stress.
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Figure 6
Alignment of (a) disks and (b) elongated rods at a solid volume fraction of 0.5. The friction coefficient μ is 0, the coefficient of
restitution e is 0.95, and Young’s modulus E is 8.7 × 109 Pa. Abbreviation: AR, aspect ratio. Figure reproduced with permission from
Guo et al. (2013c).

2.2. Dense Flow

An interesting phenomenon in dense, sheared, granular flows is that flattened or elongated particles
tend to align with their largest dimension in the shear flow direction (horizontal) and their smallest
dimension in the velocity gradient direction (vertical) (Figure 6). The degree of particle alignment
in a granular system can be described by an order parameter S, which is the largest eigenvalue of
the symmetric traceless order tensor Q (Börzsönyi et al. 2012, Wegner et al. 2012):

Qi j = 3
2N

N∑
n=1

[
Ln

i Ln
j − 1

3
δi j

]
,

where Ln is the unit vector along the major axis of the cylindrical particle n, and the sum is over
all N particles of interest. The order parameter S is equal to 1 if all the particles in the system are
orientationally ordered in the same direction and is zero if the system is isotropic with a uniform
distribution of particle orientation.

Figure 7 shows the variation of order parameter S with the maximum dimensional ratio of
L/d f and d f /L, i.e., max(L/d f , d f /L), for dense flows at a solid volume fraction of ν = 0.5.
In general, S increases as the maximum dimensional ratio increases, indicating that the particle
alignment becomes more significant as the particles become more elongated or flatter. For the
frictionless particles, because of the alignment, the particles are allowed to flow in their own
layers, minimizing interaction with their neighbors. As a result, smaller stresses are obtained for
the more elongated or flatter particles without friction. However, sharp stress increases at higher
solid volume fractions are observed for particles with friction, and this increase occurs at lower
solid volume fraction values for more elongated or flatter particles (see Figure 4). Frictional
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Figure 7
Variation of order parameter S with the maximum dimensional ratio of L/d f and d f /L for dense flows at the
solid volume fraction of ν = 0.5. The friction coefficient μ is 0, the coefficient of restitution e is 0.95, and
Young’s modulus E is 8.7 × 109 Pa. Abbreviation: AR, aspect ratio. Figure adapted with permission from
Guo et al. (2013c).

forces promote the rotation of particles, and in dense flows, the particle rotation can increase
the interparticle contacts, especially for elongated or flat particles owing to the presence of large
dimensions. As the solid volume fraction increases, the effect of particle rotation on the contacts
is counterbalanced by the effect of particle alignment, leading to the convergence of stresses at
large solid volume fractions for the frictional particles of different aspect ratios (see Figure 4).

2.3. Quasi-Static Flow

DEM modeling has also been applied to systematically study the effect of particle shape on the
quasi-static rheology of dense granular materials. In general, better connectivity (characterized
by the coordination number) and larger shear strength (or the angle of internal friction) are
obtained for more elongated particles (Azéma & Radjaı̈ 2010, 2012; Peña et al. 2007), more
angular polyhedra (Azéma et al. 2013, Langston et al. 2013), and flatter disks (Boton et al. 2013).
The granular stresses are determined by the fabrics of interparticle contact forces and branch
vectors that connect the mass centers of the particles in contact; the anisotropies of contact forces
and branch vectors are strongly dependent on the particle shape. As shown in Figure 8, branch
isotropy is observed for spherical particles with a platyness of η = 0.0; however, the anisotropy
of normal and tangential components of branch vector � increases as the particles become flatter.
The increase in anisotropy with the increasing particle platyness is also observed for the contact
forces (Boton et al. 2013). Researchers have proposed mathematical expressions for the polar
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(a) An illustration of branch vector � and its components. (b) Polar distributions of average branch lengths in the normal direction 〈�n〉
and in the tangential direction 〈�t〉 for four sheared samples comprising particles of platyness η = 0.00, 0.33, 0.50, and 0.80. The
definition of platyness η is provided by Boton et al. (2013), and larger values of η represent flatter particles. Figure adapted with
permission from Boton et al. (2013).

distributions of contact forces and branch vectors and, subsequently, the internal friction angle
as a function of particle elongation (Azéma & Radjaı̈ 2012), angularity (Azéma et al. 2013), and
platyness (Boton et al. 2013).

3. EFFECT OF PARTICLE FLEXIBILITY

To date, most DEM simulations have focused on rigid particles, which undergo negligible de-
formation in contacts. However, the effective handling of particulate materials such as biomass
(e.g., corn stover and wheat straw), which is thought to be a future source of fuel, necessitates
understanding the flow behavior of flexible particles for effective solid handling. Some DEM-
based numerical models have been developed to investigate the dynamics of fibrous particles and
fiber suspensions. As shown in Figure 9, flexible particles are represented in these models by
chains of spheres (Kabanemi & Hétu 2012, Nguyen et al. 2013, Park & Kang 2009, Yamamoto &
Matsuoka 1993), chains of prolate spheroids (Ross & Klingenberg 1997), or chains of short rods
(Lindstrom & Uesaka 2007, Ning & Melrose 1999, Wang et al. 2006, Wu & Aidun 2010), which
are connected by elastic bonds or ball-socket joints. Each pair of connected segments (spheres,
spheroids, or rods) in a particle can bend and twist. The particle flexibility can be characterized by
a bond stiffness, which is a function of the Young’s modulus, shear modulus, and cross-sectional
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Figure 9
Various representations of a flexible fibrous particle in numerical simulations.

properties (area and area moment of inertia) of the bond. Efforts have also been made to validate
the proposed flexible particle models. Nguyen et al. (2013) and Ning & Melrose (1999) verified
the particle bending deformation and vibration by comparing them with the elastic beam bending
theories. Guo et al. (2013d) verified their DEM model by a comprehensive examination of the
static and dynamic behavior of particle bending, twisting, and stretching. Guo et al. (2013d) also
proposed a time-step criterion to ensure numerical stability—that the time step should be less
than the time it takes for an axial extensional/compressional wave to travel a single bond length.

As shown in Figure 10, a collinear collision between two flexible particles that have their major
axes perpendicular to each other has been simulated using the flexible particle DEM model (Guo
et al. 2013b). As the two particles bend during collision, kinetic energy is partially converted to
potential energy. More kinetic energy is converted as the particles become more flexible (i.e.,
with smaller bond stiffness). Owing to the conversion of kinetic energy, a smaller coefficient
of restitution is obtained for flexible particles compared to rigid particles, and the coefficient of
restitution decreases as the particle flexibility increases. Unlike rigid particles, two flexible particles

Before collision

ν 0
1 ν 0

2 ν'1

a
During collision

b
After collision

c

ν'2

Figure 10
Snapshots (a) before, (b) during, and (c) after a collinear collision between two flexible fibers arranged with two major axes
perpendicular to each other. Figure adapted with permission from Guo et al. (2013b).
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The normalized shear stress varying with the solid volume fraction in shear flows of rigid and flexible fibers with and without friction.
The contact damping βc is 1.63 × 10−2, bond Young’s modulus Eb is 2.6 × 104 Pa, and bond damping βb is 0. Figure reproduced with
permission from Guo et al. (2013a).

keep vibrating after the collision, and bond damping can be introduced to dissipate this energy in
vibration.

Shear flows of flexible particles have also been modeled using the DEM (Guo et al. 2013a), and
the shear stress results are shown in Figure 11. Compared to rigid particles, smaller stresses are
obtained for the flexible particles, and a less sharp stress increase is observed at large solid volume
fractions for the flexible particles with friction. For dense flows of frictionless, flexible particles
(shown at ν = 0.47), particle alignment occurs with the major axes aligned in the flow direction. As
a result, the interparticle contacts are reduced, and particle deformation is minimized. For dense
flows of flexible particles with friction μ = 0.5, strong contacts are induced, and large particle
deformation occurs.

In the sphere-chain flexible particle model, particle-particle contact is based on the interactions
between two spheres. Therefore, one may introduce a liquid bridge force model (discussed below)
for the contacts between spheres to the existing flexible particle model for the simulations of wet
flexible particles. Thus, we recently simulated the shear flows of wet flexible particles (Y. Guo, J.
Curtis, C. Wassgren, W. Ketterhagan & C. Hancock, unpublished data). As shown in Figure 12,
agglomerates can be formed during the shear flow. Larger agglomerates are obtained for more
flexible particles (with smaller bond Young’s modulus) that undergo larger deformation.

4. PARTICLE BREAKAGE AND ATTRITION

In the industrial handling of bulk solids, particle breakage and attrition can occur through slid-
ing, impact, and shear deformation. This breakage and attrition may lead to unwanted fines and
change in material properties (flowability, packing, particle size distribution, and surface area),
all of which can cause problems during subsequent delivery and further processing. Therefore, a
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Figure 12
Shear flows of wet flexible fibers: (a) initial state, (b) steady state with bond Young’s modulus of Eb = 104 Pa, and (c) steady state with
Eb = 102 Pa.

good understanding of the breakage mechanism is crucial for process design optimization. DEM
modeling has also been advanced and applied to the study of particle breakage and attrition, owing
to the easy adjustment of controlling parameters and particle properties. Three major DEM mod-
els of particle breakage and attrition exist: the bonded-particle (BP), fragments spawning (FS),
and attrition prediction (AP) models (Figure 13).

In the BP model, a particle or grain is formed by bonding a finite number of children particles,
which can be spheres (Grof et al. 2007, Potyondy & Cundall 2004), squares (Potapov & Campbell
1997), or polygons (Hosseininia & Mirghasemi 2006). The breakage of a parent grain is modeled
by the disconnection of bonded children particles as the stress in the bond exceeds the prescribed
material strength (Potyondy & Cundall 2004). The BP model has been applied to simulate particle
breakage under compaction (Grof et al. 2007, Hosseininia & Mirghasemi 2006) and shear (Potapov
& Campbell 1997). A significant advantage of this model is that the stress distribution and fracture
propagation within a particle can be obtained with a sufficient number of children particles. The
drawback of this model is the limited size distribution of fragments, considering that a fragment
consists of children particles. To increase the fragment size distribution, one may use more children
particles to create a parent particle. However, the computational expense rises with the increase
in the number of children particles.

To overcome the disadvantage of the limited fragment size distribution with the BP model,
researchers proposed the FS model, allowing unlimited fragment size fractions, in principle (Brosh
et al. 2011, Bruchmüller et al. 2011, Kalman et al. 2009). In this model, if the operating stress
upon each collision is smaller than the strength of a particle, a fatigue function is implemented,
and a reduced strength is assigned to the particle. Otherwise, if the operating stress is greater
than the particle strength, the breakage function is implemented, and a mother spherical particle
is then replaced by children spheres of a large size distribution. The generation of the children
particles after breakage is governed by the specified fragments’ spawning, seeding, and interaction
algorithms, which lead to an empirical size distribution (obtained from real experiments) and
guarantee the conservation of mass, momentum, and energy. The FS model has been successfully
used to predict particle comminution in jet milling and pneumatic conveying (Brosh et al. 2011).
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Figure 13
An illustration of three discrete element method–based approaches for the modeling of particle breakage and attrition.

Despite the advantage of its flexibility to produce any number and size distribution of fragments,
several disadvantages with this approach exist: Its effective use heavily depends on the breakage
function that is proposed empirically; the internal stress distribution and fracture propagation in a
particle cannot be resolved; the current applications of FS models are limited to spherical particles,
and nonspherical particles and fragments have not been described using these models.

Recently, Hare et al. (2011) proposed an AP model to predict the extent of particle attrition
in agitated particle beds. In the AP model, the distributions of stresses and strains in the bed are
estimated via DEM modeling. Then the extent of particle attrition is predicted from an empirical
correlation between attrition and particle-phase stresses and strains. Such a correlation can be
obtained experimentally from the shear cell tests (Neil & Bridgwater 1994). In this approach, the
change in particle size due to breakage and attrition is not considered in the DEM modeling, and
the attrited mass is computed based on the DEM outputs (i.e., stresses and strains). Therefore,
the AP model may be applicable only to particle systems with a small extent of breakage and a
small variation in the particle size distribution during the agitation process.

5. PARTICLE COHESION

Cohesive forces between particles may significantly affect particle packing behavior, the ease
of particle transport and agglomeration, attrition, mixing, and erosive behaviors (Feng & Yu
1998, Henthorn & Hrenya 2009, Herminghaus 2005, Walton 2008). These effects can become
particularly pronounced in the case of fine particulates (less than 100 μm) and are dependent on
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the separation distance of the particles. We discuss three major sources of particle cohesion in
this section: liquid induced, electrostatic, and van der Waals forces. In DEM simulations, these
additional cohesive forces are merely added to the normal and tangential contact forces when the
particles collide.

Simpler DEM treatments describe cohesion from any/all source(s) in a generic, lumped model
that is not based on a specific physical interpretation. The linear cohesion model is one such
example. Added to the contact model is a normal cohesive force that is the product of a constant
cohesion energy density (the energy needed to remove a particle from its nearest neighbors divided
by the total volume of the removed particle) multiplied by the contact area (Grima & Wypych
2011). Another example is the model of Weber & Hrenya (2006), who replaced the van der Waals
potential with a square well potential (impulse force occurring at a preset particle separation
distance). However, this type of treatment for describing cohesion requires the specification of
the well depth and separation distance for force activation. In a similar fashion, Brewster et al.
(2009) employed a Gaussian potential well to describe interparticle cohesive forces, and Jaeger
et al. (2013), Waitukaitis et al. (2011), and Alexander et al. (2006) applied a constant-intensity
normal force whenever particles are in contact.

Another approach in DEM simulations, often employed in geomechanics applications, is to
incorporate mechanical models for the cohesive force based on macroscopic (bulk) characteristics
of the granular materials using the Mohr-Coulomb failure criterion ( Jiang et al. 2011, Tsuji
et al. 2012, Utili & Nova 2008, Zhang & Li 2007). Here, model parameters are introduced,
such as the intergranular friction angle and cohesive strength constant, which need experimental
calibration for the DEM simulations to yield reliable quantitative predictions. More advanced
DEM simulations incorporate detailed particle-level models for each individual type of cohesion,
and these are discussed below.

5.1. Particle Cohesion by Liquid Bridging

When a film of liquid is introduced on the surface of particles, pendular liquid bridges form
between the particles, resulting in an attractive capillary force that pulls them toward each other
(Butt & Kappl 2009, Mitarai & Nori 2006, Simons 2007). This force can have a significant effect
on the technology of granular systems. For example, hoppers that discharge smoothly in arid
environments can clog in humid climates owing to liquid bridges between particles. As discussed
by McCarthy (2009), liquid-induced cohesion can also significantly influence both segregation
kinetics and the degree of segregation in particle mixtures. A representation of this is shown in
Figure 14 for the case of hopper discharge of a binary particle mixture with and without liquid-
induced cohesion. Here, the degree of segregation decreases with increasing cohesion. In fact, the
amount of moisture can be tuned to mitigate segregation without creating appreciable changes in
hopper discharge rates (Anand et al. 2010).

The static, capillary force, Fcap, associated with a liquid bridge contains two components:
(a) an axial component of the surface tension acting on the three-phase contact line (tensile term)
and (b) the hydrostatic force due to the pressure deficiency in the bridge itself (Laplace term).
In addition to the capillary force, particles are subject to a dynamic, viscous, enhanced resistance
force, Fvisc, resulting from a higher viscosity liquid (compared to the surrounding gas) filling the
interstitial region between the particle surfaces. This force has a normal component, due to the
radial pressure flow, and also a tangential component, due to the shear flow. DEM simulations with
liquid bridging require descriptions for both the capillary and viscous forces, as well as the rupture
distance, hrupture, which is the maximum separation distance between the particles for which the
liquid bridge is stable.
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Cohesionless

a
Liquid-induced cohesion

b

Figure 14
Discharge from a hopper with a binary particle mixture: (a) cohesionless and (b) liquid-induced cohesion with the Bond number (ratio
of the maximum cohesive force to the gravitational force acting on a particle) equal to 1. Red and blue indicate large and small fines
fractions, respectively, as compared to a well-mixed state ( gray). Figure reproduced with permission from Anand et al. (2010).

Lian et al. (1993) derived the capillary force Fcap as a function of the half-filling angle φ, defined
as φ = tan−1(r/R), where r is the radius of the liquid bridge, and R is the radius of the particle.
However, to easily implement this capillary force into DEM simulations in a computationally
efficient manner, one needs an explicit relationship between the capillary force and the liquid bridge
volume and particle separation. From the solution of the Laplace-Young equation, describing the
geometry of the liquid bridge, such relationships have been generated by Soulié et al. (2006),
Willett et al. (2000), and Mikami et al. (1998). The analytical expressions of Soulié et al. (2006)
for two unequal-sized spheres are given as

Fcap = πγst

√
R1 R2

[
exp

(
A

h
R2

+ B
)

+ C
]

,
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A = −1.1
(
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2

)
+ 0.48,

C = 0.0018 ln
(

V
R3

2

)
+ 0.078,

γ st is the surface tension of the liquid, R1 and R2 are the radii of the two spheres, β is the contact an-
gle of the liquid with the particle, h is the separation distance, and V is the liquid volume associated
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with the liquid bridge. The constants A, B, and C are dimensionless regression parameters. Other
simplified capillary force models incorporated into DEM simulations include those that assume
(a) a simple exponential decay expression for the capillary force in the case of two unequal-sized
spheres (Richefeu et al. 2008), (b) an approximation of the shape of the liquid bridge as an arc of
a circle (Muguruma et al. 2000), or (c) a complete wetted particle (Hsiau & Yang 2003, Lambert
et al. 2008, Pitois et al. 2000).

Liquid bridges disappear when the particle separation increases to the point of bridge rupture.
Experiments by Mason & Clark (1965) showed that the rupture distance for similar particles varies
linearly with contact angle β and V1/3. Additional theoretical considerations, as given by Lian et al.
(1993), yielded the following specific relationship for the quasi-static rupture distance:

hrupture = (1 + 0.5β)V 1/3.

Pitois et al. (2000) modified this rupture distance model to include the effect of the particle velocity.
They showed that the dynamic rupture distance is larger than its static counterpart and increases
with increasing capillary number, which is a function of the relative speed between the particles,
the liquid viscosity, and the surface tension.

For the viscous force, the lubrication approximation and the elastohydrodynamic model in
the case of two rigid spheres yield a closed-form expression for the dynamic viscous force in the
normal direction:

Fviscn = 6πηR∗2 νn

h
,

where
1
R∗ = 1

R1
+ 1

R2
,

η is the viscosity of the liquid, vn is relative normal velocity between the particles, and R∗ is the
effective particle radius (Lian et al. 1998). Pitois et al. (2000) proposed a correction coefficient to
this viscous force for cylindrical liquid bridges of finite liquid volume. The case of rigid sphere
motion parallel to a planar wall is typically employed to describe the tangential viscous force (Nase
et al. 2001). For sufficiently small separation distances, one finds

Fvisct =
(

8
15

ln
R∗

h
+ 0.9588

)
6πηR∗νt,

where vt is the relative tangential velocity between the particles. Although these descriptions
predict an unbounded magnitude of the viscous force with infinitely small particle separation
gaps, in practice, the surface roughness limits the approach of the spheres. Hence, a minimum
value for h, corresponding to an average asperity height of the two surfaces, is taken, and the
viscous force remains constant below this cutoff value.

When implementing liquid bridge force models into DEM simulations, one must make several
assumptions regarding liquid distribution, bond formation, and bond rupture. The first is regard-
ing the distribution of liquid. In the work of Muguruma et al. (2000), the total amount of liquid
is distributed uniformly among all gaps smaller than the rupture distance. For binary particle
systems, Richefeu et al. (2008) related the volume of liquid in the bond to the mean particle size,
as the liquid retention capacity is greater for larger particles. Most commonly, the liquid is taken
to be distributed evenly on the surface of all the particles, and every particle is assumed to have a
constant thickness of liquid layer around it (Liu et al. 2011, 2013; Yang et al. 2003).

The second assumption deals with the amount of liquid held on the surface of each particle
for a disparate particle mix. For bidisperse systems, Anand et al. (2010) took the ratio of the total
amount of liquid on a larger particle dl to that on the smaller particle ds to be (dl/ds)2. Their work
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considered two sizes of particles of the same material, so the contact angle of the liquid with both
particles is the same, and each particle carries the same initial amount of liquid during the entire
course of the DEM simulation. However, Shi & McCarthy (2008) considered the more complex
case of liquid transfer between particles of different materials with varying contact angles and
the corresponding liquid redistribution upon bridge rupture. Experiments and modeling by Mani
et al. (2012, 2013) also provided new insights into liquid redistribution due to shear and showed
decreasing liquid content for pendular liquid bridges inside shear bands.

The third assumption regarding the implementation of liquid bridge force models into DEM
simulations is the amount of liquid from each particle that takes part in bond formation. In some
approaches, the volume of all the liquid bridges in the particle mixture is equal and constant
(Kohonen et al. 2004, Zhu et al. 2013). The volume of the liquid bridge is estimated based on the
particle size, the bridge coordination number, the ratio of the liquid volume to the total volume
of dry particles, and the wet particle packing density. In the works of Liu et al. (2011, 2013), the
liquid on each particle is equally divided (up to a specified maximum liquid bridge volume) among
contact points when particles interact. Shi & McCarthy (2008) proposed that the liquid on the
surface of each particle that is within the area of the spherical cap neighboring the contact spot
contributes to the liquid bridge. That is, the bridge extracts liquid from the particle surfaces near
the point of contact. The spherical cap is bounded by tangential lines from the center of one
particle to the surface of the other particle. For virtually all DEM simulations that include liquid
bridge forces, liquid bridges are assumed to slip over the particle surface, and the magnitude of
the cohesive force remains constant during enduring contacts (overlapping particles).

5.2. Electrostatic Effects

Electrostatic forces resulting from charged or polarized particles/surfaces can cause profound
changes in the structure of a granular flow field and can lead to particle clustering, blockages
in granular flow, and dust explosions due to the accumulation of excessive electrostatic charges.
These forces are especially problematic when handling insulating materials that do not readily
dissipate charge. Alternatively, the addition of electrostatic forces can also lead to an increased
collection of particles in filtration systems or electrostatic precipitators for dust mitigation. Con-
fining wall material, particle composition, the relative humidity of the conveying fluid used, and
the presence/absence of an antistatic agent in the system all influence the electrostatic charge
generation characteristics and the observed flow patterns.

In the simplest treatment, electrostatic forces between two similarly charged particles or be-
tween a particle and an electric field are incorporated into DEM models through Coulomb’s
force and/or law, where the electrostatic force is included in Newton’s second law along with the
other forces acting on each particle (Lim et al. 2006, Nwose et al. 2012, Yang et al. 2012). The
electrostatic force is given by

q Ee and/or
q1q2

4πεo S2
,

where q is the particle charge, Ee is the strength of the electric field, S is the distance between
the centers of charged particles 1 and 2, and εo is the vacuum permittivity. However, this simple
model for two charged particles does not account for the effect of other charged particles in the
region. Hence, a screening term is added to include this effect (Hogue et al. 2008). The screened
Coulombic force is given by

q1q2

4πεo

(
K
S

+ 1
S2

)
e−K S,
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where K is the inverse of the Debye length and depends on the relative permittivity, the tempera-
ture, and local charge concentration. The screening term takes into consideration the number of
particles of various charges within a specified screening distance from the target particle.

More complex treatments consider contributions from both the dielectrophoretic force and the
Coulombic force to describe the total electric force experienced by a particle. The dielectrophoretic
force is equal to the dot product of the electric field gradient and the dipole moment, comprising
any permanent dipole moment and dipoles induced by the electric field. The induced dipole
moment is a function of the electric field, the particle diameter, and the fluid and particle dielectric
permittivities. The electric field is the aggregate of the electric field induced by the particles
themselves and the applied electric field. Electric torques on the particle, induced by interactions
with the electric field, must also be included, unless the particles have no permanent dipole or
the induced dipole is aligned with the electric field. Park & Park (2005) employed this modeling
approach for DEM simulations of particle deposition when an electric field is applied across a
fibrous filter. In this case, a particle passing through the filter experiences a Coulombic force,
which includes contributions from the electric field around a fiber and the electric fields around
all the deposited particles. Additionally, a dielectrophoretic force is included that accounts for
contributions due to polarization between the passing particle and both the fiber and all the
deposited particles. However, this method becomes computationally expensive as the number
of particles increases. Hence, for a similar filtration operation, Yang et al. (2013b) employed a
combined boundary element method and multi-pole-expansion approach that accounts for the
general electrostatic field and electrostatic forces for all the particles. This same type of treatment
has been employed to mitigate dust adhesion and transport particles away from a surface using
traveling waves on an electric curtain (Liu & Marshall 2010, Liu et al. 2010).

Some DEM simulations have included the effect of triboelectric charging (tribocharging) in
which particles of different material and effective work function collide, causing an exchange of
charge, or particles gain/dissipate electrical charge when they come into contact with a confining
wall. Hogue et al. (2008) considered the tribocharging of glass beads as they roll, slide, and bounce
down various inclined planes made from different materials. They describe the resulting charge
transfer via an equation of charge as a function of time, which includes the saturation charge
and a material-dependent time constant for charge generation (dissipation is neglected), which
is determined experimentally. Hogue et al. (2009) expanded their treatment of the particle-plane
tribocharging effect to include the initial charge on the particle and an approximation for the
electrostatic force between the charged particle and the charged planar surface. Imba et al. (2013)
described the tribocharging of initially neutral particles in a shaker in a different manner than did
Hogue et al. (2009). When a particle hits the shaker walls, the amount of transferred charge in each
collision depends on the maximum contact area (calculated based on the maximum overlap), a pro-
portionality constant, and the charge on the particle as it approaches the saturation charge. Supuk
et al. (2011) discussed a relationship between these two different treatments; for a long timescale,
the integrated maximum contact area is proportional to the time of the tribocharging operation.

5.3. Van der Waals Forces

Van der Waals forces, Fvdw, result from intermolecular forces, and the magnitude of their force
between two spheres is given by

Fvdw = ARc

6h2
,

where Rc is the contact radius, and A is the Hamaker constant (on the order of 10−20 J for solids in
air). Israelachvili (1992) gave values for the Hamaker constant for varying geometries and materials.
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Van der Waals forces can be large at very small separation distances or when particles are in contact
but decrease rapidly with increasing separation distance. Although they are always present, they
can typically be neglected for particles larger than a few hundred micrometers. For rough particles,
the magnitude of the van der Waals force is dependent on the local radius of curvature of surface
asperities on the particle rather than on the size of the particle itself (Prokopovich & Starov 2011,
Seville et al. 2000).

In DEM simulations, some researchers have directly added the van der Waals force to the
contact force in the balance of forces acting on the particle (Sanchez & Scheeres 2013; Tatemoto
et al. 2005; Yang et al. 2008a,b; Ye et al. 2004). In these cases, a cutoff value for the interparticle
distance must be defined to avoid the numerical singularity at particle contact. However, the van
der Waals force also interacts with the other contact forces, so it should not simply be added to the
force balance. Instead, contact models incorporating the effect of the van der Waals force (often
called adhesive contact models) should be employed. O’Sullivan (2011), Fischer-Cripps (2007),
and Tomas (2007a) have compiled detailed listings of common normal and tangential contact
models that incorporate adhesion.

Elastic, adhesive normal contact models employed in DEM simulations are the JKR and DMT
models for smooth spherical particles ( Johnson et al. 1971, Derjaguin et al. 1975), with JKR
being the more commonly used of the two. The JKR model acts only over the contact area and is
appropriate for soft materials with high surface energy. The DMT model is more suitable for hard
materials with low surface energy and accounts for forces outside the contact area. In these models,
there is a critical, pull-off force to separate the two particles; this pull-off force is dependent on the
surface energy of the particles. The Tabor parameter, which is the ratio of the range of the surface
force to the elastic deformation, gives a measure of the transition between these two regimes; the
JKR model should be used for high values of the Tabor parameter. DEM simulations based on
the JKR model are often used to investigate particle mixing, breakage, and agglomeration for fine
particles (Calvert et al. 2013, Figueroa et al. 2009, Marshall 2009, Moreno-Atanasio 2012, Yang
et al. 2013a).

Adhesive normal contact models including plasticity have been developed by Thornton &
Ning (1998), Tomas (2007a,b), Luding (2008), Luding & Alonso-Marroquı́n (2011), and Walton
& Johnson (2009). In the model of Thornton & Ning (1998), the resulting larger contact region
upon unloading and the larger pull-off force are described by a modified JKR model with a larger
contact radius. Tomas (2007a,b) proposed an elaborate model, involving six material parameters,
which includes nonlinear-elastic and linear-plastic loading, plasticity with energy dissipation, and
adhesion. The Luding (2008; Luding & Alonso-Marroquı́n 2011) model is a simplified version of
the Tomas model that neglects the Hertzian, elastic regime and includes five parameters (Tykho-
niuk et al. 2007). Walton & Johnson (2009) accounted for the torsion and bending strength that
may exist between adhesive particles, and their model involves eight parameters. The effect of ad-
hesion on the tangential sliding force was examined by Savkoor & Briggs (1977), who incorporated
the JKR model into tangential contact mechanics by varying the contact radius. Thornton & Yin
(1991) modified this model to include a smoothly varying contact radius until the onset of sliding.

6. CONCLUDING REMARKS

The DEM allows for a more in-depth study of granular flows than is often feasible using
experimentation—in particular, when probing the interior of granular flows is required. Com-
monly, DEM simulations are tested at the level of macro (bulk) behavior. More recent research
has been aimed at detailed and nonintrusive particle-level measurements to quantitatively validate
the DEM. For example, new physical understanding at the microlevel of wet particle collisions
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resulting in agglomeration or deagglomeration holds promise for potentially simplifying and im-
proving DEM models of wet, dense granular flows (e.g., Donahue et al. 2012, Kantak et al. 2009).

DEM simulations including particle cohesion due to liquid bridging and van der Waals forces
have been more rigorously investigated, whereas electrostatic interactions have received relatively
less attention. However, even the most rigorous liquid bridging models involve simplifications,
such as in the descriptions for the dynamic normal and tangential viscous forces. The significance
of these simplifications, in terms of reliably simulating practical flows, has yet to be determined.
Also, in the adhesive contact models, problems exist when relating model parameters to bulk
material properties, such as calibrating surface energy parameters from atomic force microscopy
studies (likely because of detailed particle surface morphology effects). In addition, there is a
notable lack of DEM simulations that currently involve combinations of cohesive mechanisms.
For example, if moisture is added to a granular system to reduce cohesion due to electrostatic
charging, it can also increase cohesion due to liquid bridging or lubricate the friction between
solids. Another situation is the presence of moisture significantly modifying the van der Waals
force on the particle by changing the effective Hamaker constant and increasing the separation
distance between the interacting particles. More DEM simulations investigating these phenomena
are needed.

Despite these challenges, there is a bright future for DEM modeling. DEM simulations can
provide particle stress information that can develop or validate particle models that describe the
particle phase as a continuum. This has been demonstrated for the case of nonspherical grains. Such
a multiscale approach is particularly attractive for particulate systems in which constitutive relations
are difficult to develop from fundamental principles. In addition, as computational capability
expands, the scope and diversity of systems that can be modeled by the DEM broaden. Hence,
other problems, such as those associated with the limited size of systems that can be currently
modeled, can be eliminated. These include the description of a realistic particle size distribution,
the number of constituent spheres needed to mimic an actual particle surface, and the system-size
dependence of the extracted transport coefficients that are needed for the development of closure
models.
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