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Abstract

In recent years, two important advances have opened new doors for the char-
acterization and determination of magnetic structures. Firstly, researchers
have produced computer-readable listings of the magnetic or Shubnikov
space groups. Secondly, they have extended and applied the superspace for-
malism, which is presently the standard approach for the description of
nonmagnetic incommensurate structures and their symmetry, to magnetic
structures. These breakthroughs have been the basis for the subsequent
development of a series of computer tools that allow a more efficient and
comprehensive application of magnetic symmetry, both commensurate and
incommensurate. Here we briefly review the capabilities of these computa-
tion instruments and present the fundamental concepts on which they are
based, providing various examples. We show how these tools facilitate the
use of symmetry arguments expressed as either a magnetic space group or a
magnetic superspace group and allow the exploration of the possible mag-
netic orderings associated with one or more propagation vectors in a form
that complements and goes beyond the traditional representation method.
Special focus is placed on the programs available online at the Bilbao Crys-
tallographic Server (http://www.cryst.ehu.es).
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MSG: magnetic space
group, also called
Shubnikov group

MSSG: magnetic
superspace group

Representation
method: method to
parameterize and
determine magnetic
structures using basis
functions adapted to
the irreps of the space
group of the
paramagnetic phase

Irrep: irreducible
representation of a
group

1. INTRODUCTION

Magnetic ordering is a symmetry-breaking process, and, as in other fields of physics, the char-
acterization of the involved symmetry reduction is an essential step for its comprehension. The
symmetry of a magnetic phase is given by a magnetic space group (MSG) (also called a Shubnikov
group) (1, 2), if commensurate, or by a magnetic superspace group (MSSG) (3–5), in the case of
an incommensurate ordering. The symmetry group of a magnetic phase determines all structural
and magnetic symmetry constraints that are thermodynamically obliged within its whole stability
range. These symmetry-dictated properties can only be broken through an additional phase tran-
sition or by applying a symmetry-breaking perturbation. By comparing the symmetry group of a
magnetic phase with the symmetry group of the parent paramagnetic phase, one can also determine
the set of possible domains and twin-related configurations. The symmetry characterization of
magnetic phases, expressed in the form of a symmetry group, is especially important for predicting
and understanding their magneto-structural properties. Furthermore, similar to what happens in
conventional crystallography, the assignment of some symmetry to a magnetic structure implies
very specific constraints on the possible magnetic moments and atomic positions, which can be
unambiguously defined and distinguished from other features that are not symmetry protected.

The identification of the relevant magnetic symmetry and its constraints can therefore be
considered an essential part of the characterization of a magnetic phase. However, magnetic
symmetry considerations have been absent from most studies for decades because of the lack of
computer-readable listings of MSGs and computational tools based on magnetic symmetry. In
contrast, Bertaut (6, 7), and later Izyumov’s group (8–11), developed the so-called representation
method, and free efficient software was soon available for its application (12–14). Thus, the
representational analysis has become the most popular method for determining and describing
magnetic structures. In this method, the possible magnetic orderings are parameterized using spin
modes, which transform according to one or more irreducible representations (irreps) of the space
group of the paramagnetic phase. In the more general case of multidimensional irreps, this method
neither uses nor controls the magnetic symmetry of the spin configurations. Therefore, magnetic
structures are commonly reported without assigning any magnetic symmetry. In the case of
incommensurate phases, this situation was inevitable, as ordinary MSGs are not applicable, and
the specific use of superspace symmetry and MSSGs for magnetic structures was not considered
in detail and translated into appropriate software until recently (4). In these circumstances, despite
some early attempts (15), no comprehensive database of magnetic structures exists yet, although
hundreds of such structures are reported each year. The development of such a database requires
an unambiguous and unified description of magnetic structures and demands a systematic
application of magnetic symmetry information. Also, the renewed interest in multiferroics
in the past decade (16–19), for which symmetry-governed magneto-structural properties are
especially important, has evidenced the need for a more comprehensive use of magnetic symmetry
concepts.

In this context, a considerable number of free computational tools for the analysis of magnetic
structures based on and/or applying magnetic symmetry have been developed during the past few
years. Computer-readable listings of MSG data are now available, whereas refinement programs
have been implemented in which models constrained by alternative possible MSGs or MSSGs
can be derived and tested. These are complemented by various programs that allow the analysis
of possible magnetic orderings for a given parent structure, with full consideration of symmetry
properties, consistently including both magnetic symmetry groups and irreps. This novel extensive
software has opened a new path in which magnetic symmetry is employed as a tool to both
enumerate possible alternative magnetic models and store and retrieve, in a robust, unambiguous,
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CIF: crystallographic
information file;
standard text file
format for
crystallographic data
exchange developed
and sponsored by the
International Union of
Crystallography

magCIF: extension of
the crystallographic
information file format
to magnetic structures
(under development)

Gray group: MSG of
a paramagnetic phase;
it includes the time
reversal operation with
zero translation

and unified form, any magnetic structure, commensurate or incommensurate. Furthermore, under
the auspices of the International Union of Crystallography, the CIF (crystallographic information
file) dictionary (20) is being extended to magnetic structures (21). The new symmetry-based
computational tools use this so-called magCIF file format (in its preliminary form), which has also
been adopted by some visualization programs. These developments have already permitted the
creation of an incipient small database of commensurate and incommensurate magnetic structures,
in which magnetic symmetry (in the form of an MSG or MSSG) is employed (22).

Here we briefly review these computation instruments, with a short introduction to their
theoretical basis and some examples of their applications. We give special attention to the computer
tools that have been developed by our group, namely those available at the Bilbao Crystallographic
Server (23, 24).

Below, we use the Seitz notation for any symmetry operation as defined in Reference 25 but
extended to magnetic groups by including time reversal with the symbol 1′ and writing any point-
group operation R combined with time reversal as R′. The transformations to different bases or
settings are expressed in the shorthand notation used in the International Tables for Crystallography
(26). Following common practice in the field, the terms magnetic moment and spin are used
here indistinctly as synonyms. Full information on the magnetic structures discussed below can
be found in MAGNDATA (22), the aforementioned collection of magnetic structures, which is
freely available on the Internet. Structure figures have been produced using either VESTA (27)
or Jmol (28).

2. COMMENSURATE MAGNETIC STRUCTURES

2.1. Magnetic Space Groups (Shubnikov Groups)

In the context of magnetic structures, average atomic magnetic moments can be considered real
quantities, and the action of the time reversal operation simply changes the sign of all atomic
magnetic moments in the structure while keeping unchanged the nonmagnetic degrees of free-
dom. By definition, a commensurately ordered magnetic phase breaks the time reversal symmetry
operation that is present in the magnetically disordered paramagnetic phase. If G is the space
group of the paramagnetic phase, its full symmetry, considering the presence of the disordered
atomic spins, is given by the gray magnetic group G1′, which can be decomposed in cosets as
G1′ = G + {1′ | 0, 0, 0}G. Thus, the full symmetry group of the system includes, in addition
to the operations of G, those obtained by multiplying all of them with {1′ | 0, 0, 0} (i.e., the
time reversal operation with zero translation). The symmetry of a commensurately magnetically
ordered phase is then described by a subgroup of this parent group G1′, say �, where {1′ | 0, 0,
0} is necessarily absent. This means that the MSG � may include nonidentity operations either
combined or not combined with time reversal, but not both. Being commensurate, the lattice or a
sublattice of the paramagnetic phase will also be maintained, and in general, � can be decomposed
in cosets with respect to a subgroup F of G with the same lattice periodicity as � in one of the
following three forms: � = F, � = F + {Ro

′ | t}F, or � = F + {1′ | L} F, where {Ro
′ | t}

and {1′ | L} are operations of the gray group G1′, and L is a specific lattice translation of the
paramagnetic phase. For consistency, {Ro | t}2 and {1 | 2L} must belong to F, whereas {Ro | t}
and {1 | L} belong to G but not to F. These three types of possible magnetic symmetry breakings
correspond to the three types of MSGs known as type I, III, and IV, respectively (1, 2) (type II are
the gray groups). Notice that all the symmetry operations present in MSGs of type I coincide with
those of the ordinary space groups, but as magnetic groups, the existence within the symmetry of
the system of the same operations combined with time reversal is explicitly discarded. Thus, for
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Effective space
group H: space group
that defines the
symmetry constraints
on atomic positions of
a commensurate
magnetic structure; it
can be derived from
the structure’s MSG

OG notation:
standard notation for
an MSG in which the
unit cell used is the
one of the effective
space group H

BNS notation:
standard notation of an
MSG in which the unit
cell used defines the
lattice periodicity of
the magnetic structure

example, a paramagnetic phase with space group Pnma can transform into a magnetic phase with
MSG Pnma as the result of a symmetry breaking Pnma1′ → Pnma, where all symmetry operations
combined with time reversal, which are implicitly present in the paramagnetic phase, disappear.

As stressed in the introduction, the constraints coming from the MSG of a magnetic phase are
robust (symmetry-protected) properties within the whole phase. Both atomic magnetic moments
and atomic positions are subjected to it. Any operation {R′ | t}, which includes time reversal, acts
on the atomic positions in the same way as the operation {R | t} without time reversal; therefore,
the effective symmetry that constrains the atomic positions can be described by an effective space
group H, which is either F, F + {Ro | t}F, or F + {1 | L}F, depending on � being type I,
III, or IV, respectively. In addition, the symmetry relations forced by the magnetic group on
the atomic magnetic moments can be reduced to the following rule: If two atoms with nonzero
magnetic moments have their atomic positions related by an operation of �, then their moments
are related by the corresponding point-group operation R (transforming as axial vectors) with
an additional change of sign if time reversal is included in the operation. For magnetic atoms at
special positions, i.e., kept invariant by some of the operations of �, site-symmetry restrictions on
the possible magnetic moments exist, and they are part of the definition of the Wyckoff positions
of an MSG.

Litvin (29) recently tabulated the 1,651 mathematically distinct MSGs (1, 2) in a form analogous
to that of the ordinary space groups in the International Tables for Crystallography (30). These tables
of MSGs are freely available electronically and use the so-called Opechowski-Guccione (OG)
description (31). This notation employs the space group H, defined above, as the reference to
describe the symmetry operations, and therefore, in the case of type IV groups, the employed unit
cell does not generate the lattice of the magnetic configuration. This is the essential difference
with the alternative Belov-Neronova-Smirnova (BNS) description (32), in which the employed
unit cell defines the lattice periodicity of the spin arrangement. Computer-readable tables of MSG
data have been produced by Stokes & Campbell (33) in both the BNS and OG notations. Online
retrieval tools at the Bilbao Crystallographic Server, based on these tables, allow access to the
symmetry operations (MGENPOS) and Wyckoff positions (MWYCKPOS) of any chosen MSG
(34). All these listings and tools keep the same conventions, and therefore they can be taken as
standard. The MSGs in this review are given in BNS notation.

The MSG � defining the symmetry of a commensurate magnetic phase can be introduced
without making any reference to the gray space group G1′ defining the symmetry of its para-
magnetic phase. In fact, the same group �, as a mathematical group type, can be relevant for
different parent G1′ groups. But, as in other ferroics, the domain and switching properties of the
system are only defined if the parent group G1′ is also known. Therefore, a full description of the
symmetry properties of a magnetic phase requires the knowledge of both symmetries: G1′ and
its subgroup �. More concretely, if H is the effective space group of the nonmagnetic degrees of
freedom, described above, and s is its index with respect to G (i.e., the factor relating the number
of operations in G and H), then 2s is the index of � with respect to G1′, and one can choose s
operations {gj} of G (coset representatives) not belonging to H, such that G = H + g2H + · · · +
gsH, and s equivalent, distinct, domain-related structures can be obtained by applying each oper-
ation gj to the magnetic structure. An additional set of s trivially related domains, with reversed
moments, corresponds to the application of the symmetry operations gj

′. The magnetic symmetry
of a domain-related structure obtained by the action of gj is given by the subgroup gj�gj

−1 of G1′.
This subgroup can coincide with � or be a distinct subgroup belonging to the same conjugacy
class. Conjugate subgroups describe physically equivalent symmetry breakings. Below, if nothing
is said to the contrary, an MSG � is implicitly taken as a representative of a class of conjugate
subgroups with respect to a parent space group G1′.
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Table 1 Operations that define the MSG of the magnetic structure of GdMn2O5
a

N (x, y, z)b (mx, my, mz)c Seitz notation
1 x, y, z, +1 mx, my, mz {1 | 0, 0, 0}
2 −x + 3/4, y + 1/2, −z, +1 −mx, my, −mz {2010 | 3/4, 1/2, 0}
3 −x + 1/4, y + 1/2, z, +1 mx, −my, −mz {m100 | 1/4, 1/2, 0}
4 x + 1/2, y, −z, +1 −mx, −my, mz {m001 | 1/2, 0, 0}
5 x + 1/2, y, z, −1 −mx, −my, −mz {1′ | 1/2, 0, 0}
6 −x + 1/4, y + 1/2, −z, −1 mx, −my, mz {2′

010 | 1/4, 1/2, 0}
7 −x + 3/4, y + 1/2, z, −1 −mx, my, mz {m′

100 | 3/4, 1/2, 0}
8 x, y, −z, −1 mx, my, −mz {m′

001 | 0, 0, 0}

Abbreviation: MSG, magnetic space group.
aThese operations (modulo lattice translations) are a subset of those in Pbam1′, expressed in a setting (2ap, bp, cp; 0, 0, 0), where {ap, bp, cp} is the parent
Pbam1′ basis. They define a subgroup of Pbam1′, which is the polar MSG Paca21 (#29.104), but in a nonstandard setting (see text).
bOperations are expressed in the usual crystallographic notation, but with the addition of the symbol −1/+1 to indicate the combination or not with time
reversal.
cTransformation of a generic spin (mx, my, mz) associated with the general position (x, y, z).

2.2. Crystallographic Description of Commensurate Magnetic Structures

Following an approach similar to the one employed for nonmagnetic crystal structures, once the
MSG is defined through its set of operations and its unit cell, a magnetic structure is unambiguously
described by listing the atomic positions and magnetic moments of a set of symmetry-independent
atoms within the unit cell, the so-called asymmetric unit. As an example, Tables 1 and 2 describe
the magnetic structure of GdMn2O5 (35), also shown in Figure 1a. The directions of the spins
(not explicitly given in the original reference) are only approximate. Tables 1 and 2, together
with the unit cell parameters, are the essential information included in a magCIF file, and they

Table 2 Symmetry-independent atoms of the magnetic structure of GdMn2O5

Label
Atom
type xa ya za

Symmetry
constraints on

M Mx
b My

b Mz
b |M|

Gd1_1 Gd 0.06975 0.17160 0.00000 mx, my, 0 4.87 1.63 0.0 5.14
Gd1_2 Gd 0.93025 0.82840 0.00000 mx, my, 0 −4.51 −1.5 0.0 4.75
Mn1 Mn 0.00000 0.50000 0.25510 mx, my, mz −2.85 0.95 0.0 3.00
Mn2_1 Mn 0.20590 0.35180 0.50000 mx, my, 0 3.8 −1.27 0.0 4.01
Mn2_2 Mn 0.79410 0.64820 0.50000 mx, my, 0 3.8 −1.27 0.0 4.01
O1 O 0.00000 0.00000 0.26970
O2_1 O 0.07630 0.44860 0.00000
O2_2 O 0.92370 0.55140 0.00000
O3_1 O 0.07270 0.43560 0.50000
O3_2 O 0.92730 0.56440 0.50000
O4_1 O 0.19970 0.20760 0.24500
O4_2 O 0.80030 0.79240 0.24500

Abbreviations, ICSD, Inorganic Crystal Structure Database; a blank cell denotes not applicable.
aApproximate atomic positions have been taken from entry 97046 of the ICSD (36, 37) and are given in the basis (2ap, bp, cp; 0, 0, 0), with ap, bp, cp being
the parent Pbam basis.
bApproximate magnetic moment components (μB) have been estimated from the model reported in Reference 35.
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a  

a

b

c
Paca21 (a, c, –b; –1/8, 0, 0) Paca21 (a, c, –b; 1/8, 0, 0) 

b 

a

b

c

Figure 1
(a) Magnetic structure of GdMn2O5 (35) described in Tables 1 and 2. (b) Twin structure equivalent to panel
a. The two configurations must have opposite, magnetically induced polarizations. Their symmetry is given
by different but conjugate magnetic space groups indicated below.

are sufficient for the unambiguous definition of the atomic positions and moments of the whole
structure. They can be generated from the atomic positions and moments listed in Table 2 using
the symmetry operations of Table 1. The MSG in Table 1 is in a nonstandard setting, using a basis
as close as possible to the one of the parent phase. The symmetry operations of all MSGs are freely
available in a standard form in the references mentioned above, and therefore, the information in
Table 1 could be substituted with just the label of this MSG: Paca21 (#29.104), together with the
transformation from the employed unit cell basis (and origin) to the standard setting of the group.
This transformation is indicated in Figure 1 in a shorthand notation (26). Applying the inverse
of this transformation to the operations of the standard MSG available in References 33 or 34,
one can directly obtain the operations listed in Table 1. Below, we define any relevant magnetic
subgroup by this means, i.e., with its standard BNS label plus a transformation to its standard
setting.

Table 2 shows that the spin model reported for GdMn2O5 in Reference 35 has simplifying
features that are not symmetry forced: Namely, the Mn1 moment is constrained to lie on the
plane ab, whereas the spins of the two independent Mn2_1 and Mn2_2 sites are restricted to
be exactly equal. Although these restrictions may be reasonable, it is important to have them
clearly separated from the fundamental ones that are symmetry protected and are evidenced in
Table 2. Lacking more precise details, the atomic positions listed in Table 2 are those of the
paramagnetic phase (36, 37) and therefore comply with the parent space group Pbam (#55), but the
table shows that some atomic sites are split because of the symmetry reduction. Hence, in principle,
these split sites could vary their positions independently within the magnetic phase if magneto-
structural couplings are sufficiently large. Also, the Mn1 site, which does not split, transforms
into a general position, with its three coordinates becoming free. Even if these new structural
degrees of freedom triggered by the magnetic ordering remain negligible within experimental
resolution, it is convenient to be aware of them. They are fundamental for monitoring any possible
structural distortion induced by the magnetic ordering. The effective space group that governs the
triggering of new structural degrees of freedom with respect to the paramagnetic phase is given
by the operations listed in Table 1, disregarding the presence of time reversal in the operation.
This is the space group Pmc21 (#26) in a nonstandard setting and with a centered unit cell doubled
along a, the transformation to standard setting being (c, −a/2, −b; 3/8, 0, 0) [this can be directly
obtained with the IDENTIFY GROUP tool in the Bilbao Crystallographic Server (38)]. This
effective space group for the atomic positions is the space group that we have generically called
H above. The magnetic ordering therefore implies for the atomic positional structure an effective
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Antitranslation:
translation combined
with time reversal

symmetry breaking: Pbam → Pmc21 (Pb21m in the setting used) without change of lattice. This is
a transformation from a nonpolar phase to a polar one, with the polar axis along the b direction
of the parent setting. According to the von Neumann principle, an induced electric polarization
Py should be expected.

Thus, without making appeal to any specific mechanism, the symmetry characterization of the
magnetic structure allows one to infer that the system will behave as a multiferroic of type II,
with a magnetically induced ferroelectricity (16, 18), in agreement with experimental evidence
(35). Interestingly, researchers have proposed a similar spin model for PrMn2O5 (40), but these
authors explicitly discard the existence of an electric polarization. The symmetry of the proposed
magnetic ordering is, however, coincident with the one above, and some induced ferroelectricity,
however small, is to be expected.

The index of the MSG of GdMn2O5 with respect to the parent symmetry Pbam1′ is four. Thus,
two distinct twin-related configurations exist, apart from their corresponding trivial twins with
all spins reversed. The second nontrivial twin is shown in Figure 1b. This configuration can be
obtained by transforming the structure shown in Figure 1a with any lost operation of the parent
space group Pbam. This means any operation of the second coset in the coset decomposition of
Pbam with respect to its subgroup Pmc21 (c, −a/2, −b; 3/8, 0, 0), such as the inversion operation
{−1 | 0, 0, 0}: Pbam = Pmc21 + {−1 | 0, 0, 0}Pmc21. These operations switch the structural
polarity, and therefore the two magnetic domains will have opposite orientations of Py. Notice
that the magnetic symmetry of the second domain-related configuration is given by a different
MSG (specified in Figure 1b).

The online editing tools ISOCIF (41) and STRCONVERT (42) are very useful in the field of
describing and building up commensurate magnetic structures with full application of magnetic
symmetry. They can be used to produce or edit the magCIF file of any real or hypothetical magnetic
structure. If the MSG of a given magnetic structure is unknown, a model with all atomic positions
and spins in the unit cell can be introduced or edited under the trivial symmetry P1. The actual
magnetic symmetry of the structure and a description in accordance with it can then be obtained
[the program FINDSYM (43) is applied by both tools]. ISOCIF has also a visualization tool and
can transform the description of a magnetic structure to any setting, whereas STRCONVERT
supports several file formats, including those of the ab initio code VASP (44), and is linked to
MVISUALIZE (45) (also in the Bilbao Crystallographic Server) for direct visualization with Jmol
(28).

2.3. 1k Magnetic Structures and k-Maximal Magnetic Symmetries

Most of the reported commensurate magnetic structures are 1k magnetic phases, i.e., their mag-
netic moment arrangements can be described as spin waves over the paramagnetic structure with a
single independent propagation vector k. The wave may be anharmonic, but the symmetry break
is fully defined by the first harmonic of the frozen spin wave. 1k magnetic configurations include
the frequent case of magnetic orderings with k = 0, in which the lattices of the magnetic and
paramagnetic structures coincide. The propagation vector is directly accessible from diffraction
experiments, and its value strongly restricts the possible magnetic symmetries. It is therefore very
convenient to have tools that directly exploit this information. In general, the translation lattice
of a 1k magnetic ordering is given by those lattice translations L of the parent group G1′, such
that exp(i2πk · L) = 1. This condition defines a primitive supercell of a volume n times larger
than that of the paramagnetic phase, with n being the minimal integer such that nk is a reciprocal
lattice vector. In the case of n being even, those lattice translations of the paramagnetic phase
that satisfy exp(i2πk · L) = −1 are also preserved in the magnetic configuration but combined
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(2ap, cp, –bp; 0, 0, 0) (–bp, cp, –2ap; 1/2, 0, 0) (–cp, 2ap, –bp; 3/4, 0, 0) (2ap, cp, –bp; 3/4, 0, 0)

[P2/m (ap, cp, –bp; 0, 0, 0)] [Pmc21 (–cp, ap, –bp; 3/4, 0, 0)]

Pbam1'

Pa2/m Pc2/c Pbmc21 Paca21

Figure 2
The four possible k-maximal magnetic symmetries for a magnetic ordering with propagation vector k =
(1/2, 0, 0) on a paramagnetic phase with space group Pbam, as obtained with MAXMAGN. The
transformation (from the parent Pbam basis) to the standard setting of each magnetic space group (MSG) is
indicated. The index of the four subgroups is four. The corresponding effective space groups for the atomic
positions (common to pairs of MSGs) are shown in gold.

k-maximal magnetic
symmetry: magnetic
symmetry group
compatible with a
given propagation
vector having no
supergroup also
compatible

with time reversal, i.e., they are maintained as antitranslations of type {1′ | L}. The resulting
symmetry is therefore described by an MSG of type IV. When n is odd (including k = 0), no
antitranslations are possible, and the subgroup of G1′ describing the symmetry of the resulting
structure is an MSG of type I or III.

The possible symmetries of a magnetic ordering with a propagation vector k are therefore lim-
ited to those compatible with the specific subgroup of lattice translations defined by k and, for even
n, also with the additional set of antitranslations. This minimal symmetry is described by either the
MSG P1 (lattice translations) for odd n or Ps1 for even n (lattice translations plus antitranslations).
However, the propagation vector k is usually directed along special crystallographic directions,
and larger subgroups of G1′ can be relevant. In general, a hierarchy of possible subgroups of G1′

consistent with the k vector is possible. Among this set of k-consistent subgroups of G1′, those that
do not have any supergroup fulfilling the same k-consistency conditions are the possible maximal
symmetry groups of the magnetic structure. We call them k-maximal subgroups or k-maximal
magnetic symmetries for a given parent space group G and a given magnetic propagation vector
k. Figure 2 depicts the k-maximal subgroups for Pbam and a magnetic propagation vector k =
(1/2, 0, 0). This case is relevant for the magnetic structure of GdMn2O5 discussed above. Only
four distinct types of magnetic ordering of k-maximal symmetry are possible, and one is in fact
realized in GdMn2O5 (and other RMn2O5 compounds).

From general physical arguments (symmetry-dictated energy extrema at symmetrical config-
urations and smoothness of the energy landscape), one expects that magnetic orderings generally
tend to keep as much symmetry as possible or, reversely, that the symmetry reduction tends to be
minimal. Indeed, one can associate a k-maximal MSG with the majority of the known magnetic
structures. The example in Figure 2 is very illustrative, as it shows that two of the four possible
maximal symmetries for the known propagation vector are polar (in both cases, along the b axis of
the Pbam setting). Therefore, the derivation of the k-maximal MSGs allows one to infer directly
that the system, if an insulator, is likely to be multiferroic. In fact, this is a quite general property of
nonsymmorphic centrosymmetric space groups with cell-duplicating propagation vectors along
the direction of one of the intrinsic nonprimitive translations of the nonsymmorphic operations.
One can easily check with MAXMAGN (46) that this is sufficient for having noncentrosymmetric
groups, polar in most cases, among the k-maximal symmetries.

The number of k-maximal MSGs (a representative of each conjugacy class) is usually rather
small, and each describes a possible, alternative, nonequivalent spin configuration. An efficient and
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(2ap, bp, cp; 0, 0, 0) (–cp, bp, 2ap; 1/2, 0, 0) (–bp, 2ap, cp; 3/4, 1/4, 0) (2ap, bp, cp; 3/4, 0, 0)

Pnma1'

Pa21/m Pc21/c Pbmn21 Pa na21

PZPZ

a

c

b

Figure 3
The four possible distinct magnetic orderings of maximal symmetry with propagation vector k = (1/2, 0, 0)
for the Mn site in orthomanganites, as obtained with MAXMAGN, assuming that the spins are aligned along
the a direction. The magnetic space group label associated with the magnetic symmetry of each structure is
shown, together with the transformation (from the parent Pnma1′ basis) to its standard setting. The index of
the four subgroups is four. The magnetic unit cell used in all figures is (2ap, bp, cp; 0, 0, 0). The direction
(with arbitrary sense) of the possible magnetically induced electric polarization Pz, when it is symmetry
allowed, is indicated. The Pbmn21 ordering is the one observed in HoMnO3 (22, 49). Abbreviation: Pz,
possible magnetically induced electric polarization.

intuitive first step in the process of determining a magnetic structure with a known propagation
vector is to enumerate and construct these alternative models of maximal symmetry for their
subsequent contrast with experimental data or calculations. This first step can be done with the
program MAXMAGN (46) in the Bilbao Crystallographic Server. This tool derives the k-maximal
MSGs for any parent space group and any (reasonable) commensurate propagation vector. If the
parent paramagnetic structure is introduced (in CIF format), it also produces the spin and structure
models corresponding to each of the alternative k-maximal MSGs. These alternative models can be
transported in magCIF format to refinement programs such as JANA2006 (47, 48) or FULLPROF
(12) or to other computational tools for further analysis. These magCIF files can be visualized
online with MVISUALIZE (45) or ISOCIF (41) or locally with VESTA (27) or Jmol (28).

As an example, Figure 3 summarizes some of the results obtained for the case of HoMnO3,
a material with Pnma as the parent space group and propagation vector (1/2, 0, 0) (49). Of the
four possible k-maximal symmetries, two are polar along c. Furthermore, the other two possible
centrosymmetric monoclinic symmetries require that some of the Mn atoms remain with zero
magnetic moment. Therefore, a full magnetic ordering of the Mn atoms with this propagation
vector necessarily produces a symmetry breaking in which at least the c direction becomes polar.
Thus, if the Mn atoms are fully ordered and the magneto-structural coupling is large enough, the
material is bound to be a multiferroic with magnetically induced ferroelectricity (i.e., a type II
multiferroic) (50). As in the preceding example, the index of the MSG is four, and there are two
equivalent, nontrivial, twinned magnetic configurations related by inversion and with opposite
electric polarizations.

2.4. Systematic Absences in the Magnetic Diffraction Diagram

MAGNEXT (34) can be used to derive the symmetry-forced systematic absences of magnetic,
nonpolarized neutron diffraction for any MSG or MSSG. The presence of these systematic ab-
sences can sometimes help reduce the possible magnetic arrangements to be explored. Because
MAGNEXT is directly accessed from MAXMAGN, the systematic absences for every alternative
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Fd3
– Fd'd'd 

Figure 4
Scheme of the two possible magnetic models with zero propagation vector of maximal symmetry for the
magnetic structure of Na3Co(CO3)2Cl, as obtained with MAXMAGN. Only some Co atoms are depicted.
These two maximal symmetries correspond to the so-called all-in/all-out and two-in/two-out models.
Systematic absences in the diffraction pattern can distinguish the two models (see Section 2.4). The Fd 3̄
model is the one proposed in Reference 51 for this compound.

k-maximal magnetic symmetry can be consulted easily. Let us consider, for instance, the case of
Na3Co(CO3)2Cl (51), which has a paramagnetic phase with space group Fd 3̄ (#203) and a magnetic
phase with zero propagation vector. In this compound, the Co atoms at the 16c Wyckoff position
form a highly frustrated pyrochlore-type framework. Using MAXMAGN, we can see that there
are four k-maximal magnetic subgroups of Fd 3̄1′, but only two allow some nonzero spin for the Co
atoms, namely Fd 3̄ (#203.26) and Fd′d′d (#70.530) (the two subgroups are in their standard setting
when using the parent unit cell). Figure 4 shows a scheme of the spin arrangement for each of these
two possible maximal symmetries. For Fd 3̄ the spin of the single independent Co at the origin must
have the direction (1, 1, 1); in the alternative Fd′d′d ordering, it can have any direction. When the
(1, 1, 1) direction is also kept in this second arrangement, the two k-maximal symmetries basically
correspond to spin orderings in the Co tetrahedra of the all-in/all-out and two-in/two-out types
(Figure 4). These two alternative configurations are in fact often discussed as energetically favor-
able and have been observed in these pyrochlore-type materials. MAGNEXT shows that, in princi-
ple, they can be distinguished by the presence or lack in the magnetic diffraction of some systematic
absences. For the subgroup Fd 3̄, all reflections of type (h, h, h) or (h, 0, 0) for any h value (and their
cubic symmetry–related ones) are forbidden, whereas for the orthorhombic Fd′d′d model, only
magnetic reflections of type (0, 0, l ) are extinct. Twinning can, however, hamper the observation
of these absences. In the case of the Fd 3̄ symmetry, the subgroup is of index two, and only a trivial
twin with all spins reversed is possible, having no consequence in the diffraction diagram. But in the
case of the Fd′d′d structure, the subgroup index is six, and three nontrivial twinned configurations
are expected to be superposed in the diffraction diagram, where the 3-fold rotation and its inverse
could be taken as the twinning operations. The magnetic structure of Na3Co(CO3)2Cl reported in
Reference 51 indeed possesses one of these two maximal symmetries, namely the MSG Fd 3̄ (22).

2.5. Hierarchy of Possible Magnetic Symmetries

If the models with k-maximal symmetry are not satisfactory to explain the experimental data, one
can also use MAXMAGN to decrease the symmetry of the model in a controlled way. For this
purpose, combining this program with the tool k-SUBGROUPSMAG (52) can be very helpful.
This second program, also in the Bilbao Crystallographic Server, provides for any parent space
group all possible magnetic symmetries consistent with one or more given propagation vectors,
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Figure 5
Graph obtained with k-SUBGROUPSMAG of all possible magnetic symmetries for a magnetic ordering
with propagation vector (1/2, 1/2, 1/2) in a structure with space group Fm3̄m. The subgroup index is
indicated in brackets for each group-subgroup relation. The k-maximal magnetic space groups (MSGs) are
highlighted with elliptical frames. Only one subgroup per conjugate class is shown, and the graph has been
restricted to centrosymmetric subgroups. Subgroup labels only indicate the type and can be repeated. The
MSG of NiO is one of the subgroups of type Cc2/c.

indicating their group-subgroup hierarchy. Let us consider, for instance, the magnetic structure
of NiO (53). Its parent space group is Fm3̄m (#225) and its magnetic propagation vector is (1/2,
1/2, 1/2). Figure 5 shows possible MSGs consistent with this propagation vector, as obtained
with k-SUBGROUPSMAG. All k-maximal subgroups are in this case centrosymmetric, and for
simplicity, we have limited the descending graph to their centrosymmetric subgroups. Some MSG
labels are repeated, as some subgroups belonging to different conjugacy classes are MSGs of the
same type. One can in fact distinguish two branches of subgroups with identical labels. The
difference between them can be seen by comparing the operations of the minimal subgroup of
type Ps 1̄ associated with each branch. In one of the branches, the inversion center at the origin
is combined with time reversal, whereas in the other, it is not. The first branch is therefore not
relevant for a full magnetic ordering of the Ni atoms, as the symmetry operation {−1′ | 0, 0, 0}
would necessarily force a null spin for the Ni atom at the origin.

The magnetic structure of NiO (53) is depicted in Figure 6. Its symmetry is given by a
monoclinic subgroup of type Cc2/c (#15.90) with the inversion center at the origin. Thus, it is not
a k-maximal symmetry, and one has to go to a second level in the subgroup hierarchy depicted in
Figure 5 to obtain the relevant MSG. Table 3 lists the operations of this subgroup, showing that
the monoclinic axis is along the (1, −1, 0) direction. The index of this subgroup is 24. Therefore,
12 nontrivial twinned configurations can superpose in a single crystal diffraction diagram; 3 have
the same propagation vector but have the monoclinic axis directed along the equivalent directions
(1, −1, 0), (0, 1, −1), and (1, 0, −1), whereas the rest correspond to analogous configurations with
rotated propagation vectors equivalent to (1/2, 1/2, 1/2). In the chosen setting, the Ni spins are
reported to be within a good approximation directed along the (1, 1, −2) direction (53). One can
check, however, with MAXMAGN that for this MSG, the Ni spins are only constrained to lie on
the plane perpendicular to the monoclinic axis, having the general form (mx, mx, mz). This is a
less restrictive condition, and a weak spin component along the direction (1, 1, 1), which reduces
the spin direction to its more general symmetry-allowed form has indeed been reported (53, 54).
The symmetry of NiO is also compatible with a monoclinic distortion of the lattice [the effective
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Figure 6
Magnetic structure of NiO (53) with indication of its magnetic space group. Only Ni atoms are shown.

space group H for the atomic positions is C2/m (#12)], but to our knowledge, no monoclinic
strain has been observed. But in the case of CoO, which has a similar spin arrangement, such
induced strain is known (55). Thus, the identification of the magnetic symmetry automatically
indicates the possible phenomena that are the consequence of the symmetry reduction, although
their magnitude may be too weak to be observable.

2.6. Multiple-k Magnetic Structures

Most of the reported magnetic structures have a single independent propagation vector. However,
in the case of wave vectors related by the parent point-group symmetry (i.e., belonging to the same
k-vector star), the experimental distinction between single-k or multiple-k structures is difficult
to make. In many cases, the 1k arrangement is taken as the simplest option, although multiple-k
ordering could also explain the experimental data. Possible multiple-k spin arrangements can
be explored in a systematic and symmetry-hierarchical form using k-SUBGROUPSMAG

Table 3 Operations that define the symmetrya of the magnetic phase of NiOb

N (x, y, z) Seitz notation
1 x, y, z, +1 {1 | 0, 0, 0}
2 −y, −x, −z + 1/2, +1 {21−10 | 0, 0, 1/2}
3 −x, −y, −z, +1 {−1 | 0, 0, 0}
4 y, x, z + 1/2, +1 {m1−10 | 0, 0, 1/2}
5 x, y, z + 1/2, −1 {1′ | 0, 0, 1/2}
6 −y, −x, −z, −1 {2′

1−10 | 0, 0, 0}
7 −x, −y, −z, −1 {−1′ | 0, 0, 1/2}
8 y, x, z, −1 {m′

1−10 | 0, 0, 0}

aThe magnetic space group type is Cc2/c in a nonstandard setting.
bThe symmetry operations (modulo lattice translations) are given in the setting (2ap, 2bp, 2cp; 0, 0, 0), with ap, bp, cp being
the parent cubic basis. The cell (2ap, 2bp, 2cp) includes 16 centering translations generated by {1 | 1/4, 3/4, 0}, {1 | 1/4, 0,
3/4}, and {1 | 0, 1/4, 3/4}. The transformation to the standard setting of Cc2/c is indicated in Figure 6.
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Figure 7
Graph (obtained with k-SUBGROUPSMAG) of all possible magnetic symmetries for a 2k magnetic
ordering with propagation vectors (−1/2, 0, 1/2) and (0, 1/2, 1/2) on a paramagnetic structure with space
group I4/mmm. The k-maximal magnetic space groups are highlighted with elliptical frames. Only one
subgroup per conjugacy class is shown. The magnetic ordering reported for Sr2F2Fe2OS2 (57) (see
Figure 8) corresponds to one of the k-maximal subgroups of type Ca2/m.

combined with the tool MAGMODELIZE (56). The first program supplies all possible magnetic
symmetries, together with their group-subgroup relations, for a given parent space group and a set
of propagation vectors. Once one or several possible MSGs provided by k-SUBGROUPSMAG are
chosen, the second program provides a model of the corresponding magnetic structures in magCIF
format that can be tested and analyzed with other programs. As in the case of 1k arrangements, the
lattice is defined by the lattice translations L of the parent group G1′ such that exp(i2πki · L) = 1,
for all the propagation vectors ki, whereas the set of translations (if any) satisfying exp(i2πki · L) =
−1 for all ki are maintained in the possible magnetic groups as antitranslations {1′ | L}.
k-SUBGROUPSMAG calculates all possible magnetic subgroups of the parent G1′ having this
lattice of translations and antitranslations (if they exist), and their group-subgroup hierarchy.

Figure 7 shows the graph obtained for a parent symmetry I4/mmm1′ and two wave vectors:
k1 = (−1/2, 0, 1/2) and k2 = (0, 1/2, 1/2). This figure is relevant for Sr2F2Fe2OS2 (57), in which
the magnetic ordering involves two of the wave vectors of the four-arms star of the point N in
the Brillouin zone (58). The spin arrangement reported in Reference 57 is shown in Figure 8.
Its symmetry is given by one of the k-maximal MSGs shown in Figure 7, namely the subgroup
Ca2/m (ap − bp − cp, 2ap + 2bp, ap/2 − bp/2 + cp/2; 0, 0, 0), demonstrating again the efficiency
of looking for maximal compatible symmetry when searching probable spin orderings. A general
magnetic structure complying with this MSG (or with any other subgroup of Figure 7) can be
obtained in magCIF format using MAGMODELIZE (56). Although all other atoms split into
two independent sites, the Fe site remains unsplit but becomes a general position, with its spin
(and position) not constrained by symmetry. Thus, the aesthetically appealing tetragonal-like
pattern of the model in Figure 8a is in fact not symmetry protected. Symmetry does not force an
extreme of the energy map for this configuration. Figure 8b depicts a more general hypothetical
arrangement with the same symmetry, showing the freedom existing in this phase, where the three
spin components of the symmetry-independent Fe atom must in principle be determined.

2.7. Importance of Nonmagnetic Atoms

Magnetic atoms often occupy high-symmetry sites, and their spin arrangements are very simple,
such that they can be described in simple terms without explicitly using an MSG or any specific
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Figure 8
(a) 2k magnetic structure of Sr2F2Fe2OS2 (57) with a magnetic space group (MSG) of type Ca2/m (see
Figure 7). The monoclinic axis is along the (1, 1, 0) direction. Only Ni atoms are shown. (b) Hypothetical
structure with the same MSG as panel a showing the orientational freedom of the spins in this phase. A spin
component along the c direction is also symmetry allowed.

symmetry consideration. However, to be able to predict and explain the properties of the resulting
magnetic phase, one must be aware of the associated MSG, and this depends in general not only
on the magnetic atoms but also on the actual positions of the nonmagnetic ones. Therefore,
despite their irrelevance in magnetic diffraction, nonmagnetic atoms play an important role in the
symmetry of a magnetic phase and its consequences.

Let us consider, for instance, the case of Gd2CuO4 (59). Its paramagnetic phase has been con-
sidered to have the space group I4/mmm (#139), with the magnetic Cu2+ occupying the Wyckoff
position 2a (0, 0, 0). The reported magnetic ordering with propagation vector (1/2, 1/2, 0) is de-
picted in Figure 9a. The magnetic symmetry of this simple spin arrangement of the body-centered
Cu sublattice is given by the MSG CAccm, again a k-maximal MSG for the observed propagation
vector, and the collinearity of the spins along the (1, 1, 0) direction is symmetry protected. The
magnetic point group of this MSG is mmm1′, i.e., a gray group, which forbids ferromagnetism.
However, Gd2CuO4 is known to be a weak ferromagnet. This is due to the existence of a small
structural distortion with the same wave vector (1/2, 1/2, 0) as the magnetic propagation vector,
which decreases the effective parent space group symmetry from I4/mmm to Cmce (#64). This is
sufficient to reduce the MSG to Cm′ca′ (see Figure 9b); the magnetic point group is then m′mm′,
which allows a ferromagnetic component along the b direction of the standard setting, i.e., along
the (1, −1, 0) direction in the tetragonal parent basis. The observed weak ferromagnetism is
therefore a direct consequence of the orthorhombic structural distortion and is coupled with it. In
terms of symmetry relations, the actual magnetic symmetry is the intersection of the subgroups
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Figure 9
Simple spin arrangement in a body-centered tetragonal lattice of magnetic atoms, resulting in different
symmetries and different magneto-structural properties depending on the parent space group of the
structure as a whole: (a) I4/mmm, (b) Cmce, and (c) I 4̄2m. The transformation from the tetragonal basis to
the standard setting of each magnetic space group (MSG) is given below each MSG label. The case in panel
b with weak ferromagnetism is realized in Gd2CuO4 (59), and the case in panel c is a hypothetical
multiferroic with a parent structure similar to the one of Ga2MnSe4 (63).

Cmce1′ and CAccm, corresponding to the structural and magnetic distortions. But the resulting
symmetry is also compatible with the presence of a ferromagnetic component that alone would
yield another intermediate subgroup. A scheme of the group-subgroup relations corresponding
to this symmetry breaking is depicted in Figure 10. This graph has the characteristic topology
of three different symmetry-breaking distortions that are necessarily trilinearly coupled. Their
switching is correlated by pairs, similar to what happens in other ferroic systems (60–62). Un-
der some conditions, the two primary distortions can condense simultaneously in a single phase
transition (61, 62).

The simple spin ordering of Figure 9a could also be sufficient to produce a polar phase if the
symmetry of the paramagnetic phase considering all atoms were limited to I 4̄2m (#121). Figure 9c

I4/mmm1'

CAccm

Cm'ca'

Fm'm'mCmca1'

mX4+ mGM5+X2+

Figure 10
Scheme of the symmetry descent from the parent symmetry in the magnetic structure of Gd2CuO4 (59)
showing the symmetry breakings of the primary structural and magnetic distortions and the triggering
through symmetry compatibility of a ferromagnetic mode. The irrep labels of the distortions involved are
indicated in gold (see Section 3). Notice that the group labels are the standard ones, and the orientations of
their bases do not coincide.

www.annualreviews.org • Symmetry-Based Computational Tools 231



MR45CH10-Perez-Mato ARI 27 May 2015 8:42

shows the structure of Ga2MnSe4 (63), which has this parent space group, with a hypothetical
spin ordering of the type in Figure 9a. The MSG of this hypothetical phase would be ABma2
(#40.210). The magnetic point group is then reduced to mm21′, with the polar direction along
the tetragonal axis. Thus, if the system were an insulator, this simple magnetic ordering could
induce some ferroelectric polarization. These examples show the importance of identifying the
magnetic symmetry, taking into account the nonmagnetic atoms, independently of the simplicity
of the spin arrangement.

3. IRREDUCIBLE REPRESENTATIONS VERSUS MAGNETIC
SPACE GROUPS

In accordance with Landau theory, a magnetic ordering very often defines an order parameter
with transformation properties given by a single irrep of the parent symmetry. This is the basis of
the representation method developed by Bertaut (6, 7), in which the possible magnetic orderings
are parameterized with basis modes transforming according to irreps of the parent space group.
The basis spin modes are restricted to a single irrep or, if necessary, to a set of irreps. Originally,
the irreps were considered representations of an ordinary space group, but if one includes the
transformation properties of the spin modes under time reversal, they are in fact irreps of the
parent gray MSG, being odd for time reversal. To distinguish them from those that are even
for time reversal (associated, for instance, with phonon modes), we call them magnetic irreps and
include a prefix m in their label.

The relationship between the representation method and magnetic symmetry was initially
the subject of an intense discussion (64–66), which provoked a kind of splitting between two
communities and some unfortunate misunderstandings that have persisted for decades. Today,
however, the program ISODISTORT (67) allows a comprehensive application of the two ap-
proaches. The use of this program permits one to characterize any magnetic ordering, commen-
surate or incommensurate, in terms of both magnetic symmetry and irreps, showing their generally
complex relationship. Below, we briefly summarize this relation and some of the capabilities of
ISODISTORT in this context.

In the simplest case that the active irrep is one-dimensional (1-D) and real, the spin arrangement
will either change sign or be invariant when transformed by any of the operations of the gray space
group. If an operation of the parent space group has the character −1 associated, the analogous
operation combined with time reversal will necessarily have +1 associated, and all operations
of the parent space group G will therefore be conserved, either pure or combined with time
reversal. A one-to-one correspondence thus exists between the assignment of a 1-D irrep and an
MSG. The irrep determines the MSG and vice versa, and the irrep basis spin modes define the
same restrictions for the spin arrangement as those that can be directly derived from the MSG.
However, this simple scenario is no longer true if the irrep is multidimensional. In this general
case, different magnetic symmetries can occur for a single irrep. An arbitrary combination of the
irrep basis modes results in a minimal symmetry given by the operations of the parent gray space
group to which the irrep associates the identity matrix. This is the so-called kernel of the irrep
(4, 68). But for specific combinations of the spin modes (i.e., specific directions in the space of
the irrep or order parameter directions), higher magnetic groups called epikernels can be realized
(68). Thus, the assignment of one MSG corresponding to an irrep epikernel introduces more
constraints than the assignment of just the irrep, as it limits the possible combinations of the irrep
basis modes. Epikernels and kernels are also called isotropy subgroups (67).

Traditionally, the representation method has been applied considering the full set of irrep basis
modes; this implies that the symmetry of the configuration space being explored was therefore
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generally the lowest one, i.e., the kernel of the irrep. Ad hoc restrictions in the basis modes
introduced either a priori or as the result of the refinement could in fact make the spin model
comply with one of the irrep epikernels, but in general, the representation method has been
applied without monitoring or controlling the resulting symmetry. This scenario changes if
ISODISTORT is used. This powerful program calculates the epikernels and kernel of any
possible irrep and provides the corresponding models of the magnetic structure complying with
each of these alternative symmetries in the form of a magCIF file. It can also supply a basis of spin
modes consistent with each possible epikernel or with the kernel of an irrep. The program is very
general and can also supply similar information if several irreps are active, deriving all possible
alternative magnetic symmetries and corresponding models for a given set of irreps. Furthermore,
it can be used in a reverse approach to decompose a given magnetic structure in terms of spin
irrep modes, including structural irrep modes if some significant structural distortion with respect
to the paramagnetic phase exists.

If the active irrep of a magnetic ordering is multidimensional, one can distinguish two different,
rather common situations that we illustrate with example cases analyzed with ISODISTORT. The
irrep labels used below are those of this program. The definitions and details of any of the irreps
considered here can be examined with the tool REPRES (24) of the Bilbao Crystallographic Server,
which uses the same notation.

Case 1: The symmetry of the magnetic structure is an irrep epikernel and a k-maximal
MSG. In this case, the description of the magnetic structure using its MSG reduces the number
of spin degrees of freedom with respect to the usual representation method. As an example,
we can take the case of GdMn2O5 discussed in Section 2, with parent space group Pbam and
propagation vector k = (1/2, 0, 0). There are two two-dimensional (2-D) irreps for this wave
vector (point X in the Brillouin zone), labeled mX1 and mX2, and Table 4 lists their epikernels
and kernels. Taking into account the equivalence of the transformations to standard setting, one
can see that the four possible epikernels coincide with the four k-maximal MSGs discussed in
Section 2. As shown in Table 4, the Paca21 (#29.104) magnetic structure of GdMn2O5 discussed
in Section 2 corresponds to a spin arrangement according to the irrep mX2 but is restricted to
a special direction within the irrep space that limits the number of degrees of freedom to 11,
instead of the 22 that exist for a general mX2 spin configuration. Similar to what can be done with
MAXMAGN, once the irrep epikernel Paca21 is chosen as the tentative symmetry of the structure,
a magnetic structure model complying with this symmetry can be supplied by ISODISTORT

Table 4 Epikernels and kernels of the magnetic irreps of Pbam1′ at the point Xa

Irrep
Order parameter

direction Magnetic space group
Transformation to

standard
Number of spin degrees

of freedomb

(a, 0) Pbmc21 (#26.72) (cp, 2ap, bp; 1/4, 0, 0) 2 (Gd), 5 (Mn)

mX1 (a, a) Pa2/m (#10.47) (−2ap, cp, bp; −1/2, 0, 0) 2 (Gd), 5 (Mn)

(a, b) Pam (#6.21) (−2ap, cp, bp; 0, 0, 0) 4 (Gd), 10 (Mn)
(a, 0) Paca21 (#29.104) (−2ap, cp, bp; −3/4, 0, 0) 4 (Gd), 7 (Mn)

mX2 (a, a) Pc2/c (#13.72) (bp, cp, 2ap; 0, 0, 0) 4 (Gd), 7 (Mn)

(a, b) Pcc (#7.28) (bp, cp, 2ap; 0, 0, 0) 8 (Gd), 14 (Mn)

Abbreviation: irrep, irreducible representation.
aEpikernels and kernels that can be relevant for the magnetic ordering with a propagation vector (1/2, 0, 0) in GdMn2O5, as obtained with
ISODISTORT.
bFor the magnetic atoms in GdMn2O5.
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in magCIF format and introduced for refinement in JANA2006 or FULLPROF. As explained in
Section 2 (see Table 2), the 11 spin degrees of freedom of this structure are automatically taken
into account in the crystallographic description of the magCIF file that makes use of the MSG. In
such cases, the use of irrep modes brings no advantage or additional information in what concerns
the magnetic degrees of freedom of the structure. Furthermore, we have seen in the previous
section that all irrep epikernels in this example can be directly derived as k-maximal symmetries.

Case 2: The symmetry of the magnetic structure is an irrep epikernel but not a k-maximal
MSG. In general, all k-maximal MSGs are irrep epikernels, but the reverse is not true for cubic,
hexagonal, and trigonal parent symmetries, for which some irrep epikernels may not be k-maximal
symmetries. In these cases, the magnetic symmetry given by the irrep epikernel allows, in general,
spin degrees of freedom corresponding to other irreps. The most efficient approach in such situa-
tions is to decompose the spin degrees of freedom into irrep spin modes that should be restricted
or symmetry-adapted to the relevant MSG.

The magnetic structure of NiO discussed above is a simple example of this situation. There
is only a single Ni atom per primitive unit cell, and therefore the irrep spin modes are defined
by the spin of this single site. The magnetic representation of the Ni moments with propaga-
tion vector (1/2, 1/2, 1/2) (point L in the Brillouin zone) decomposes into mL2+ ⊕ mL3+. The
small irreps corresponding to mL2+ and mL3+, relevant for 1k spin arrangements, are 1-D and
2-D, respectively. Thus, the three spin degrees of freedom of the system decompose into a sin-
gle spin mode of type mL2+ and two spin modes for the irrep mL3+. Table 5 shows that a
magnetic model according to the irrep mL2+ is equivalent to the assignment of the MSG RI 3̄c
(#167.108), which is one of the k-maximal MSGs shown in Figure 5. Under this symmetry, the
Ni moment is constrained along the (1, 1, 1) direction, i.e., the mL2+ spin Ni mode is just a
spin directed along the (1, 1, 1) direction; this can be checked by applying the usual programs
used in the representation method [BASIREPS (12), SARAh (13), or MODY (14)]. For the 2-D
small irrep mL3+, the situation is quite different. The mentioned programs provide two basis
spin modes for mL3+, and if both are used, the explored magnetic configurations have the lowest
possible symmetry, namely the irrep kernel PS1̄. The Ni spin is then only restricted to lie on the
plane perpendicular to the (1, 1, 1) direction. In order to restrict the irrep model to one of the

Table 5 Epikernels and kernels of some magnetic irreps of Fm3̄m1′ at the L pointa of the Brillouin zone

Irrep

Order
parameter
direction

Magnetic space
group Transformation to standard

Spin degrees of
freedomb

Ni spin basis
modes

mL2+ (a) RI 3̄c (#167.108) (−ap/2 + cp/2, bp/2 − cp/2,
−2ap − 2bp − 2cp; 0, 0, 0)

1 (1, 1, 1)

(a, 0) Cc2/m (#12.63) (ap/2 + bp/2 − c, ap/2 − bp/2,
−ap − bp; 0, 0, 0)

1 (1, −1, 0)

mL3+ (a, a) Cc2/c (#15.90) (ap/2 + bp/2 − c, ap/2 − bp/2,
−ap − bp; 0, 0, 0)

1 (1, 1, −2)

(a, b) PS1̄ (#7.28) (−bp/2 + cp/2, ap/2 − bp/2, ap

+ cp; 0, 0, 0)
2 (1, −1, 0)

(1, 1, −2)

Abbreviation: irrep, irreducible representation.
aEpikernels and kernels that can be relevant in the magnetic phase of NiO with propagation vector (1/2, 1/2, 1/2), as obtained with ISODISTORT (only
1k configurations are included).
bFor the Ni atoms.
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epikernels, one must choose a specific linear combination of the two basis modes of mL3+. These
epikernel-adapted modes can be obtained with ISODISTORT and are listed in Table 5. The
MSG of the magnetic structure of NiO is Cc2/c (#15.90). Therefore, the active irrep is mL3+
but is restricted to one of its epikernels, with the spin mode being along the (1, 1, −2) direction.
We saw in the previous section, however, that the Cc2/c symmetry only restricts the Ni spin to
lie on a plane of the form (mx, mx, mz). This symmetry therefore also allows an orthogonal spin
component along the (1, 1, 1) direction.

Hence, the symmetry assignment of the MSG Cc2/c (#15.90) restricts the spin configuration
with respect to a general mL3+ arrangement, but, at the same time, it allows the presence of a mode
according to the irrep mL2+. The reason for the possible presence of this secondary spin mode can
be seen in Figure 5. Cc2/c is not a k-maximal symmetry but is in fact a subgroup of the epikernel
of mL2+. Therefore, in accordance with von Neumann principle, the symmetry break produced
by the primary mL3+ order parameter allows the presence of an mL2+ distortion as a symmetry-
compatible secondary effect. Thus, the MSG automatically takes into account all degrees of free-
dom that are triggered by the symmetry break. From physical arguments, one should expect that
the prevailing spin direction will comply with the mL3+ irrep but will be restricted to the relevant
epikernel and will therefore be along the (1, 1, −2) direction, whereas the mL2+ component along
the (1, 1, 1) direction should be weak or even negligible. This is indeed what is observed.

Therefore, the most efficient approach in this type of case is to consider both the magnetic
symmetry of the system represented by an MSG and the decomposition of the degrees of freedom
in terms of irrep modes restricted to this MSG. In general, a physical hierarchy between the
symmetry-compatible irreps will exist, and the degrees of freedom associated with the secondary
irreps may be disregarded, reducing their number with respect to a description using only the MSG.

A more complex example is summarized in Figure 11, which shows all the possible k = 0
magnetic symmetries for the compound Na3Co(CO3)2Cl, discussed in Section 2.4. The figure
also indicates the possible irrep epikernels and kernels and the number of irrep basis modes in
each case. For instance, a general spin configuration according to the irrep mGM4+ requires nine
basis modes, and its magnetic symmetry is the minimal one, P 1̄, but it allows three additional
degrees of freedom corresponding to the secondary symmetry-compatible irreps mGM1+ and
mGM2+ ⊕ GM3+ (a physically irreducible irrep). But the irrep mGM4+ can also yield the MSG
R3̄ (#148.17), and under this symmetry, the number of free spin parameters is four. But this MSG
restricted to the irrep mGM4+ only requires three basis modes, whereas the fourth degree of
freedom corresponds to the symmetry-compatible mode for the irrep mGM1+ of symmetry Fd 3̄
(#203.26).

4. INCOMMENSURATE MAGNETIC STRUCTURES
AND SUPERSPACE SYMMETRY

4.1. Magnetic Superspace Groups

The superspace symmetry formalism, developed between 1974 and 1985, has become the
standard method for the analysis and determination of nonmagnetic modulated structures, both
incommensurate and commensurate (5, 69–74). Nearly all quantitative structural studies of these
systems employ the refinement program JANA2006 (47, 48), which is based on this formalism.
A superspace group defines all the structural constraints that are symmetry forced and are
protected within an incommensurate phase, playing the role that an ordinary space group does for
commensurate phases. Since the beginning of its development, it was pointed out that superspace
symmetry can be extended to magnetic systems (5), but in fact only a few testimonial works have
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mGM1+ (a)
(1)

mGM2+ ⊕mGM3+ (a, b)
(2)

Fd3–1'

Fd3–

C2'/c' C2/c R3–

Fddd

mGM4+ (a, a, a)
(3)

mGM4+ (a, b, c)
(9)

(1)

(4)(6)(6)

Fd'd'd (3) (3)

P1– (12)

mGM4+ (a, b, 0)
(6)

mGM4+ (a, 0, 0)
(3)

Figure 11
Group-subgroup graph of all possible magnetic symmetries for a structure with parent space group Fd 3̄
(#203), propagation vector zero, and a magnetic atom at the origin. The k-maximal magnetic space groups
are highlighted with elliptical frames. Only one subgroup per conjugacy class is shown. The subgroups that
are epikernels for some irreducible representations (irreps) have at their side the corresponding irrep label
with the order parameter direction in the ISODISTORT notation. The number of spin degrees of freedom
is indicated in red for each group, and the number of symmetry-restricted irrep basis modes is written in gold
below the irrep.

applied this formalism to magnetic structures (75). The situation has drastically changed in the
past few years with the development of computational tools specific for magnetic structures that
make use of superspace symmetry, in particular the extension of JANA2006. Hence, the number
of reported incommensurate magnetic structures refined, described, or both using superspace
symmetry is increasing steadily (76–87). For the sake of simplicity, we restrict the discussion to
1k incommensurate structures but we stress that superspace symmetry can also be considered in
more general cases with several independent, incommensurate wave vectors.

In practical terms, the characterization of a 1k incommensurate phase using a superspace group
is reduced to the description of the local aperiodic atomic positions and atomic properties (as the
magnetic moments) by means of periodic modulation functions of a continuous variable, say x4,
with period 1. The actual value of an atomic property of an atom at a position r is then given by the
value of the corresponding modulation function at x4 = k · r. The continuous variable of these
functions is associated with the additional dimension in a mathematical superspace, which is intro-
duced in the definition of the symmetry operations. A symmetry operation of an incommensurate
structure is, in general, an ordinary symmetry operation of the reference parent structure, say,
{R | t} followed by a certain global shift τ of all the modulation functions, such that the transformed
system with the atomic positions and local properties given by these shifted modulation functions
becomes undistinguishable from the original one. The operation is then represented by {R | t, τ0},
with τ0 = τ + k · t being the k-independent part of the phase shift. Thus, the symmetry group of an
incommensurate crystal is obtained by adding the possibility of shifting the global phase of all the
modulation functions to the ordinary rotations, roto-inversions, and translations. A generalization
to magnetic crystals is immediate by just including among the possible operations the combination
with time reversal, yielding the MSSGs. As ordinary magnetic symmetry, MSSGs are robust in the
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Figure 12
Representative spin modulations along a periodic chain of atoms with indication of their point-group
symmetries according to their superspace symmetry groups. The first column is the point group of a single
chain, whereas the second and third columns list those for three-dimensional cubic and hexagonal
monoatomic arrangements of these chains, the chains being along the c direction.

sense that they can be associated with the properties of the system within a whole thermodynamic
phase. The point-group symmetry constraining the tensor physical properties of the phase is then
formed by the point-group operations that form part of the symmetry operations of the MSSG.

Following the basic principles explained above, deriving the magnetic point-group symmetry
of a chain of spins with an incommensurate modulation of any type is straightforward. Figure 12
shows the point-group symmetries of the most representative incommensurate spin modulations
along a periodic atomic chain. In nearly all cases, the point group is gray, i.e., it contains time
reversal, and linear magneto-structural couplings are therefore not possible. Only those spin
modulations that include a k = 0 component in addition to the incommensurate frozen spin
wave have nongray point groups. This is a general property: Any 1k incommensurate modulation
possesses the superspace symmetry operation {1′ | 0, 0, 0, 1/2} because, after switching the spins
to opposite signs by the action of time reversal, a phase shift of 1/2 of the spin modulation as a
whole recuperates the original spin arrangement.

Many of the point groups of the incommensurate spin chains in Figure 12 include inversion,
or other operations transforming k into −k. Only the cycloid arrangements and the transverse
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conical modulation break the symmetry into noncentrosymmetric polar groups. The polarity of a
circular spin cycloid is along the direction perpendicular to k and within the plane of the cycloid.
Thus, symmetry is sufficient to predict the polar character (and its direction) for this type of spin
arrangement. Notice, however, that in the case of an elliptical oblique cycloid, with the main axes
of the cycloid ellipse along arbitrary directions, the symmetry is reduced to m1′, with the mirror
plane being the one of the cycloid. Hence, in this case, the possible induced polarization can take
an arbitrary direction within this plane.

It is important to stress that a proper screw modulation, with the spins rotating on the plane
perpendicular to the propagation vector, also breaks inversion but keeps any binary axis perpen-
dicular to the chain. Thus, this type of spin arrangement in high-symmetry lattices gives way to
a noncentrosymmetric but nonpolar chiral symmetry. This is, for instance, the case of MnAu2

(22, 88), with space group I4/mmm (#139) in the paramagnetic phase and MSSG I4221′(00γ )q00s
(point group 4221′) in its incommensurate magnetic phase. However, if these types of screw spin
chains are embedded in a structure lacking binary axes perpendicular to the direction of the mod-
ulation, the magnetic symmetry will be polar along the chain, and in the case of an insulator, an
induced ferroelectric polarization along the direction of the propagation vector is possible.

4.2. Crystallographic Description of Incommensurate Magnetic Structures

A CIF dictionary for incommensurate (nonmagnetic) structures based on superspace symmetry
already exists (89), and its extension to magnetic structures within the magCIF dictionary is
straightforward. In the simplest case of a harmonic modulation, the spin modulation functions of
a magnetic atom in the asymmetric unit are given by a combination of sine and cosine functions
for each spin component. If the site lies in a special position, then the modulation is subject to
site-symmetry constraints, whereas the spin modulation functions of the symmetry-related atoms
are derived by the operations of the superspace group. A detailed review of the application of
MSSGs in magnetic structures can be found in Reference 3.

As an example, we consider the very simple structure of Ce2Pd2Sn (90, 91), shown in Figure 13.
This is a sinusoidal transversal spin modulation, of the Ce magnetic moments along c, with parent
space group P4/mbm (#127) and propagation vector k = (0.105, 0, 0). The superspace symmetry
of this spin arrangement is given by the MSSG Pbam1′(α00)0s0s (22), maintaining the parent
setting for the average structure. This means that the structure is centrosymmetric, and its average
symmetry is reduced from tetragonal to Pbam1′, which implies the possible liberation of structural
degrees of freedom with respect to the parent phase through magneto-structural coupling. The
4h Ce site in the parent tetragonal phase remains a 4h site in the Pbam1′ average structure,
and only the spin modulation of one atom, Ce1, is independent. The representative operations of
Pbam1′(α00)0s0s are {2100 | 1/2, 1/2, 0, 1/2}, {2010 | 1/2, 1/2, 0, 1/2}, {2001 | 0, 0, 0, 0}, {−1 | 0, 0,

a

b
c

Figure 13
Incommensurate magnetic structure of Ce2Pd2Sn (54) with superspace group Pbam1′(α00)0s0s.
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0, 0}, {m100 | 1/2, 1/2, 0, 1/2}, {m010 | 1/2, 1/2, 0, 1/2}, and {m001 | 0, 0, 0, 0}, plus those obtained
by combining all these operations with {1′ | 0, 0, 0, 1/2} (22). The symmetry invariance of the Ce1
site for the operation {m001 | 0, 0, 1, 0} constrains its spin modulation to be along the c direction:

�M Ce1(x4) = (0, 0, M z cos 1) cos(x4) + (0, 0, M z sin 1) sin(x4).

The spin modulation therefore has two free parameters. The modulation functions of the other
three Ce atoms in the parent unit cell, Ce1_2, Ce1_3, and Ce1_4, are obtained through the
operations {m010 | 1/2, 1/2, 0, 1/2}, {m100 | 1/2, 1/2, 0, 1/2}, and {−1 | 0, 0, 0, 0}, respectively
(see Reference 3). Hence, Ce1_2 has the same modulation function as Ce1_1, whereas the other
two atoms have the same cosine term but an opposite sine component. This implies that symmetry
allows a phase shift between the modulations of the Ce atoms that are related by operations
transforming k into −k but constrains all amplitudes to be equal. According to the model reported
in References 90 and 91, the parameter Mzsin1 is negligible, and the four modulations are in phase.

4.3. Irreducible Representations Versus Magnetic Superspace Groups

The relationship of the representation approach with the MSSGs is similar to the one discussed
above between irreps and MSGs in commensurate structures (3). If the small irrep associated with
the spin modulation is 1-D, there is a one-to-one correspondence between the MSSG and the
irrep, but for multidimensional small irreps in general, several distinct MSSGs can be realized
in the incommensurate phase depending on the direction taken by the order parameter within
the representation space. Hence, different magnetic symmetries can result from the same irrep,
constituting the epikernels and kernel of the irrep.

However, an important difference exists with respect to the commensurate case. For 1-D small
irreps, even if only one MSSG is possible, this MSSG generally includes operations that transform
the vector k into −k (if these operations exist in the paramagnetic phase). Figure 14 shows
the four MSSGs corresponding to the four possible irreps of P4/mbm for an incommensurate
wave vector (α, 0, 0), which could be relevant for the case of Ce2Pd2Sn described above. All are
centrosymmetric. Among the wave vector’s superspace symmetry operations, the MSSGs keep
all point-group operations of the parent symmetry that either maintain k invariant or transform
it to −k. This is an important difference from the traditional representation approach, which
has usually considered that atoms related by operations of the parent symmetry that transform k
into −k become split in the incommensurate phase, yielding independent suborbits of atoms. In
practice, some correlations between the parameters of these supposedly independent atoms are
often introduced and justified with various arguments not related to symmetry. However, this
example shows that, according to the MSSG associated with any active irrep, the modulations
of atoms related by these −k operations remain symmetry related in the incommensurate phase.
The spin arrangement of Ce2Pd2Sn complies with the irrep mDT4 (see Figure 14), and the
representation method yields three free parameters for this irrep (91) (one amplitude and phase
per suborbit of Ce atoms, minus one free phase that can be fixed arbitrarily). Thus, in principle
the method allows different amplitudes of the spin modulations of the two suborbits, although
in practice they are made equal (91). The MSSG associated with the irrep shows that this is
not just an additional reasonable assumption or approximation but is part of the restrictions for
a single irrep distortion, i.e., a single order parameter. One can always derive them from the
irrep transformation properties, as done in Reference 92, for instance, but the identification of
the MSSG associated with the active irrep provides automatically all constraints, including those
of possible higher modulation harmonics, both magnetic and structural. The usual disregard of
the symmetry constraints coming from the operations changing k into −k implies that more
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Pbam1'(a00)000s
[2 parameters]

Pbam1'(a00)00ss
[4 parameters]

Pbam1'(a00)0s0s
[2 parameters]

mDT1

mDT2

mDT3

mDT4

P21am1'(a00)000s 
({2100 | ½, ½, 0, 0}, {m010 | ½, ½, 0, 0}, {m001 | 0, 0, 0, 0})
[3 parameters] 

P21am1'(a00)0sss
({2100 | ½, ½, 0, 0}, {m010 | ½, ½, 0, ½}, {m001 | 0, 0, 0, ½})
[7 parameters] 

P21am1'(a00)00ss
({2100 |½, ½, 0, ½}, {m010 | ½, ½, 0, 0}, {m001 | 0, 0, 0, ½})
[7 parameters] 

P21am1'(a00)00ss
({2100 | ½, ½, 0, ½}, {m010 | ½, ½, 0, ½}, {m001 | 0, 0, 0 ,0})
[3 parameters] 

Kernel 
(only one irrep mode)

Minimal symmetry
(incoherent superposition of irrep modes)

Pbam1'(a00)0sss
[4 parameters]

P4/mbm1'

Figure 14
Possible magnetic superspace groups for an incommensurate magnetic modulation with propagation vector
of type (α, 0, 0) on a parent structure with space group P4/mbm, if restricted to a single irreducible
representation (irrep) mode, as can be obtained in JANA2006 or ISODISTORT. The number of free
magnetic parameters for each case is indicated in brackets. A set of generators is listed for each symmetry,
with the exception of {−1 | 0, 0, 0, 0} and {1′ | 0, 0, 0, 1/2}, present in all. The minimal superspace
symmetry, corresponding to an incoherent superposition of more than one irrep mode, is shown on the
right. Notice that the superspace groups are described here in the parent setting, in contrast with the default
output of ISODISTORT.

general spin arrangements are being considered, which represent the incoherent (phase-shifted)
superposition of more than one irrep mode for the same irrep. Notice, for instance, that in the
case of Ce2Pd2Sn, the constraint coming from the k to −k transforming operations is essential to
keep the system centrosymmetric.

ISODISTORT or JANA2006 provide the epikernels and kernel of any incommensurate irrep
in the form of a list of possible MSSGs, and they can supply the corresponding symmetry-adapted
magnetic structure models for visualization or any further analysis. The models are portable using
incommensurate magCIF files, which are fully supported by the visualization program Jmol.
JANA2006 can in principle refine any incommensurate 1k magnetic structure under any chosen
MSSG, and the program includes the calculation tool of epikernels and kernels for the possible
irreps as a preliminary step to explore and construct all possible models of different superspace
symmetry that can be confronted with the experimental data. Once one irrep epikernel (or kernel)
is chosen, the program works in a crystallographic way using the corresponding MSSG to analyze
the symmetry of the diffraction data and constrain both magnetic and structural parameters. This
allows a systematic search of the incommensurate magnetic structure in a symmetry-hierarchical
way. It works by default in the parent setting, but it can be changed by the user. By contrast,
ISODISTORT supplies the different possible MSSG models in their standard setting, which can
strongly differ from the one of the parent phase, including a different choice of the propagation
vector. This program focuses on the mode analysis of both the magnetic and structural degrees
of freedom of the different possible phases and supplies a parameterization in terms of irrep basis
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Figure 15
Epikernels of the irreducible representation (irrep) mP2P3 (physically irreducible) with a propagation vector
of type (1/3, 1/3, γ) for a parent space group P 3̄ (#147) and corresponding spin arrangements for an atom at
the origin, as obtained from JANA2006 or ISODISTORT. The general form of the spin modulation is also
indicated for each case. These two alternative k-maximal symmetries are realized in the phase diagram of
RbFe(MoO4)2 (82, 93).

modes adapted to the relevant MSSG. This is very important when several irreps are symmetry
allowed, as one can distinguish primary irrep modes from weak or negligible secondary ones.

Figure 15 summarizes the case of RbFe(MoO4)2 (82, 93). This compound has a paramagnetic
phase with space group P 3̄, and it orders with an incommensurate propagation vector (1/3, 1/3,
γ) [line P in the Brillouin zone (58)]. Having the Fe atom at the origin, a spin arrangement with
this propagation vector in the most general case would require five parameters (the amplitude and
phase for the three spin components, minus one phase that can be chosen arbitrarily). However,
the modulation of the spin component along c transforms according to the irrep mP1, whereas
those on the ab plane correspond to the irrep mP2P3 (a physically irreducible irrep). The irrep
mP2P3 has two possible epikernels. This means that two different alternative MSSGs of maximal
symmetry are possible for this irrep. Their labels are indicated in Figure 15, together with the
mathematical form of the spin modulation function and a graphical scheme. The system can either
maintain the 3-fold axis and lose the space inversion symmetry or keep the centrosymmetry but
break the 3-fold axis. In the first case, the MSSG forces the spin modulation to have two orthogonal
components in quadrature on the ab plane; this is sufficient to acquire a typical 120◦ arrangement
on the ab plane, whereas the spins rotate along c, forming a screw with a pitch determined by
the propagation vector. If this MSSG is assigned, the determination of the corresponding spin
configuration requires a single parameter. A magnetic phase with this superspace symmetry has
31′ as point-group symmetry. It is therefore polar along c, with domains related by the lost space
inversion. Induced ferroelectricity, i.e., a multiferroic of type II, should be expected (93).

The other alternative maximal symmetry is a collinear arrangement in which the modulations
of the three moment components are in phase. This second MSSG has three free spin parameters,
but one of them is the Mz component (see Figure 15), which corresponds to the irrep mP1. As
in the commensurate case, the magnetic symmetry allows degrees of freedom corresponding to
symmetry-compatible secondary modes associated with irreps having as epikernel (or kernel) one
supergroup of the actual MSSG. This is the case of the Mz modulation that can be present, as a
secondary mP1 distortion, in a model complying with this MSSG P 1̄1′(α, β, γ )0s, provided it is
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in phase with the primary mP2P3 collinear distortion on the ab plane. This second component
can be small enough to be negligible, reducing the number of free parameters to two. Notice that
for this MSSG, the x and y components of the propagation vector are no longer forced to have
the rational value 1/3, as explicitly indicated in the group label. This second alternative maximal
superspace symmetry is realized in the phase diagram under magnetic field.

The kernel of mP2P3, i.e., the lowest superspace symmetry possible, is the intersection of the
two alternative k-maximal superspace symmetries for mP2P3 discussed above. It reduces to the

Table 6 Databases and programs to analyze magnetic structures using magnetic symmetrya

Program or database Program description
Magnetic group tables (30) Tables of MSGs with illustrations and data analogous to those of the ordinary space groups in the

International Tables for Crystallography. They are set in OG notation and are not computer readable.
ISO-MAG (33) Computer-readable tables and data of MSGs in both BNS and OG notations.
MGENPOS, MWYCKPOS
(34)

Database of symmetry operations and Wyckoff positions of MSGs in both BNS and OG notations.

IDENTIFY MAGNETIC
GROUP (39)

Identifies a magnetic space group (commensurate) from a set of generators in an arbitrary setting.

ISOCIF (41), FINDSYM
(43)

Editor to create or modify a magCIF file of a commensurate magnetic structure. It transforms to any
desired setting and automatically finds the actual MSG of a structure introduced enumerating all
atoms and spins in the unit cell. It includes an online visualization tool.

STRCONVERT (42) Editor to convert, edit, or both a commensurate magnetic structure into different file formats,
including magCIF. Using FINDSYM, it finds the MSG of the structure if transformed or given in
P1 symmetry. VASP files for or from ab initio calculations are also supported.

ISODISTORT (67) Comprehensive online program to enumerate and describe possible magnetic structures caused by one
or more active irreps. The magCIF format is supported. It provides possible epikernels and kernels
(isotropy subgroups) of any magnetic irrep or set of irreps and can yield the mode decomposition of
any commensurate magnetic structure if given in magCIF format. Standard settings are required for
input data, but the resulting models of the magnetic structures can be obtained in any chosen setting.

MAXMAGN (46) Generates all possible magnetic symmetries and the corresponding magnetic structures for a given
propagation vector, starting with those of maximal symmetry.

k-SUBGROUPSMAG (52) Provides all possible magnetic symmetries for a known space group of the paramagnetic phase and a
set of one or more propagation vectors. Their group-subgroup hierarchy is also provided in a graphic
form.

MAGNEXT (34) Provides symmetry-forced systematic absences of nonpolarized neutron magnetic diffraction, along
with the symmetry-adapted form of the magnetic structure factor, for any MSG or MSSG.
Nonstandard settings are also supported.

MAGMODELIZE (56) For any parent structure, provides the magnetic structure model corresponding to any MSG given by
the user, as well as all domain-equivalent ones. It can be combined with k-SUBGROUPSMAG to
explore all possible magnetic arrangements for a known propagation vector following a stepwise
symmetry descent.

JANA2006 (47, 48) General refinement program that includes a tool to construct for each irrep possible alternative
models with their symmetries given by the possible irrep epikernels and kernel. It can deal both with
commensurate and incommensurate structures. Magnetic structures can be uploaded or retrieved
using magCIF files.

FULLPROF (12) General refinement program that supports magCIF files both as input and output. A console
application provides information on MSGs. Any MSG symmetry can be implemented in the model
to be refined.

(Continued )
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Table 6 (Continued )

Program or database Program description
MVISUALIZE (45) Online visualization using Jmol of any magnetic structure (commensurate or incommensurate) if

uploaded as a magCIF file.
VESTA (27) Visualization program that supports magnetic structures in magCIF format and magnetic symmetry

(only commensurate structures).
Jmol (28) Visualization program that supports magnetic structures (both commensurate and incommensurate)

in magCIF format and magnetic symmetry.
MAGNDATA (22) A collection of more than 250 magnetic structures (commensurate and incommensurate) described

using magnetic symmetry and magCIF files.

Abbreviations: BNS, Belov-Neronova-Smirnova; irrep, irreducible representation; magCIF, extension of the crystallographic information file format to
magnetic structures; MSG, magnetic space group; MSSG, magnetic superspace group; OG, Opechowski-Guccione.
aThis is a summary of the most important free databases, computer tools, and programs for the analysis of magnetic structures that use (or are based on)
magnetic symmetry.

MSSG P11′(α,β,γ )0s; i.e., only the ubiquitous operation {1′ | 0, 0, 0, 1/2} is kept. This is the
superspace symmetry of an arbitrary mP2P3 modulation built up with all the irrep basis modes.

In simple cases such as the one above, the incommensurate spin configurations of higher sym-
metry are intuitively clear, and they are often tested in the refinements without appealing to
concrete symmetry arguments. But for more general cases, the enumeration for a given irrep of
distinct spin arrangements of higher symmetry is not obvious. The application of superspace sym-
metry allows the systematic exploration of these possible privileged configurations, distinguishing
them from simplifying features that are not symmetry dictated. For an atom in a general position,
the superspace symmetry of the phase does not restrict the form of its spin modulation, and it is
only the relation of its (arbitrary) modulation with those of the other symmetry-related atoms in
the average unit cell that is forced by the MSSG.

If the magnetic modulation is anharmonic or the magneto-structural coupling is strong enough
to induce a structural modulation, the knowledge of the superspace symmetry of the magnetic
phase is especially important, as it dictates the features of all induced effects. For 1k structures, the
presence of the superspace symmetry operation {1′ | 0, 0, 0, 1/2} in the MSSG ensures that the spin
modulation can only have odd harmonics, whereas any magnetically induced structural modulation
is restricted to even harmonics of the primary propagation vector. Hence, the existence of this
very simple superspace symmetry operation is the reason for this general property satisfied by
magnetically induced structural modulations. Higher harmonics of both the spin and the structural
modulation are subject to the same MSSG as the first harmonic, but this in general implies
transformation properties corresponding to irreps different from the one of the first harmonic. For
instance, for the case of RbFe(MoO4)2 under the trigonal MSSG P31′(1/3, 1/3, γ )ts, the presence
of the symmetry operation {3+ | 0, 0, 0, 1/3} not only enforces the helical spin arrangement
for the first harmonic but also restricts the third harmonic (actually all 3n harmonics) to be a
modulation with the spin component along c, i.e., an mP1 distortion. Similarly, any induced
structural distortion should comply with the MSSG, and this means specific restrictions on each
induced harmonic modulation. For instance, the Fe atoms can suffer a displacive modulation with
wave vector 2k, but it is restricted to the ab plane (82).

Conversely, if the paramagnetic phase is itself incommensurate owing to a structural modula-
tion, the symmetry of the paramagnetic phase is then given by a gray superspace group, and the
propagation vector of the magnetic ordering can be commensurate with the incommensurate wave
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vector of the structural modulation. The MSSG of the magnetic phase is then related directly to
the one of the paramagnetic phase (86).

5. CONCLUSIONS

Various computational tools developed during the past few years have made possible the rela-
tively simple, systematic, and comprehensive application of magnetic symmetry in the analysis
of magnetic structures, both commensurate and incommensurate. In the incommensurate case,
the symmetry constraints of these phases are efficiently described and handled using superspace
symmetry concepts with the introduction of MSSGs. A principle of maximal symmetry underlies
most of the observed magnetic structures and their traditional description using irreps. The new
computational instruments go beyond the traditional representation method and exploit the sym-
metry hierarchy among possible ordering models, such that a full characterization of the relevant
symmetry breaking becomes a straightforward process. We have outlined this novel scenario by
reviewing several examples and explaining the main concepts involved. We hope to have clearly
shown that the representation method and a symmetry-based description of magnetic structures
should be considered as complementary, and not alternative, approaches. The assignment of a
magnetic symmetry in the form of an MSG or MSSG is not equivalent to the assignment of an
irrep, except for 1-D irreps. Also, contrary to common belief, the assignment of an irrep, if multidi-
mensional, generally introduces fewer constraints than an MSG. In complex situations, the most
appropriate approach is a comprehensive application of both magnetic symmetry and irrep modes,
and this is facilitated by the computational tools reviewed here and summarized in Table 6.
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