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Abstract

Starting in 2006, surprisingly tiny genomes have been discovered from nu-
merous bacterial symbionts of insect hosts. Despite their size, each retains
some genes that enable provisioning of limiting nutrients or other capa-
bilities required by hosts. Genome sequence analyses show that genome
reduction is an ongoing process, resulting in a continuum of sizes, with the
smallest genome currently known at 112 kilobases. Genome reduction is typ-
ical in host-restricted symbionts and pathogens, but the tiniest genomes are
restricted to symbionts required by hosts and restricted to specialized host
cells, resulting from long coevolution with hosts. Genes are lost in all func-
tional categories, but core genes for central informational processes, includ-
ing genes encoding ribosomal proteins, are mostly retained, whereas genes
underlying production of cell envelope components are especially depleted.
Thus, these entities retain cell-like properties but are heavily dependent on
coadaptation of hosts, which continuously evolve to support the symbionts
upon which they depend.
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Minimal genome:
the minimal set of
genes required for
growth and replication
of a cell

Obligate symbionts:
symbionts able to live
only within hosts and
required for host
growth or
reproduction
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INTRODUCTION

The first bacterial genome sequences were published in the mid-1990s (18, 20). Soon after, the
concept of the minimal genome emerged, defined as the gene set required to sustain life, impos-
ing a lower boundary for the size of the genome (29, 39). Initially this concept appeared nicely
compatible with observations on naturally occurring genomes. Until 2006, the smallest reported
cellular genomes were those of the bacterium Mycoplasma genitalium, a host-restricted pathogen
[580 kilobases (kb), 470 protein-coding genes] (20), and three strains of Buchnera aphidicola, obli-
gate symbionts in insects (616–642 kb and 507–574 protein-coding genes) (Figure 1). A number
of other host-restricted pathogens and symbionts were known to have genomes smaller than

100 um

Figure 1
Bacteriocytes within the body of an embryo of the pea aphid, Acyrthosiphon pisum, as revealed by fluorescent
in situ hybridization with rRNA of Buchnera aphidicola. The bacteriocytes form an organ in the abdomen of
the aphid. Photo by G. Bennett, University of Texas.
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Mutualists: partners
of different species
that provide reciprocal
fitness benefits to one
another

EAA: essential amino
acid, one of 10 amino
acids required by
animals, due to their
lack of the
corresponding
biosynthetic pathways

1 megabase (Mb), with fewer than 1,000 protein-coding genes. Thus, for the first decade of full-
genome sequencing, genomes appeared to conform to a minimal gene set of about 500 genes that
consist of essential genes for cell growth and replication, plus genes linked to the specific ecology
of each organism, whether mutualistic symbiont or pathogen. Furthermore, phylogenetic studies,
largely based on ribosomal RNA, indicated that these small genome organisms, such as M. gen-
italium, evolved repeatedly from free-living bacteria with larger genomes (71, 81). These results
provided clear evidence that genome reduction is somehow facilitated in organisms restricted to
life in host cells or tissues and that it is usually a unidirectional change.

However, starting in 2006, a series of surprisingly smaller genomes have been reported, all for
intracellular bacterial symbionts that are maternally transmitted between hosts. The extreme case,
to date, is the genome of “Candidatus Nasuia deltocephalinicola,” one of two obligate symbionts
of the leafhopper Macrosteles quadrilineatus; this Nasuia strain possesses a mere 137 protein-coding
genes and a genome of only 112 kb (2) (Figure 2). Several other recently discovered tiny genomes
also have fewer than 200 genes, considerably less than the number once considered to be minimal
for cellular life (39, 54). Extreme genome reduction is also a feature of obligate pathogens, which
often possess highly reduced genomes (14, 20, 58), but pathogens have not been reported to
reach the extremes found in genomes of mutualistic symbionts that are maternally transmitted
and required for host development and reproduction.

The question of how these organisms can lose so many genes and still function is as yet
unanswered. One key to this question is the observation that the tiniest genomes evolve exclusively
in maternally inherited symbionts that are obligate mutualists and that have codiversified with hosts
over millions of years. Although reduced genomes tend to retain genes underlying universal cell
processes of replication, transcription, translation, and cell division (49), there are many enigmatic
exceptions, especially in the smallest genomes (2, 54). The discovery of these extreme genomes
challenges the premise of the minimal genome concept, that there is a lower limit of the genome
size of a cellular organism.

In this review, we summarize cases of extreme genome reduction in obligate bacterial mi-
crobes as well as recent studies aimed at illuminating the processes enabling such extensive gene
loss. We consider why symbionts and pathogens achieve the smallest-known genomes and what
lifestyle features result in truly tiny genomes rather than simply small genomes. There has been a
proliferation of newly named and sequenced tiny-genome symbionts since an earlier review (54),
and we provide an updated compilation of these (2, 28, 83, 88). A major mystery regarding these
organisms is how they can replicate and persist without key genes, and we compare the gene
repertoires across available small genomes. The ability to live with so few genes clearly depends
on coevolution by the hosts, which must provide support. We summarize results from several new
studies that provide initial clues about the kinds of host contributions that enable tiny genomes
to function and replicate.

SMALL, TINY, AND TINIEST: WHO ARE THEY?

To date, all genomes under 500 kb have been found in obligate symbionts of various insects,
a pattern that may in part reflect sampling intensity. Tiny genome symbionts are especially
concentrated in insects specialized to feed on plant saps, diets that are deficient in the essential
amino acids (EAAs) required by animals. As part of their shift to such plentiful, but unbalanced,
food resources, insects have evolved alliances with various bacterial lineages, mostly in Pro-
teobacteria and Bacteroidetes. Despite their tiny genomes, these bacteria retain genes underlying
pathways for biosynthesis of essential nutrients lacking in host diets, including EAAs (54, 86),
vitamins (1), carotenoids (87), and defensive compounds (63). Outside of sap-feeders (Insecta:
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Figure 2
Fluorescent in situ
hybridization of the
dual bacteriocytes of a
deltocephaline
leafhopper,
Nesophrosyne montium,
containing “Candidatus
Sulcia muelleri” (red )
and “Candidatus
Nasuia
deltocephalinicola”
( green). Strains of
these symbionts found
in Macrosteles
quadrilineatus possess
two of the tiniest
genomes known in
bacteria. Host insect
DNA is counterstained
with blue.
(a) Dissected ventral
view shows the
bacteriome (inset of
enlarged bacteriome).
(b) Ventral view
showing fluorescence
of symbiotic bacteria.
(c) Left lateral
bacteriome, showing
the segregation of
symbionts in their
respective bacteriocyte
types. (d,e) Symbionts
within individual
bacteriocytes. Photos
by G. Bennett,
University of Texas.
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Facultative
symbionts: symbionts
not required for
normal host
development but
usually able to live
only within hosts

Hemiptera), dramatic genome reduction is typical in maternally transmitted obligate symbionts
of other invertebrate hosts, including cockroaches (Insecta: Blattodea), clams (Mollusca: Bivalvia:
Vesicomyidae), blood-feeding flies (Insecta: Diptera: Glossina), tunicates (Urochordata), and
others (25, 80, 82). Symbionts that have codiversified with other host groups and that have
highly reduced genomes compared to related bacterial species include Endolissoclinum faulkneri
in tunicates, which provides polyketides linked to host defense (41, 42); Ruthia magnifica in clams
at deep ocean vents, which enables chemoautotrophic energy production (66); and Photodesmus
katoptron in flashlight fish (Anomalopidae), which provides luminescence believed to deter
predators (25). Tiny genomes may yet be found in symbionts of other invertebrates, or of plants
and fungi, and may often involve defensive or chemoautotrophic functions, rather than nutrition.

SMALL AND TINY GENOMES IN INSECT SYMBIONTS: A TO Z

Arsenophonus species and “Candidatus Riesia pediculicola” (Gammaproteobacteria) together make
up a clade of facultative and obligate symbionts of arthropods (70). The Riesia lineage consists of
maternally inherited obligate symbionts of lice (Anoplura) (26, 70) with highly reduced genomes
(574 kb), but they retain capability for biosynthesis of pantothenic acid, needed to supplement the
hosts’ blood diet (35). Part of this biosynthetic pathway is plasmid encoded, possibly as part of a
mechanism to regulate production.

“Candidatus Baumannia cicadellinicola” (Gammaproteobacteria) is the obligate symbiont of the
xylem-feeding sharpshooters (Cicadellinae) (103), with which B. cicadellinicola and “Candidatus Sul-
cia muelleri” have both codiversified (92). It replaced N. deltocephalinicola found in other leafhopper
groups, possibly enabling the switch to xylem from phloem feeding. Although B. cicadellinicola has
a larger genome (686 kb) encoding pathways for many additional vitamins and cofactors, it has
largely evolved to fill the same essential metabolic role as N. deltocephalinicola, provisioning histidine
and methionine to complement products of coresident S. muelleri.

Blattabacterium species (Bacteroidetes) are the obligate symbionts of cockroaches, in which they
play a role in recycling waste nitrogen from urea and ammonia into amino acids, thereby extending
the hosts’ nitrogen-poor diets (47, 84). Blattabacterium species live in specialized fat-body cells,
are strictly maternally transmitted, and have codiversified with cockroaches for >130 million
years (44). Genomes range from 590 to 636 kb, with size variation reflecting loss of some amino
acid biosynthetic pathways in the symbionts of highly social lineages, such as the wood roach
(Cryptocercus punctulatus) and the primitive termite Mastotermes darwiniensis (27, 34, 65, 82, 84, 95).
In these species, gut microbes, which are dependably transmitted through behavioral interactions,
assume roles in nitrogen metabolism.

“Candidatus Blochmannia” species (Gammaproteobacteria) are maternally transmitted obligate
symbionts of carpenter ants (Camponotus). Genomes range from 705 to 791 kb and encode pathways
for EAA biosynthesis and nitrogen recycling.

Buchnera aphidicola (Gammaproteobacteria) of the pea aphid, Acyrthosiphon pisum, (Figure 1) is the
best-studied model for an insect obligate symbiont association, and these studies are facilitated
by the complete genome sequence of the host insect (30). Sequenced Buchnera genomes range
from 416 to 642 kb. The smallest, in the aphid Cinara cedri, has lost some pathways for EAA
biosynthesis, which are complemented by pathways of an additional symbiont from the genus
Serratia (43). Buchnera genomes do not show the extremes of genome reduction but nonetheless
have lost some genes considered essential, such as those underlying phospholipid biosynthesis.

“Candidatus Carsonella ruddii” (Gammaproteobacteria), the obligate symbiont of psyllids (Psyl-
loidea), was the first example of an extremely tiny genome, with 160 kb and ∼182 genes for C. ruddii
PV of the host species Pachypsylla venusta (64). Subsequent genome sequences for five other C. ruddii
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Bacteriocyte:
specialized host cell
adapted to harbor
symbionts

species revealed that gene loss is ongoing and often involves genes underlying biosynthesis of EAAs
needed by hosts (88).

“Candidatus Hodgkinia cicadicola” (Alphaproteobacteria), a symbiont of cicadas (Cicadidae),
is represented by a single published genome of only 143 kb, one of the tiniest reported (50).
H. cicadicola retains genes underlying biosynthesis of methionine and histidine, and its capabilities
are complemented by the coresident symbiont, S. muelleri, which can produce the other eight
EAAs. Remarkably, H. cicadicola retains genes encoding steps in the pathway for biosynthesis of
cobalamin, which coincides with its use of cobalamin-dependent methionine synthase (MetH),
rather than cobalamin-independent methionine synthase (MetE), as encoded in other insect sym-
biont genomes. H. cicadicola lacks genes for some tRNA synthetases and tRNAs corresponding to
several amino acids and has a codon reassignment of TGA from Stop to Trp (50).

“Candidatus Ishikawaella capsulatus” (Gammaproteobacteria) is a maternally transmitted gut sym-
biont of some stink bugs (Plataspidae) and has a reduced genome encoding pathways for EAAs
and vitamins, similar to bacteriocyte associates such as Buchnera species (67). I. capsulatus shows
that genome reduction does not require intracellularity.

“Candidatus Moranella endobia” (Gammaproteobacteria), a rare case of a bacterium living inside
another bacterium, dwells within “Candidatus Tremblaya princeps” of some mealybugs (Pseudo-
coccidae) (28, 55). The genome, at 538 kb and about 450 genes, is highly reduced but nonetheless
much larger than that of T. princeps. More than any other known case, these partners represent a
fusion of two bacterial cells into a single new cellular entity, but they are also highly dependent
on contributions from the host insect.

N. deltocephalinicola, the partner of S. muelleri in leafhoppers of the subfamily Deltocephalinae
(Figure 2), boasts the tiniest genome yet reported, at 112 kb (2). As for other partners of S. muelleri,
N. deltocephalinicola encodes genes for methionine and histidine production. N. deltocephalinicola
and “Candidatus Zinderia insecticola” form a clade (referred to as BetaSymb) hypothesized to
have descended from a symbiont ancestor living within an ancestor of spittlebugs (Cercopoidea:
Philaenini) and leafhoppers (Cicadellidae) at least 250 mya (36). Both N. deltocephalinicola and
Z. insecticola share an alternative genetic code similar to that of H. cicadicola.

“Candidatus Portiera aleyrodidarum” (Gammaproteobacteria), the obligate maternally transmit-
ted symbiont of whiteflies (Aleyrodoidea), is the sister lineage to C. ruddii of psyllids (Psyllidae)
(89), possibly because of colonization of a shared ancestor of these insects. Though P. aleyrodi-
darum has a tiny genome, 281 kb and 358 kb for the two species studied to date (89), it has genes for
carotenoid biosynthesis and is the likely source for carotenoids known to occur in its host insects
(87). P. aleyrodidarum of the pest species Bemisia tabaci has undergone genome rearrangement and
expansion, the only such case known from long-term obligate symbionts.

“Candidatus Profftella armatura” (Betaproteobacteria), a symbiont of the Asian citrus psyllid
Diaphorina citri is coresident with the obligate nutritional symbiont C. ruddii. P. armatura has
a genome of only 465 kb, which resembles the size of genomes of nutritional symbionts such as
B. aphidicola. However, it retains genes only for riboflavin and biotin production, whereas amino
acid pathways are encoded by coresident C. ruddii. Instead, the major function appears to be the
production of a defensive toxin, a polyketide encoded by a 70-kb locus that makes up 15% of the
genome (63).

S. muelleri is an obligate symbiont in a large clade of sap-feeding insects (Hemiptera: Auchen-
orrhyncha). S. muelleri has codiversified with hosts following an ancient colonization of one of the
earliest groups of insects to feed on vascular plants more than 270 mya (62, 92). In each host group,
S. muelleri pairs with a partner symbiont, which has been lost and replaced in some host lineages
(2, 36, 92, 97). S. muelleri and its partner together provision the 10 EAAs, and partner symbionts
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show little or no overlap in genes underlying production of particular amino acids (reviewed in 2,
54). S. muelleri genomes are 190–285 kb and are perfectly syntenic except for ongoing gene losses.

T. princeps, the obligate symbionts of phloem-feeding mealybugs, can occur singly or paired
with a companion, usually a species from the Enterobacteriaceae (28). T. princeps PCIT shows the
most complex integration of two bacterial species described to date: It contains its own intra-
cellular bacterial symbiont, M. endobia (98), an association that coincides with the unparalleled
loss of many central informational genes, including all tRNA synthetases, resulting in the most
degraded set of informational genes yet reported (28, 55). In contrast, T. phenacola PAVE, from
Phenacoccus avenae, lacks a symbiont partner and retains a larger gene set, encoding a full set of
tRNA synthetases and amino acid biosynthetic pathways implicated in host nutrition (28).

“Candidatus Uzinura diaspidicola” (Bacteroidetes) is the obligate symbiont of armored-scale
insects and, despite a tiny genome, retains genes for nitrogen recycling and EAA biosynthesis (83).

Wigglesworthia species (Gammaproteobacteria) are the maternally transmitted, obligate sym-
bionts of blood-feeding tsetse flies (Glossinidia), including the vectors of trypanosome agents of
African sleeping sickness (91). Blood provides needed amino acids but lacks some B vitamins, and
these are provisioned by Wigglesworthia species, as inferred from its genome sequence (1). The
sequenced genomes of symbionts from two host species are highly reduced (698–720 kb) but re-
tain more genes for cell envelope production, possibly because Wigglesworthia species are directly
exposed to host cytoplasm with no barrier of a host-derived membrane (1, 80).

Wolbachia (Alphaproteobacteria) includes facultative symbionts or pathogens infecting over 40%
of terrestrial arthropod species (105), in which it lowers survivorship, manipulates reproduction, or
protects against viruses, depending on strain and context (e.g., 6, 101). One lineage of Wolbachia
(8) contains obligate mutualistic symbionts of filarial parasites of animals (17) and plants (22).
Genomes of this lineage are 200–300 kb smaller than genomes of the facultative symbionts in
arthropods (Figure 3). The strain in the filarial nematode Brugia malayi (wBm) appears to provision
hosts with vitamins and cofactors (19, 21). Gene expression studies suggest that the strain with
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Figure 3
Genome size ranges in closely related clusters of symbiotic bacteria and relatives. Obligate symbionts are shown in orange, facultative
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Bacteriomes

Host insect

Bacteriocyte Symbiont cell

Figure 4
Diagram showing location of obligate symbionts within bacteriocytes in an insect. Individual symbiont cells
are typically surrounded by a host-derived membrane within the bacteriocyte cytosol. Bacteriocytes are often
clustered into a bacteriome, usually located in the insect abdomen (See Figures 1 and 2).

Horizontal
transmission:
acquisition of
symbionts from
individuals other than
parents

Maternal
transmission:
transmission of
symbionts to progeny
by mothers

Pseudogene:
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the smaller genome (wOo) provides ATP to hosts and modulates the mammalian response to
nematode infection (9). The mutualistic lifestyle of wOo may be yielding a more stable genome,
as it has been stripped of most insertion sequences (IS) found in other Wolbachia genomes.

Z. insecticola (Betaproteobacteria) is an obligate maternally transmitted symbiont of spittlebugs
and provisions histidine, methionine, and tryptophan to hosts, with the other seven EAAs provi-
sioned by its partner Sulcia. Z. insecticola has one of the smallest known genomes (208 kb) (53) and
is the sister group to N. deltocephalinicola, the Sulcia partner in some leafhoppers (2, 36).

THE ROAD TO A TINY GENOME

The tiniest genomes are all found in symbionts that are strictly maternally transmitted, restricted
to living in bacteriocytes of hosts (Figures 1, 2, 4), and obligate for normal host development.
Symbionts that undergo occasional horizontal transmission such as Arsenophonus species, “Candi-
datus Hamiltonella defensa,” Serratia symbiotica (all Enterobacteriaceae), and Wolbachia species, are
usually facultative for their hosts and typically have reduced genomes compared to nonsymbiotic
relatives (Figure 3). Obligate symbiosis and strict maternal transmission lead to even more
extreme reduction, with intermediate stages often showing proliferation of pseudogenes and
mobile elements (54). For example, the nonsymbiotic species Serratia proteamaculans and Serratia
marcescens have genomes of ∼5.5 Mb, whereas S. symbiotica genomes are ∼1.8 and ∼2.8 Mb (5,
43). Furthermore, the smaller S. symbiotica genome is found in a lineage that has become essential
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Purifying selection:
selection acting against
mutations that lower
function or inactivate a
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genomic region (same
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for hosts, whereas the larger one is facultative for hosts (43). Similarly, genomes of Wolbachia,
which are facultative symbionts or pathogens of many arthropods, are generally reduced, at
1.3–1.5 Mb, but a lineage that has become essential for development of filarial nematode hosts
(8) has smaller genomes (1.0–1.1 Mb) (9, 19). The cluster corresponding to the symbiont genera
Arsenophonus, Riesia, and Aschnera includes facultative or obligate symbionts in various arthropods
(70). In wasps of the genus Nasonia, Arsenophonus nasoniae is facultative or pathogenic and has a
genome >3.7 Mb (10), whereas two lineages in the same cluster, Riesia pediculicola and Aschnera
chinzeii, have become obligate symbionts of body lice and bat flies (Diptera: Nycteribiidae),
respectively, and have much smaller genomes (0.6 Mb and ∼0.8 Mb, respectively) (35).

The genus Sodalis is another example of a widespread clade represented by sequenced genomes
of closely related strains that differ in symbiotic status and genome size (summary in 38, 91). A
nonsymbiotic strain isolated from a human wound infection (Sodalis HS) has a genome typical
for free-living Enterobacteriaceae species, at 5.2 Mb, with few pseudogenes or repetitive elements
(7). Sodalis glossinidius, a cultivable facultative symbiont of blood-feeding tsetse flies, exemplifies a
genome undergoing gene loss and pseudogene formation following a recent switch to a symbiotic
lifestyle (94). An obligate symbiont in this group that also appears to have originated relatively
recently, SOPE of grain weevils (genus Sitophilus), has a somewhat reduced genome (4.5 Mb) and
more dramatic gene loss due to abundant pseudogenes and proliferation of IS elements. Finally,
a Sodalis strain that is an obligate symbiont in one group of spittlebugs has a drastically smaller
genome, at ∼1.4 Mb, and fewer intact genes (38).

Host restriction, in pathogens or mutualists, results in other distinctive genomic changes,
including elevated rates of sequence evolution, high rates of amino acid replacement in protein
sequences, and biased nucleotide base composition. In some extreme cases, the genetic code of
these symbionts has been altered (2, 51, 53). These changes, along with genome reduction, are
primarily driven by lack of sufficient purifying selection to maintain genes, resulting in mutations
that lower gene functionality, followed by deletion of the corresponding DNA (59, 61, 99). As
a result, lineages that have become host restricted in the recent evolutionary past possess many
pseudogenes and inert DNA, whereas long-established symbionts display the tight gene packing
characteristic of most bacteria.

Thus, we can posit two phases of genome reduction, corresponding to two general causes. First,
organisms that become host restricted experience narrow habitat ranges, causing some genes to be
superfluous, along with small populations and clonality, resulting in ineffective selection for the
maintenance of useful but nonessential genes in many functional categories (61, 99). Some genes
also may be actively removed by selection (40). The net result is gene erosion and deletion of DNA
corresponding to nonessential genes. Because these genes make up the bulk of the genome of a
typical bacterium, this can result in massive gene loss. These processes apply to both symbionts
and pathogens, explaining why they display so many genomic similarities. But strikingly, the tiniest
genomes are limited to symbionts required by hosts and inherited strictly vertically for millions of
years, implying that this lifestyle facilitates even greater reduction. The second phase applies only
if hosts benefit from symbiont presence and functionality and are thus selected to prop up the sym-
biont even as the latter is losing capabilities. The evolution of host support enables further slippage
in symbiont capabilities due to gene erosion and loss, leading to ever-increasing host control and
metabolic contributions and ever-decreasing autonomy of the symbiont. This process explains
why bacteria beneficial to hosts may attain extreme genome reduction beyond that found in host-
restricted pathogens or facultative symbionts. Mitochondria and plastids represent extreme cases
in which gene loss is so extreme that they are not usually considered to be cellular entities, although
clearly they once were bacteria. In the case of tiny genomes of insect symbionts, a distinct cellular
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nature is still evident, as they retain most genes required for transcription, translation, and repli-
cation (49, 54), with the exception of some Tremblaya species (see below, What Genes Are Lost?).

EVER TINIER: ONGOING GENE LOSS IN REDUCED GENOMES

The initial reported cases of obligate symbiosis were represented by a single sequenced genome
for each symbiont (usually corresponding to a particular clade of insect hosts), so it was difficult to
assess whether tiny genomes attain a final, static state or whether reduction is ongoing. Thanks to
next-generation sequencing technologies, there are now numerous instances in which full genomes
have been sequenced and compared for multiple representatives of the same obligate symbiont
group (Figure 3). Currently, these include two or more representatives for S. muelleri (2, 54),
C. ruddii (88), T. princeps (28, 46), N. deltocephalinicola + Z. insecticola (2, 53), B. aphidicola (12, 32,
74), Wigglesworthia species (80), Blattabacterium species (65, 73, 82, 96), and P. aleyrodidarum (33,
89). In each case, representatives differ in the extent of genome reduction, and reconstructions
of genome evolution using a phylogenetic framework reveal ongoing gene loss in individual lin-
eages. For example, sequenced S. muelleri genomes range from 190 to 285 kb and include 190
to 246 protein-coding genes, and C. ruddii genomes range from 157 to 174 kb and include 182
to 207 protein-coding genes, with differences due to differential loss of particular genes. In each
case, except for P. aleyrodidarum, gene order is identical or nearly identical across genomes, ex-
cept for the deletions (2, 28, 73, 80, 82, 88, 89). Thus, tiny genomes show ongoing gene loss,
no gene uptake, and a complete or almost complete absence of gene rearrangements. Although
genome architecture is static, sequence divergence of orthologous genes is high, reflecting both
the age of these clades (over 270 million years for S. muelleri and the Betaproteobacteria clade
represented by N. deltocephalinicola + Z. insecticola) and rapid sequence evolution (e.g., 2, 88).
Multiple genomes are also available for the less extreme genomes of B. aphidicola, Blattabacterium
species, Blochmannia species, and Wigglesworthia species, and these consistently are character-
ized by lack of mobile elements, gene order stability, lack of gene uptake, and ongoing loss of
individual genes and pathways (reviewed in 54). P. aleyrodidarum BT has low gene density, at
358 kb and 256 coding genes, and displays many genomic rearrangements and repetitive ele-
ments and thus is an exception to the genomic stability of other obligate maternally transmitted
symbionts (89).

In some cases, the ongoing gene loss in individual genomes involves elimination of a major
function. For example, the smallest reported S. muelleri genome, that of S. muelleri ALF from
the leafhopper M. quadrilineatus, has lost nearly all genes involved in oxidative phosphorylation,
including those encoding the complete cytochrome C oxidase complex, NADH dehydrogenase,
menaquinone and ubiquinone biosynthesis proteins, and the molybdopterin oxioreductase com-
plex. As a result, it is not clear how ATP synthesis can occur (2). These genes are present in S.
muelleri of other host species, suggesting a major metabolic shift in this particular lineage.

WHAT GENES ARE LOST?

Tiny genomes have lost genes in all functional categories but tend to retain core genes underlying
the central informational processes of DNA replication, transcription, and translation, indicating
some self-reliance (49, 54). Despite this trend, losses of seemingly essential genes have occurred,
raising the question of how replication and growth are possible. It has been suggested that sym-
bionts with tiny genomes be relegated to a novel category and not be considered cells (79, 93).
However, there is no clear gap between reduced-genome symbionts with gene repertoires similar
to those of pathogens and tiny-genome symbionts: A continuum of genome sizes is now apparent
(Figure 3). Also, this categorization does not solve the mystery of how tiny-genome symbionts
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replicate and persist. Certainly, coadaptation by the host is key, but the nature of host support is
not yet evident.

One caveat in a discussion of missing genes is that sometimes a gene homolog may be present but
not recognized, because of extreme sequence divergence and base compositional bias. However,
such cases are likely very few, as there are few orphan genes in these tiny genomes that could be
candidates for the missing genes.

Central Informational Processes

Whereas dnaE, which underlies DNA polymerization, is retained by all of the tiny genomes, genes
for other subunits of the DNA polymerase holoenzyme (e.g., holA, dnaQ, dnaN, dnaX) are often
missing. DNA repair genes are one of the most depleted functional categories, with no repair genes
in the tiniest genomes (Figure 5). Genes encoding subunits of RNA polymerase are also retained.
Thus, even the smallest genomes maintain the central catalytic machinery for replication and
transcription. Patterns regarding genes underlying translation are more mixed. Symbionts with
small and tiny genomes usually encode a single copy of rRNA genes and retain a minimal set of
tRNAs for using the full genetic code (11, 24). Additionally, they retain genes for most ribosomal
proteins, although sometimes a gene for a particular ribosomal protein, usually a smaller one
located on the exterior of the ribosome, such as RpmC, cannot be detected (Figure 6). These
observations indicate that symbionts are responsible for producing their own ribosomes, which
could be a criterion for considering them cellular entities. But, whereas most reduced-genome
symbionts retain a set of tRNA synthetases corresponding to the full set of protein amino acids,
the tiniest genomes appear to lack tRNA synthetases for particular amino acids (52, 64) (Figure 5).
Possibly, existing tRNA synthetases are able to catabolize multiple aminoacylation reactions, as
has been demonstrated in other systems (e.g., 104).

Biosynthesis of the Cellular Envelope

One of the most significant losses in obligate symbionts involves genes responsible for producing
components of the bacterial cell envelope (54). Loss of ability to synthesize phospholipids or
lipopolysaccharides was noted for the first sequenced symbiont genome, the moderately reduced
genome of B. aphidicola of the pea aphid (86). In the smallest genomes, those of N. deltocephalinicola,
Z. insecticola, T. princeps, H. cicadicola, and C. ruddii, genes for making peptidoglycan, phospholipids,
lipopolysaccharide, and other components are almost completely lost. Transporters are also absent
or few, with most substrate-specific transporter genes eliminated.

Biosynthetic Abilities

Capabilities to synthesize small molecules are drastically curtailed in all highly reduced genomes.
For example, many obligate symbionts cannot synthesize purines and pyrimidines, many amino
acids, and B vitamins, and similar losses are observed in host-restricted pathogens such as the
mycoplasmas and phytoplasmas (72), reflecting dependence on the host in both cases. But obligate
symbionts differ strikingly from pathogens in retaining genes that enable biosynthesis of nutrients
needed by hosts. Repeatedly, obligate-symbiont genomes have been found to retain capabilities
for nutrient production that are complementary with those of the host, and sometimes with those
of coresident symbionts (54) (see individual symbiont descriptions above for details).

Energy Metabolism

Some of the most striking gene losses in reduced symbiont and pathogen genomes are those
underlying pathways for oxidative phosphorylation and ATP production (Figure 7). In part, these
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Figure 5
Presence and absence in obligate insect endosymbionts of genes underlying DNA replication and repair, transcription and translation,
and tRNA synthesis. Genomes are ordered by size, from larger to smaller (see Figure 4); presence is indicated by a filled block and
absence by an empty block. Half-filled blocks indicate cases in which sequenced genomes within the group differ in gene presence.

losses may relate to massive changes in membranes, in view of the missing membrane components
in many small genomes. In some cases, symbionts may be ATP parasites. At the least, these losses
indicate a lack of flexibility in energy acquisition, due to the constant host environment, which
must directly provide some necessary metabolites to symbionts.
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SUSTAINING SYMBIONTS WITH DEGENERATE GENOMES

How do these small genomes function despite losing genes that would be essential in most
bacteria? Although this question is far from answered, studies are beginning to give clues and
suggest the importance of coadaptations of both symbiont and host genes. Bacterial genes
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might take on novel roles and multitask, or novel protein interactions might stabilize complexes,
including the ribosome, and enable loss of other genes. Regulation of gene expression might
be shifted from transcriptional regulation to posttranscriptional regulation via interactions of
transcripts with small RNAs, as suggested by conserved motifs in Buchnera genomes (12). Genes
underlying components of the cellular envelope are especially depleted, and host contributions
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seem most likely in this arena. Here we briefly summarize recent experiments suggesting
mechanisms for compensating losses.

Protein Stability

Genes involved in protein folding and stability are among those most consistently retained by
reduced genomes: For example, groL and dnaK are among the few genes retained by all small
genomes (Figure 6). Moreover, these genes are very highly expressed based on transcriptomic
and proteomic studies in several symbiont systems (9, 15, 51, 54, 100). The elevated production
of heat-shock proteins, which refold and recycle degraded cellular proteins, can compensate for
protein instability due to mutation accumulation (60, 99). Nonetheless, obligate insect symbionts
are heat sensitive and can limit the heat tolerances of hosts (4, 13, 16).

Adaptations of Host Bacteriocytes

Key elements in host support for small-genome symbionts are adaptations of the bacteriocytes,
which are often arranged into a larger organ called the bacteriome. Within bacteriocytes, sym-
bionts are usually enclosed in a host-derived membrane, forming the symbiosome (Figure 4).
Studies in the aphid-Buchnera system show that bacteriocytes display distinctive gene expression
during early embryonic development (3) and participate in specific mechanisms for transmission to
progeny (37). Bacteriocytes have evolved independently in each obligate symbiosis, from different
cell types, and acquisition of a novel symbiont likely requires the evolution of a corresponding
new bacteriocyte type (36).

Exploration of the bacteriocyte-symbiont interface is in the early stages. Studies of the
gene expression patterns and proteomics of bacteriocytes in the aphid-Buchnera system have
revealed that genes involved in amino acid metabolism and transport that complement the
enzymatic machinery of B. aphidicola are highly upregulated in bacteriocytes as compared to
other host tissues (23, 48, 75, 76). Similar complementarity of symbiont amino acid biosyn-
thetic pathways has been found in studies of bacteriocyte transcriptomes in both psyllids and
mealybugs (28, 90). One problem posed by nutritional symbioses is how host-symbiont ex-
change of products and substrates is regulated; this issue is especially perplexing, as symbionts
have lost most regulatory genes for the biosynthetic pathways used to produce nutrients for
hosts. In B. aphidicola, this regulation may be focused at the symbiosomal membrane, as sug-
gested by the finding that the transporter for glutamine, the major substrate for amino acid
biosynthesis, is negatively regulated by arginine, one of the EAAs donated by B. aphidicola
(77).

Another issue is how hosts regulate symbiont numbers and confine them to bacteriocytes. In
the aphid-Buchnera system, a class of novel aphid proteins that contain signal peptides is specifically
expressed in bacteriocytes, potentially playing a role in symbiont control (85). In the symbiotic
Wolbachia species of parasitic nematodes, symbiont surface proteins have specific interactions with
host cytoskeleton and glycolytic enzymes, suggesting a mechanism for controlling the growth
and distribution within hosts (57). And in the obligate symbionts (SOPE, a member of the So-
dalis clade) living in bacteriocytes of grain weevils, an antimicrobial peptide, coleoptericin-A,
inhibits cell division of symbionts and is required to prevent symbiont invasion of other tis-
sues (45). In carpenter ants, pattern recognition receptors, overexpressed in bacteriocytes in the
midgut wall, are hypothesized to play a role in regulating Blochmannia species (78). The broad pic-
ture from these studies is that symbiont-dependent hosts have acquired a variety of mechanisms
to communicate with and control their symbionts and that lysosomal systems are commonly
involved.
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Horizontal Transfer to Host Genomes, and Control of Obligate Symbionts

One remarkable finding from studies aimed at detecting host genes critical to bacteriocyte function
is the discovery that some of these genes are themselves horizontally transferred into the host
genome from bacterial donors. The sequencing of the pea aphid genome enabled a search for
genes originating from bacteria, initially motivated by the hypothesis that some former Buchnera
genes would be transferred to the aphid nuclear genome. In fact, the aphid genome acquired a
number of microbial genes, and some are highly expressed specifically in the bacteriocytes (68,
69). However, the donor lineages are close to Wolbachia and Rickettsia lineages, and not Buchnera
lineages. Other studies revealed very similar situations in psyllids and mealybugs, in which insect
genes originating from bacteria are highly expressed in bacteriocytes (28, 55, 90). Some transferred
genes encode lysozymes and might play a role in regulation of symbiont populations (68); others
are related to biosynthesis of cell envelope components, including peptidoglycan, and likely play
a role in establishing the envelope surrounding symbionts (28). Donor bacteria include a number
of groups but mostly correspond to symbionts that are not currently present in the host species,
indicating that ancestral symbiotic associations have served as sources for genes that play a role in
governing the current obligate symbionts.

Finally, gene transfer from obligate symbiotic Wolbachia species to filarial nematode hosts has
also occurred, with several instances documented in which transferred genes appear active (31, 56,
102). In one case, a Wolbachia species donated a gene encoding the final step in the heme pathway,
now an essential gene in the nematode Brugia malayi, agent of river blindness; this gene has been
suggested as a target for treatment of filariasis (102).

CONCLUSIONS AND PERSPECTIVES

The tiniest genomes are found in ancient symbioses in which symbionts benefit hosts and hosts
have in turn evolved to support and control symbionts. The evolution of tiny genomes is a con-
tinuous process, and all stages are represented among sequenced genomes. Recent experiments
suggest that host adaptations are critical in enabling extreme gene loss. Surprisingly, some of
these host adaptations appear to involve acquisition of novel host genes via horizontal gene trans-
fer largely from other bacteria, including ancestral symbiont associations. Adaptations within
symbiont genomes themselves are also important. Better understanding of these systems will re-
veal how genomes from divergent lineages, such as insect and bacteria, can intermingle and fuse
to yield a functional metaorganism with a mosaic, compartmentalized genome. These instances
can also potentially give some insight into processes hypothesized to underlie the origin of the
eukaryotic cell.

SUMMARY POINTS

1. Very tiny genomes, less than 500 kb, have been discovered in symbionts of numerous
animals and occur in diverse lineages of Proteobacteria and Bacteroidetes.

2. Tiny genomes tend to retain genes for central cellular processes, but some seemingly
essential genes are missing, presenting a mystery as to how they replicate.

3. Reduced genomes occur in many host-restricted symbionts and pathogens, but tiny
genomes occur only in obligate symbionts that produce molecules needed by hosts,
live in specialized host cells, and diversify jointly with hosts for millions of years.
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4. Obligate symbionts present a continuum of genome sizes, and even the tiniest genomes
appear to continue to eliminate genes in some lineages.

5. Whereas reduced genomes can result from relaxed selection and genetic drift, tiny
genomes appear to require coadaptation by hosts to replace or support symbiont
functions.

6. Multiple symbionts in the same host can evolve support systems for one another, as
evidenced in the case of T. princeps and M. endobia.

7. A surprising mechanism for host adaptations to support symbionts appears to involve
host acquisition of genes from bacterial sources.

FUTURE ISSUES

1. Replacement of functions lost from symbiont genomes likely involves coadaptation at
both host and symbiont loci, and future experiments may reveal which kinds of functions
are more likely to be replaced in which way.

2. Focus on what molecules are exchanged between host and symbiont compartments would
illuminate how hosts support symbionts: The import of host-derived molecules into
symbiont cells, which is required for many potential mechanisms, is so far undocumented.

3. Most protein-coding genes underlying regulatory mechanisms are lost, and more atten-
tion to other means of regulation, especially small RNAs, might reveal how these tiny
genomes function.
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