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Abstract

Trial-to-trial variability in the execution of movements and motor skills
is ubiquitous and widely considered to be the unwanted consequence of a
noisy nervous system. However, recent studies have suggested that motor
variability may also be a feature of how sensorimotor systems operate and
learn. This view, rooted in reinforcement learning theory, equates motor
variability with purposeful exploration of motor space that, when coupled
with reinforcement, can drive motor learning. Here we review studies that
explore the relationship between motor variability and motor learning in
both humans and animal models. We discuss neural circuit mechanisms that
underlie the generation and regulation of motor variability and consider the
implications that this work has for our understanding of motor learning.
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INTRODUCTION

Improving performance, whether on the tennis court or at the piano, often means reducing the
variability of our actions. Yet, no matter how hard we practice, generating identical movements on
successive attempts is virtually impossible. But why is it so hard to tame performance variability?
One reason is that our actions are generated by an inherently noisy nervous system (Faisal et al.
2008, Renart & Machens 2014, Stein et al. 2005). This noise results from stochastic events at the
level of ion channels (White et al. 2000), synapses (Calvin & Stevens 1968), and neurons (Mainen
& Sejnowski 1995) and further from instabilities in the dynamics of neural networks (Babloyantz
et al. 1985, Van Vreeswijk & Sompolinsky 1996). These processes combine to add uncertainty
and randomness to how the brain operates and generates movements. It is widely believed that
motor control is optimized for current performance and that variability that interferes with this
goal should be minimized or countered (Harris & Wolpert 1998, Todorov & Jordan 2002).

However, a complementary view of motor variability suggests that it may be a feature of how
sensorimotor circuits operate and learn (Athalye et al. 2017, Herzfeld & Shadmehr 2014, Tumer
& Brainard 2007, Wu et al. 2014). This view is best appreciated from the perspective of the novice
who has to acquire a new task and for whom variability in motor output can be construed as a
means of exploring motor space (Figure 1). Through a process of trial and error, such exploration
could, in line with reinforcement learning theory (Kaelbling et al. 1996, Sutton & Barto 1998),
steer the motor system toward new control policies and patterns of motor activity that improve
performance and reduce costs (Shadmehr et al. 2016). In this view, motor variability is to skill
learning what genetic variation is to evolution: an essential component of a process that, through
selection by consequence, shapes adaptive behaviors (Skinner 1981).

This review is not about whether motor variability is good, bad, a feature, or a bug, nor are
we implying that there is a dichotomy to be resolved. Indeed, there is little doubt that in many
situations and for many facets of motor control, uncertainty and noise in neural function, and the
motor variability it gives rise to, is undesirable. But while this perspective has been treated and
discussed extensively in the literature (Braun et al. 2009, Franklin et al. 2012, Harris & Wolpert
1998, Izawa & Shadmehr 2008, Izawa et al. 2008, Kording & Wolpert 2004, Newell 1993,
Todorov 2004, Todorov & Jordan 2002), less attention has been given to how motor variability
could augment processes underlying motor learning (Figure 1). To what extent, and under what
circumstances, can motor variability be harnessed to improve future performance? Does the
nervous system regulate and shape motor variability to promote learning, and if so, how does it
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Figure 1
Illustration of how variability can be conducive to motor learning. (a) Each task is associated with a reward landscape in action space.
(b) When the reward landscape is not known, trial-and-error reinforcement learning offers a powerful strategy for finding appropriate
solutions. This requires initial exploration of action space coupled with a process that reinforces rewarded actions. Variability is initially
high, but as reinforcement learning proceeds (early to late), variability is reduced as the motor system hones in on action variants
associated with high reward. Note that early in learning, there may be motor biases unrelated to the task-specific reward landscape.

do it? Here we review recent studies related to these questions, discuss current views of motor
variability, and identify research directions that may further advance our understanding of how
motor variability contributes to learning.

NEURAL SOURCES OF MOTOR VARIABILITY

Movements are the result of tightly choreographed patterns of muscle activity generated by
a network of hierarchically organized motor controllers (Lemon 2008). In principle, motor
variability can arise at any level of the motor pathway, from variation in movement planning by
central circuits to noise in force production by muscles (Figure 2). The motor system could take
advantage of variability as long as successful variants can be reinforced and reproduced. However,
little is known about whether and how variability at various levels of motor planning and control
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Figure 2
Sources of motor variability. Motor variability can arise at all levels of the motor systems. Here we
distinguish variability in central planning and control circuits, referred to as planning noise, from variability
in the motor periphery, referred to as execution noise. Variability conducive to learning is more likely to
originate in central circuits, which receive performance-related feedback, as opposed to peripheral circuits
where variability may be more difficult to reinforce and reproduce.

is harnessed to drive improvements in behavior. Below, we review possible sources of motor
variability and discuss their relevance to motor learning.

Broadly speaking, variability in sensorimotor systems can originate at both cellular and network
levels (Faisal et al. 2008, Renart & Machens 2014). At the cellular level, noise comes from stochas-
tic biophysical and chemical events that underlie processes such as spike initiation (Schneidman
et al. 1998, van Rossum et al. 2003, White et al. 2000) and propagation (Faisal & Laughlin 2007,
Horikawa 1991), synaptic transmission (Calvin & Stevens 1968, Katz & Miledi 1970), and mus-
cle activation (Clamann 1969, Hamilton et al. 2004, Jones et al. 2002). Different neural network
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architectures can then either amplify or dampen such noise (Faisal et al. 2008). For instance, insta-
bilities in recurrent network dynamics can magnify variability caused by noisy neurons (Babloyantz
et al. 1985, Litwin-Kumar & Doiron 2012, London et al. 2010, Vogels et al. 2005), whereas pool-
ing across them can enhance correlated signals and reduce the effects of noise (Bruno & Sakmann
2006, Diesmann et al. 1999).

Variability in the motor system (Figure 2) has perhaps been characterized most extensively at
the motor periphery. Studies have shown signal-dependent noise in force production (i.e., trial-to-
trial fluctuations whose standard deviation scales linearly with mean force) reflects a fundamental
property of muscle function (Clamann 1969, Hamilton et al. 2004, Jones et al. 2002, van Beers et al.
2004). Because of its uncontrollable nature, such peripherally derived variability, often referred to
as execution noise (van Beers et al. 2004) (Figure 2), may not be well suited for learning-related
motor exploration. Rather, the motor system may have evolved strategies to decrease it in order to
increase movement accuracy. This very idea has inspired an influential set of theories and models
(Fitts 1954, Harris & Wolpert 1998) able to predict kinematic features of a variety of movements,
including saccadic eye movements and limb reaches (Harris & Wolpert 1998, van Beers 2004, van
Beers et al. 2007).

In contrast, variability originating in central planning circuits may be better suited for driving
learning-related motor exploration (Figure 2). These circuits have ready access to reinforcement
signals (Björklund & Dunnett 2007, Schultz 1998) and show ample experience-dependent plas-
ticity (Doyon & Benali 2005, Nudo et al. 1996, Sanes & Donoghue 2000). But gauging how
higher-order motor circuits contribute to movement variability can be difficult because activity
patterns related to motor planning are often intermixed with reafferent signals reflecting past (or
ongoing) movements and task performance (Flament & Hore 1988, Kakei et al. 1999, Lauwereyns
et al. 2002) (Figure 2).

One way to reduce contamination from reafference is to record neural activity in delayed
response tasks in which subjects have to withhold a prepared movement until a go cue is presented.
Using such an experimental paradigm, Churchland et al. (2006) found that a significant fraction—
up to half—of the trial-to-trial variability in reach velocity could be explained by the firing rates
of cortical neurons in the period prior to movement initiation, even in the case of well-practiced
movements that were earlier thought to be subject primarily to execution noise (Harris & Wolpert
1998, van Beers et al. 2004).

Besides reflecting cellular and network noise, trial-to-trial variability in motor output can also
be deterministic. For example, in uncertain environments, suboptimal inference can add behavioral
variability even in the absence of network noise (Beck et al. 2012). Furthermore, task structure and
fluctuations in reward expectation can contribute predictable variability in kinematics and motor
timing (Haith et al. 2012, Kawagoe et al. 1998, Marcos et al. 2013, Opris et al. 2011, Takikawa
et al. 2002). Error-correcting motor learning processes can similarly generate predictable changes
in motor output (Baddeley et al. 2003, Scheidt et al. 2001, Smith et al. 2006, van Beers 2009).
Whether such deterministic changes can double as exploratory motor variability that drives motor
learning (Figure 1) remains to be understood.

REINFORCEMENT LEARNING: A NATURAL FRAMEWORK FOR
LINKING MOTOR VARIABILITY AND LEARNING

The process of updating a system by repeating states that lead to favorable outcomes forms the basis
of reinforcement learning (Kaelbling et al. 1996, Sutton & Barto 1998), a computational framework
that has illuminated a variety of different learning and decision making-processes (Lee et al. 2012,
Niv 2009) and has inspired algorithms for machine learning (Alpaydin 2014, Sutton & Barto
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1998). Reinforcement learning also provides the theoretical foundation for operant conditioning,
a powerful training method that is predicated on the idea that reinforced behaviors become more
frequently expressed (Skinner 1938, 1963; Thorndike 1898).

A major difference with other forms of learning is that reinforcement learning explicitly requires
exploration. The agent probes the consequences of various actions and registers or updates their
values, a process that allows it to adaptively and contextually regulate the expression of the probed
actions. There is increasing evidence that the brain implements the computations predicted by
reinforcement learning theory (Daw et al. 2006, Eshel et al. 2015, Lee et al. 2012, Niv 2009,
Schultz et al. 1997, Wunderlich et al. 2009).

But although reinforcement learning has proved a powerful framework for decision making (i.e.,
the process of selecting an action from a discrete set of options), learning and generating the details
of the specific actions pose very different challenges. Not only are the neural circuits involved in
motor control likely distinct from those that implement higher-order decision making, but the
dimensionality and complexity of the decisions that the motor system makes are of a different
magnitude. This is because motor decisions are made in the high-dimensional and continuous
space of possible movement patterns and implemented by a highly redundant motor system with
many degrees of freedom (Bernshteı̆n 1967, Lashley 1933).

Standard reinforcement learning algorithms, well suited to low-dimensional tasks such as
choosing between discrete options, may not scale well to more complex tasks (Parr 1998, Peters &
Schaal 2008), raising the question of whether they represent effective strategies for motor learn-
ing. Indeed, the oft-discussed curse of dimensionality, which describes the fact that the size of the
solution space explodes as the complexity of a task or its control increases, presents a formidable
challenge not only for reinforcement learning algorithms but for virtually any type of machine
learning (Bellman 1957). The success of deep learning networks in solving complex supervised
decision and classification problems has, in large part, been due to the use of convolutional net-
work architectures that reduce dramatically the dimensionality of the solution space by enforcing
highly symmetric patterns in the weights to be learned (LeCun et al. 1998, 2015; Simonyan &
Zisserman 2014).

Another key to the success of deep learning networks has been the use of unsupervised methods
to pretrain networks based on the statistics of the input data (Hinton et al. 2006, LeCun et al.
2015, Lee et al. 2009). This pretraining can serve to get the network into a fertile part of solution
space before the main training begins. For reinforcement learning problems, a similar narrowing
of solution space can be achieved by using imitation, or other ways of instructing the system, as a
preamble to reinforcement learning (Kormushev et al. 2010, Price & Boutilier 2003). After emulat-
ing the behavior of an expert tutor, local trial-and-error learning can start off in the neighborhood
of an approximate solution. For example, AlphaGo, Google’s recently unveiled agent for playing
the popular board game Go, was created using this general approach by first imitating expert
human players and then learning by reinforcement from playing against itself (Silver et al. 2016).

Other solutions for making reinforcement learning algorithms work with more complex prob-
lems, such as hierarchical reinforcement learning algorithms (Botvinick 2012, Parr 1998), policy
gradient methods (Peters & Schaal 2008), and value decomposition (Gershman et al. 2009), also
aim to break down the complexity of the learning problem into smaller, more manageable chunks
or policies. Although the extent to which the nervous system implements such strategies remains
to be understood, a recent study on songbirds provides some intriguing clues. Using a reinforce-
ment learning paradigm to change temporal and spectral features of the song independently, Ali
and colleagues (2013) showed that the song circuit modularizes song learning by implementing
separate reinforcement learning processes for spectral and temporal aspects of song.
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WHAT SONGBIRDS TELL US ABOUT MOTOR VARIABILITY AND LEARNING

The question of whether and how variability can be harnessed for learning has been examined most thoroughly
in the zebra finch, a songbird that learns its courtship vocalization early in life by first listening to a tutor, then
engaging in trial-and-error motor learning to copy the memorized song (Immelmann 1969, Tchernichovski et al.
2001) (Figure 3a,b). Vocal control circuits in songbirds are organized into two main pathways. The descend-
ing motor pathway, which comprises nuclei HVC and the downstream motor cortex analogue robust nucleus
of the arcopallium (RA) (Simpson & Vicario 1990, Yu & Margoliash 1996), and the anterior forebrain pathway
(AFP), a song-specialized basal ganglia–thalamocortical circuit that indirectly connects HVC and RA (Perkel 2004)
(Figure 2a). The song is encoded and generated by the motor pathway (Fee & Scharff 2010). The AFP is important
for song learning but not for producing the song in adult birds (Bottjer et al. 1984, Scharff & Nottebohm 1991).
Its output nucleus, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), projects to RA and in-
troduces variability into the RA motor program and, consequently, the song (Kao et al. 2005; Ölveczky et al. 2005,
2011). If activity in LMAN is silenced, the otherwise variable juvenile song becomes highly stereotyped (Ölveczky
et al. 2005) (Figure 3c), and if LMAN is lesioned in juvenile birds, the song learning process stalls (Bottjer et al.
1984). Furthermore, LMAN neurons generate activity patterns that vary from song to song, consistent with a role
for LMAN in inducing motor variability (Ölveczky et al. 2005, 2011) (Figure 3d). These results suggest that vari-
ability is not simply due to intrinsic noise in the descending motor pathway but is introduced into RA by a dedicated
circuit that is required for song learning.

SONGBIRD STUDIES LINKING MOTOR VARIABILITY AND LEARNING

Despite a powerful theoretical framework linking variability and reinforcement learning, re-
searchers continue to debate the degree to which motor variability is conducive to motor learning
(Cohen & Sternad 2008, He et al. 2016, Singh et al. 2016, Wu et al. 2014). A direct demonstration
of how variability can be used as a substrate for motor learning came from Tumer & Brainard’s
(2007) experiments in songbirds (see the sidebar titled What Songbirds Tell Us About Motor
Variability and Learning). Although adult birds sing highly stereotyped songs, small rendition-to-
rendition variability in, for example, the pitch of their vocalizations can be detected in real time.
When a negative reinforcer, in the form of a loud noise burst, is delivered following certain pitch
variants, the song gradually and persistently shifts away from those. This suggests that variabil-
ity even in well-learned skills can reflect meaningful motor exploration that supports continuous
learning and optimization of performance (Tumer & Brainard 2007).

Taking it a step further, Andalman & Fee (2009) examined the neural mechanisms underlying
this reinforcement learning process and found that the output of the anterior forebrain pathway
(AFP), LMAN (i.e., the same brain region that introduces much of the exploratory motor
variability), contributes the error-correcting signal that drives learning (see also Warren et al.
2011). This suggests a two-stage learning process, in which reinforcement learning in the
AFP produces an error-correcting premotor signal at the level of LMAN, which then biases
the motor output (here, the pitch) in a more favorable direction (Teşileanu et al. 2017). This
error-correcting bias then becomes incorporated into the motor pathway over time (Andalman
& Fee 2009, Teşileanu et al. 2016, Warren et al. 2011).

Although the AFP is essential for song learning, its output, LMAN, is only responsible for
about half of the rendition-to-rendition variability in adult birdsong (Kao et al. 2005), raising the
question of whether the reinforcement learning algorithm implemented in the AFP can make use
of motor variability originating elsewhere in the song circuit. Using a pharmacological strategy to
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reduce LMAN’s contribution to variability while keeping the AFP circuit otherwise unperturbed,
Charlesworth and colleagues (2012) argued that the error-correcting learning signal mediated
by LMAN can be built from variability contributed by other parts of the circuit. This implies
that the AFP has an efference or sensory copy of this variability and uses it to update its output
adaptively. Importantly, this suggests that exploratory variability need not be generated by the
circuits implementing the reinforcement learning algorithm, as long as information about the
variability is relayed to those circuits.

THE ROLE OF VARIABILITY IN HUMAN MOTOR LEARNING

Work in songbirds established that the brain can actively generate and make use of motor variability
for the purpose of learning (Kao et al. 2005, Ölveczky et al. 2005, Tumer & Brainard 2007)
(Figure 3). Picking up this thread, Wu and colleagues (2014) set out to test whether this may
generalize to human motor learning. They argued that if motor variability is conducive to learning,
then its structure and magnitude should predict learning ability across individuals and tasks. They
first tested their hypothesis in a reinforcement learning–based paradigm, in which subjects were
trained to modify the trajectories of ballistic reaching movements to better approximate one of two
predefined shapes (Figure 4a). The subject were not aware of the shapes but received a numerical
reward after each trial reflecting how well they had done.

The authors found that learning rates depended strongly on the degree to which the subjects’
baseline motor variability aligned with the prescribed shapes; higher task-relevant variability pre-
dicted faster learning rates both across different tasks and across individuals within a single task
(Figure 4). These results demonstrated that the human brain can make use of trial-to-trial motor
variability to update control policies and motor output in a reinforcement learning paradigm.

To probe whether their findings also generalize to other forms of learning, the authors simi-
larly probed the relationship between variability and learning in an error-based motor adaptation
paradigm. Here, subjects were tasked with modifying target-specific reaching movements in
response to external force-field perturbations. This form of learning is typically framed as an
example of optimal feedback control and believed to rely on sensory prediction errors updating
an internal model that is used in generating motor output (i.e., deterministic processes that
are corruptible by noise) (Haith & Krakauer 2013, Krakauer & Mazzoni 2011, van Beers et al.
2013). Surprisingly, the results were similar to the reinforcement learning paradigm, with higher
task-relevant variability predicting faster learning rates across both subjects and tasks. This

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Vocal variability in songbirds is generated by a basal ganglia–like circuit. Research on the courtship song of zebra finches has informed
the link between motor variability and learning. (a) The song is generated by the vocal control pathway (red ) comprising HVC, RA,
and brainstem motor regions. The anterior forebrain pathway (blue), a basal ganglia–thalamo–cortical circuit, is important for song
learning but not for producing learned song. (b) Spectrograms of zebra finch song at different stages of song learning, showing that
learning is associated with a gradual decrease in song variability and an increase in song quality, as defined by the similarity to the song
model being imitated (not shown). Grey lines denote the song motif of the bird, which crystallizes to the same syllable sequence late in
learning. (c) Inactivating LMAN (left) causes a dramatic reduction in song variability in juvenile birds (right). Song spectrograms from
the same bird before and immediately after LMAN inactivation. Data from Ölveczky et al. (2005). (d ) Inactivating LMAN reduces the
rendition-to-rendition variability of RA neurons. (Left) Activity patterns of an LMAN neuron in a juvenile bird, aligned to a
recognizable song motif (i.e., syllable sequence). Each row of spikes represents the activity during one rendition of the song motif. Note
the high degree of rendition-to-rendition variability. (Right) Recording from the same RA neuron in a juvenile singing bird with and
without pharmacological inactivation of LMAN. Rendition-to-rendition variability in the RA neurons with LMAN silencing is reduced
dramatically. Data from Ölveczky et al. (2011). Abbreviations: LMAN, lateral magnocellular nucleus of the anterior nidopallium; RA,
robust nucleus of the arcopallium.
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Figure 4
Structure of motor variability predicts learning rates in a reinforcement-based task. (a) Subjects were asked to move a manipulandum
between two points on a screen (red and yellow). (b) Example baseline movements from one participant showing the pattern of
trial-to-trial variability. (c) The subjects were rewarded based on how well their movements reflected predefined shapes (two shapes
were used in different experiments). The shapes were never made explicit to the subjects, making it a trial-and-error learning task.
(d ) Schematic showing baseline variability projected into the space defined by the two shapes. The target shapes were chosen to make
sure that, on average, task-relevant variability was higher for Shape 1. (e) Average learning curves showing that subjects generally
learned Shape 1 faster than Shape 2. ( f ) Task-relevant variability is correlated with learning level both across tasks (different colors) and
individuals (circles). Figure adapted from Wu et al. (2014).

suggests a broader role for variability in motor learning, including in error-based paradigms.
Whether this reflects a contribution of reinforcement learning processes to learning driven by
sensory prediction errors remains to be better understood (Huang et al. 2011, Wu et al. 2014).

Confusing matters a bit, two recent studies using visuomotor adaptation paradigms did
not find a clear relationship between motor variability and the rate of motor adaptation (He
et al. 2016, Singh et al. 2016). Although there were several methodological differences be-
tween these and the previous study (Wu et al. 2014), the difference in how baseline vari-
ability was estimated may help resolve the discrepancy and further illuminate the relationship
between variability and learning. In contrast to the earlier study, both He et al. (2016) and
Singh et al. (2016) measured baseline variability with task-relevant feedback available to sub-
jects (i.e., they could see how their movements deviated from the desired trajectory). This
is pertinent because such task-relevant feedback allows errors in the brain’s internal model
for generating movements, also referred to as planning noise (Figure 2), to be corrected
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(Scholz & Schöner 1999, van Beers et al. 2013). Central planning circuits, which have ready
access to task-related feedback and whose neural activity patterns exhibit slow drift correlated
with behavior (Chaisanguanthum et al. 2014), are likely to be the main source of this variability.
In the absence of feedback, such errors could accumulate like the excursions in a random walk
process, leading to slow drift in motor output (van Beers 2009, 2013).

In contrast, variability from execution noise, which probably originates in the motor periphery
(Figure 2), is not expected to accumulate, even in the absence of corrective feedback (van Beers
2009, 2013). This means that experimental measurements of overall motor variability made with
task-relevant feedback, as in He et al. (2016) and Singh et al. (2016), may emphasize execution noise
over planning noise, whereas measurements made without feedback, as in Wu et al. (2014), may
primarily reflect planning noise because it allows drift in central planning circuits to contribute
more to total motor variability.

If the effect of task-relevant feedback on measurements of baseline motor variability indeed
explains the discrepancy between the two studies, and this remains to be rigorously tested, it would
support the idea that motor variability originating from central circuits (i.e., planning noise) is the
main substrate for learning-related motor exploration.

LEARNING-DEPENDENT REGULATION OF MOTOR VARIABILITY

Given that motor variability can be beneficial for learning new motor skills but detrimental to
expert performance, it would be desirable to regulate it in a way that optimizes its utility. In
the context of reinforcement learning, how much to explore (i.e., vary motor output) relates to
the exploration-exploitation dilemma (Kaelbling et al. 1996, Sutton & Barto 1998). Simply put, the
dilemma is whether to explore new options (e.g., actions or movement patterns) or exploit those
with known values. How the nervous system deals with this dilemma has been studied extensively
in the context of decision making (Cohen et al. 2007) but less so in the realm of motor control.
However, reinforcement learning theory gives researchers intuition into how variability should be
regulated. First, exploration should decrease with practice as more information becomes available
about the values of various actions (Figure 1). Second, the reward context in which actions are
generated should influence the relative amount of variability, with more exploitation in high-stakes
situations. This is because there is more to lose from exploring when more is on the line. Third,
if the relative reward of an action is reduced, it could signal that the overall reward landscape has
changed and that the system should explore (i.e., increase motor variability) to find better solutions.

In agreement with the first point, trial-to-trial variability does generally decrease with prac-
tice (“practice makes perfect”). Much of what we know about the neural circuit mechanisms
underlying such learning-related decreases in motor variability comes, yet again, from research
in songbirds. As discussed above (see the sidebar titled What Songbirds Tell Us About Motor
Variability and Learning), song variability in juvenile birds is, in large part, generated by the AFP,
through LMAN’s projection to RA neurons (Figure 3c,d). This projection dominates and drives
the RA motor program, and consequently the song, early in learning (Aronov et al. 2008, Ölveczky
et al. 2011). Because the activity patterns of LMAN neurons vary across renditions (Hessler &
Doupe 1999, Kao et al. 2008, Ölveczky et al. 2005), this results in variable song in juveniles
(Figure 3c,d).

As learning proceeds, control of the RA motor program shifts gradually away from LMAN,
which is variable, to HVC, which produces stereotyped activity patterns (Hahnloser et al. 2002),
resulting in less variable song late in learning (Aronov et al. 2008). Probing the synaptic connec-
tivity in RA over the course of song learning, Garst-Orozco et al. (2015) showed that this shift in
control happens not by changing the overall strength of HVC and LMAN input to RA, but rather
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by strengthening and pruning HVC to RA connections. Such learning-related synaptic reorgani-
zation renders the variable LMAN input to RA less effective, leading to more stereotyped song.

Regulating motor variability through learning-related reorganization of action-specific
synapses lends considerable flexibility to the process of motor sequence learning, as it reduces
variability selectively in action elements that have been mastered while allowing continued explo-
ration in others (Ravbar et al. 2012). Intriguingly, researchers have also observed learning-related
synaptic changes akin to those described in songbirds in mammalian motor cortex (Fu et al. 2012,
Wang et al. 2011, Xu et al. 2009), suggesting that it may be a general mechanism for regulating
motor variability as a function of learning.

CONTEXT-DEPENDENT REGULATION OF MOTOR VARIABILITY

As discussed above, reinforcement learning theory favors exploitation when stakes are high and
exploration when they are not (Sutton & Barto 1998). Evidence suggests that the nervous system
also regulates variability in such a context-dependent manner, producing more reproducible output
in high-reward situations. Experiments in a wide variety of species, including rodents (Gharib
et al. 2001, 2004), pigeons (Stahlman & Blaisdell 2011, Stahlman et al. 2010), and monkeys
(Takikawa et al. 2002), have shown that animals generate more variable actions when they have
been cued to expect less reward. In motor learning, however, reward expectations are typically
set by performance history, not sensory cues. To investigate the influence of reward history on
motor variability, a recent study in humans (Pekny et al. 2015) manipulated the reward probability
for reaching movements. Increasing or decreasing reward probabilities caused arm movements to
become less or more variable, respectively, suggesting that reward context can have a causal effect
on the degree of motor variability.

A similar form of context-dependent regulation of motor variability is seen in songbirds, where
high-stakes situations equate to those in which songs are directed to potential partners (directed
singing). Songs are significantly less variable during directed singing than when birds sing undi-
rected song (Kojima & Doupe 2011). The circuit mechanisms for this social context-dependent
regulation of variability involve a dopamine-dependent switch in AFP circuit dynamics (Leblois
2013), which results in less bursty and more regular firing in LMAN neurons when a female (and
dopamine) is present (Hessler & Doupe 1999, Kao et al. 2008, Woolley et al. 2014). This mech-
anism is distinct from learning-related reduction in variability, which involves reorganization of
synaptic connectivity within the descending motor pathway (Garst-Orozco et al. 2015), suggesting
(at least) two independent ways of regulating motor variability for the same behavior.

Compared with songbirds, less is known about context-dependent regulation of motor variabil-
ity in mammals. An important context for any action is its reward landscape (Figure 1). Detecting
changes in reward contingencies requires subjects to compare past and present performance, yet
it is unclear over what timescales the brain tracks performance history, how changes in reward
landscape are assessed, and how these computations ultimately regulate motor variability. In their
recent study, Pekny et al. (2015) trained human subjects in a reinforcement learning task to
reach toward a hidden target. A trial-by-trial analysis suggested that motor variability is modu-
lated by the outcome of the past 2–3 trials. However, the analysis may have been confounded by
trial-to-trial correlations in task performance (Chaisanguanthum et al. 2014, van Beers et al. 2013)
that make it difficult to establish causal relationships between reward history and motor variability.
In other words, an increase in motor variability could have led to decreased reward rates, rather
than vice versa. Overcoming these confounds requires controlling for long-term performance his-
tory, which is more easily done with larger data sets containing many thousands of trials. Although
collecting such large data sets can be cumbersome in human subjects, it is becoming increasingly
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feasible in rodents (Poddar et al. 2013). Efforts to interrogate the effect of reward history on motor
variability in rodents are currently under way (Miyamoto et al. 2015).

If the mammalian brain monitors the reward landscape and regulates motor variability based on
it, where are these computations implemented? Studies on decision making have implicated basal
ganglia circuits (Hamid et al. 2016, Hikosaka et al. 2014, Samejima et al. 2005, Schultz et al. 2003,
Tai et al. 2012, Wang et al. 2013) as well as prefrontal regions (Matsumoto et al. 2003, Roesch
& Olson 2004, Wunderlich et al. 2009) in encoding action values. The basal ganglia are also
thought to be involved in invigorating movements associated with greater reward (Hamid et al.
2016, Kawagoe et al. 1998, Lauwereyns et al. 2002, Wang et al. 2013). Whether similar neural
substrates are involved in regulating motor variability in a reward-history dependent manner
remains to be understood.

Motor variability can be determined and shaped further by the nature and reliability of task-
related sensory feedback (Osborne et al. 2005). For instance, Izawa & Shadmehr (2011) found that
trial-to-trial motor variability increased substantially when humans were learning from binary
reward feedback as compared to more informative sensory (visual) feedback. More generally,
the sensorimotor system is thought to weight distinct sources of sensory input streams based on
the amount of information that these sources provide. The degree of confidence in the sensory
evidence can then feed back into the motor system to influence variability in motor output (see
the sidebar titled Internal Estimates of Sensorimotor Noise Can Influence Motor Variability).

REGULATING THE STRUCTURE OF MOTOR VARIABILITY

Given the high degree of redundancy in how the motor system controls movements and how tasks
can be executed (Bernshteı̆n 1967), certain forms of motor variability may have small effects on
performance, whereas others may be more consequential. But to what extent does the nervous
system distinguish task-relevant and task-irrelevant variability? Several studies have shown that

INTERNAL ESTIMATES OF SENSORIMOTOR NOISE CAN INFLUENCE MOTOR
VARIABILITY

Although this review focuses on how and why motor variability is generated, it should be noted that the motor
system also monitors sensorimotor variability and uses internal estimates of it to optimize motor control strategies
and performance. One salient example is in setting safety margins for grip forces, whose misestimation can have
grossly asymmetric consequences. Whereas grasp can be maintained by overgripping, undergripping can lead to
catastrophic failures. A recent study showed that this safety margin is determined by an adaptable internal estimate
of environmental variability (Hadjiosif & Smith 2015), analogous to maintaining a greater safety margin when
driving near an erratically behaving vehicle than a predictable one.

The sensorimotor system also weighs different sources of sensory information depending on their reliability,
allowing it to dynamically modify the information it extracts from variable and noisy sensory inputs. For example,
if greater uncertainty in the sensorimotor realm is introduced and a movement is physically perturbed or visual
information about it is distorted, the gains of the corrective feedback responses are reduced. By accounting for
such sensorimotor uncertainty, the reduced feedback response can improve the precision of the generated action
(Franklin et al. 2012, Kording & Wolpert 2004). The rate of trial-to-trial motor adaptation has also been shown to
decrease when variability is added experimentally (Wei & Koerding 2010), in line with optimal Bayesian inference.
However, having an estimate of the persistence of environmental variability and its statistical structure can have an
even greater effect on learning rates (Gonzalez Castro et al. 2014).
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task-relevant variability is systematically reduced after repeated practice, whereas task-irrelevant
variability can remain high (Kang et al. 2004, Latash & Anson 2006, Scholz & Schöner 1999,
van Beers et al. 2013). These results are consistent with optimal feedback control theory, which
posits that movements are planned and shaped to optimize fidelity in performance (Harris &
Wolpert 1998) and reduce effort (Braun et al. 2009, Izawa & Shadmehr 2008, Izawa et al. 2008,
Todorov 2004, Todorov & Jordan 2002). Researchers have even suggested that larger amounts
of task-irrelevant variability can afford reduced task-relevant variability (Todorov 2004, Todorov
& Jordan 2002), although evidence for this is not as clear.

Shaping the structure of motor variability with such specificity can allow the motor system to
exploit along dimensions that are deemed task-relevant, while enabling continued exploration (and
learning) in others. Conversely, the nervous system can also selectively increase task-relevant vari-
ability when directed exploration along a particular dimension is conducive for fast learning, such
as when the same task (or control policy) has to be reacquired. Wu and colleagues (2014) exposed
subjects repeatedly to the same adaptation paradigm and observed a significant overall increase in
the task-relevant component of their variability. This reshaping persisted long after training had
terminated, suggesting a lasting and experience-dependent modification of the structure of motor
variability that could promote more efficient exploration.

Interestingly, researchers have observed neural correlates of such task-specific regulation of
motor variability in the activity of cortical neurons during visuomotor adaptation, where learning-
related increases in trial-to-trial spiking variability are seen principally in the subset of neurons
that are tuned to the movement directions being trained (Mandelblat-Cerf et al. 2009). Taken
together, these results suggest that the nervous system shapes the structure of motor variability
in sophisticated ways to adapt it to the specific task demands. Further follow-up studies will be
required to better understand how and under what circumstances the brain sculpts motor variability
and how the underlying computations are implemented in neural circuitry.

CONCLUSIONS AND OUTLOOK

Although noise in nervous system function can often be detrimental to optimal performance, the
studies we have reviewed here suggest that neural variability may also be conducive to motor
learning, in line with reinforcement learning theory (Kaelbling et al. 1996, Sutton & Barto 1998).
Random fluctuations (or noise) in the activity of neurons could plausibly underlie such motor ex-
ploration, but recent findings suggest that the nervous system is more deliberate and sophisticated
than that and may be regulating and shaping motor variability actively to augment learning.

The link between variability and motor learning has been established, but the specifics of this
relationship remain to be worked out (see the Future Issues section). Importantly, furnishing our
understanding with mechanistic insight will require animal models with suitable experimental
paradigms. Songbirds have proved powerful in this regard (see the sidebar titled What Songbirds
Tell Us About Motor Variability and Learning) and have offered valuable clues. Rodent models
also hold significant promise (Ölveczky 2011), given the feasibility of high-throughput and longi-
tudinal studies (Miyamoto et al. 2015, Poddar et al. 2013) and the increasingly sophisticated ways
in which their neural circuits can be manipulated (Luo et al. 2008).

A deeper understanding of the link between variability and learning will be further helped by
detailed descriptions of the structure of motor variability. Increasingly sophisticated methods for
tracking the movements of experimental animals at high spatiotemporal resolution (Anderson &
Perona 2014, Egnor & Branson 2016) will fuel progress and allow trial-to-trial motor variability
to be used and appreciated as an important tool in our quest to understand how the nervous system
operates and learns.

492 Dhawale · Smith · Ölveczky
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FUTURE ISSUES

1. Which form (or forms) of motor variability, in terms of both statistical structure and
neural origin, can be harnessed for motor learning? For example, to what extent can the
motor system learn from centrally versus peripherally generated motor variability?

2. What are the neural circuit mechanisms that underlie the generation of learning-related
motor variability? Are there dedicated circuits in mammalian brains akin to those de-
scribed in songbirds? If so, what are these circuits and how do they function?

3. How is motor variability regulated? How are the reward/cost landscape and other relevant
contextual cues computed and monitored, and how does this information influence the
amount and structure of trial-to-trial motor variability?

4. How does the nervous system implement reinforcement learning in the motor domain?
Specifically, how does it reduce the dimensionality of the solution space?

5. How are action variants that improve performance reinforced, reproduced, and ultimately
consolidated for long-term improvements in motor output?
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