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Abstract

Enhancing the early detection of new therapies that are likely to carry a safety liability in the
context of the intended patient population would provide a major advance in drug discovery. Mi-
crophysiological systems (MPS) technology offers an opportunity to support enhanced preclinical
to clinical translation through the generation of higher-quality preclinical physiological data. In
this review, we highlight this technological opportunity by focusing on key target organs associ-
ated with drug safety and metabolism. By focusing on MPS models that have been developed for
these organs, alongside other relevant in vitro models, we review the current state of the art and
the challenges that still need to be overcome to ensure application of this technology in enhancing
drug discovery.

INTRODUCTION

Attrition of promising drug candidates as a consequence of unacceptable toxicity is a major bar-
rier to drug research and development (R&D) productivity (1, 2). Although the root causes are
complex and wide ranging, the need for more predictive toxicology models and earlier test-
ing to increase future clinical success is recognized (3). Microphysiological systems (MPS) are
miniaturized models that combine bioengineering and biology to generate organ function in
vitro (4). In addition to modeling healthy organ function, patient-centric MPS models that ad-
dress the translational assumptions from bench to bedside are also now emerging. Consequently,
these models are rapidly gaining credibility as a potential solution to the R&D productivity
challenge.

Discovery-phase toxicology goals are to identify the most promising drug candidates and elim-
inate those with unacceptable toxicity as early as possible. However, it is not practical to generate
an exhaustive hazard and translational risk profile during the early stages of the drug discovery
process, nor is it possible to accurately predict risks for all potential clinical toxicities. Conse-
quently, drug developers take a tiered approach to balance the screening volume needs with high
translational confidence to select small numbers of potential candidates. Thus, throughput and
rapid data generation that can influence early-stage drug design are key considerations for any in
vitro model deployed at this stage. Evaluating drug target liabilities (on- as well as off-target effects)
involves a complex cascade of screens and assays to build understanding of drug pharmacology
and safety in healthy and disease scenarios. To generate this level of understanding, scientists
are increasingly turning to complex human and animal three-dimensional (3-D) models involving
microfluidics and stem cells to assess organ-specific and interorgan toxicity profiles. These models
promise to enhance biological understanding during drug discovery as well as increase confidence
in cross-species translation, a key gap in humanizing drug discovery (Figure 1).

Because MPS hold promise, global government funding and drug regulatory agencies are
making a substantial effort to support the development and advancement of the technology. The
Advancing Regulatory Sciences Initiative, jointly funded in 2010 by the US National Institutes
of Health (NIH) and Food and Drug Administration (FDA), was key in providing momentum
to the field. Further funding was realized in 2012 by a partnership between the NIH, FDA, and
Defense Advanced Research Projects Agency (DARPA), and in Europe, Horizon 2020, the open
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Figure 1
Diversity of complex in vitro and microphysiological system (MPS) models. (a) Cardiac microtissues staining includes cardiomyocytes
(actin; green), fibroblasts (collagen; orange), and endothelial cells (CD31; red ) with nuclei (blue) (46). (b) Hepatic spheroid with primary
human hepatocytes stained with Hoechst H33342 (blue) (18). (c) The induced pluripotent stem cell–derived cardiomyocytes in a
collagen-containing extracellular matrix are aligned using flexible posts and mechanically stimulated to create a physiological model of
engineered heart muscle (61). (d ) The renal proximal tubule MPS is tubular in design and includes fluid flow (122). (e) Three-
dimensional engineered human tissues are supported in a matrix chamber with perfusion. The design supports micro-organ tissues (i.e.
liver, gastrointestinal tract, skin) that can be physically linked (123). ( f ) The lung alveolar MPS uses microchannels for air and media
perfusion and vacuum channels to mimic breathing (124). ( g) A pumpless four-organ body-on-a-chip system with on-device
measurement. Two reservoirs on either side provide a defined volume of recirculating medium. The ability to disassemble the system
enables further viability and biomarker measurement as endpoint assays (112).

innovation platform CRACK IT, and Innovate UK’s Non-Animal Technologies platform are
also supporting the field’s development. Pharmaceutical industry representatives have established
partnerships with government agencies and academic innovators to support the need for rigorous
testing of organ platforms and establish a path for successful adoption (5).

Here we explore the state of the art with respect to advanced organ model MPS, focusing
on the liver and the heart (as organs frequently associated with clinical toxicity). In addition, we
assess other key organ MPS models, including the kidney, gastrointestinal tract, lung, and skin,
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as they are associated with compound attrition as a consequence of the route of drug delivery, the
pharmacokinetic (PK) profile, or both (6, 7).

TARGET ORGAN: LIVER

The liver is of central importance for drug metabolism. Culture systems using hepatic cell lines
constitute an integral part of most drug development pipelines, but these transformed cells poorly
represent primary human hepatocytes (PHH) both functionally as well as in transcriptomic and
proteomic phenotypes (8, 9). Consequently, they possess limited power to predict human drug
metabolism and toxicity in humans (10). For a long time, PHH in 2-D monolayers have been
considered as the in vitro model of choice for metabolite profiling, PK analyses, and the prediction
of adverse hepatic effects (11). Yet PHH dedifferentiate rapidly and lose hepatic functionality in
2-D culture within hours (12, 13), which severely impairs their predictive power in longer-term
(>24-h) experimental evaluations of drug metabolism and hepatotoxicity.

Thus, to enable longer-term studies in which PHH phenotypically and functionally resemble
hepatic in vivo conditions more closely, an arsenal of novel, advanced, 3-D in vitro systems have
been developed (14). The simplest of these are sandwich cultures in which hepatocytes are seeded
between two layers of gelled collagen, resulting in preserved cell polarity (15, 16). However,
implementation for other purposes is limited, as dedifferentiation is substantially slowed but not
prevented (17).

PHH spheroid cultures represent an emerging cell culture model in which hepatic cells adhere
to each other instead of an artificial substrate, which minimizes problems with drug adsorption to
culture scaffolds. In spheroids, hepatic cells remain viable and functional for multiple weeks and
maintain their transcriptomic and proteomic signatures (18–21). The phenotypic and functional
stability of these 3-D platforms is facilitated by cell-cell communication and maintenance of cell
polarity in combination with extracellular matrix composition that better mimics the intact organ
(22, 23). PHH spheroids exhibit superior sensitivity, especially to drugs that require metabolic
activation, act via reactive oxygen species, or inhibit bile flow. They can indicate hepatotoxicity at
concentrations that approximate clinically relevant serum levels after multiple weeks of exposure,
mimicking the delayed manifestation of drug-induced liver injury (DILI) in humans (20, 24).

The use of perfused systems such as hollow-fiber bioreactor systems allows scientists to mimic
microenvironmental factors in the intact liver, such as hemodynamics and shear stress, which have
been shown to impact hepatocyte morphology and functional activity (25). Hepatocytes in these
reactors can be functionally maintained for multiple weeks, which enables predictive analyses of
drug metabolism (26, 27). However, this technology is not suitable for large-scale analyses owing
to the large number of cells needed and the limited accessibility of cells, which impedes repeated
sampling.

A plethora of different approaches have been developed to support hepatocyte functionality
in plate or chip formats (14). The micropatterned coculture system, in which hepatocytes are
cocultured with fibroblasts, is possibly the most extensively characterized of such platforms, and
hepatocytes in such systems maintain expression of relevant enzymes for multiple weeks (28).
This setup has been used to detect hepatic liabilities via a panel of 35 DILI-positive and -negative
compounds (29). The culture system can be expanded to support cocultures with Kupffer cells
to assess the effect of hepatic inflammation on drug response (30). However, the relatively high
exposure levels necessary to evoke toxicity and the use of supporting mouse fibroblasts raises
questions about the physiological relevance of this setup.

Advances in 3-D culture systems have resulted in MPS models in which the phenotypes of
cultured cells closely resemble their in vivo counterparts (31–33) and have the potential to enable
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a significant leap forward in predicting drug metabolism and toxicity in humans. Thus, owing to
their physiological, molecular, and histological phenotypes, coupled with their long-term stability,
these models are receiving growing attention from academia and industry.

Responses to most medications are highly variable between patients, causing lack of efficacy
or adverse reactions to pharmacological interventions (34). In addition to genetic contributions,
a variety of other responsible factors, including gender, age, diet, concomitant diseases, or coad-
ministered medications, have been described that contribute to this interindividual variability
(35). Novel hepatic 3-D in vitro systems offer the possibility to model these genetic, physiolog-
ical, and environmental predisposing factors and to reproduce the spectrum of responses across
individuals. In such systems, hepatocytes from different donors retain their interindividual vari-
ability on the proteomic level in an in vitro setting (20). Functional differences in drug metabolism
due to genetic predispositions are maintained, as evidenced by differential metabolic fluxes of dex-
tromethorphan between extensive and poor CYP2D6 metabolizers after multiple weeks in culture
(36).

Hepatic 3-D cultures represent versatile tools to model differences in drug response due to
various morbidities. Cholestatic disease can be mimicked by repeated exposure to bile acids that
sensitizes hepatocytes to compounds with cholestatic liabilities (24), and modulation of glucose
can be used to stimulate the hepatic manifestations of metabolic syndrome (37). In some patients,
steatosis progresses to nonalcoholic steatohepatitis (NASH), an inflammatory condition mediated
at least in part by proinflammatory cytokines secreted by Kupffer cells (38). The option to establish
hepatocyte nonparenchymal cell cocultures allows researchers to mimic these complex events and
thereby establish pathophysiologically relevant in vitro models. These systems will be useful for
assessing drug PK and toxicity in diseased livers as well as for the screening of anti-NASH and
antifibrotic compounds. Recent data indicate the utility of such coculture systems as in vitro models
for hepatic fibrosis (39).

TARGET ORGAN: HEART

Cardiomyocytes constitute the main functional unit of the heart and are embedded in a stroma of
fibroblasts, endothelial cells, extracellular matrix, and vasculature. These cells are highly ordered,
allowing an anisotropic spread of excitation through the heart, facilitating ventricular contraction
and relaxation in a synchronized manner. Perturbation of this tightly controlled process can result
in changes in cardiac function and structure. To minimize cardiac safety liabilities, in vitro screen-
ing strategies assessing these perturbations are now an integral part of drug development. To date,
this has focused on overexpressing cell lines; rat myoblast H9c2 cells that exhibit a skeletal muscle
phenotype (40); mouse HL-1 cells (atrial phenotype) (41), which lack the mature cardiomyocyte
phenotype; and isolated cardiomyocytes from preclinical species, which undergo dedifferentia-
tion. The advancements in human stem cell–derived cardiomyocytes (SCDCs) have offered an
opportunity to develop improved models that more closely resemble target patient conditions
and are amenable to long-term culture. However, although SCDCs in monolayer cultures beat
spontaneously, they have an embryonic phenotype, have a resting membrane potential that is
nonphysiological, and contain disorganized sarcomeres in monolayer (42–44).

Aggregated SCDC models represent an emerging approach in which cardiomyocytes adhere
to each other instead of an artificial substrate. In this configuration, cardiomyocytes remain
viable and functional for weeks (45–47). They respond to both electrical and pharmacological
stimulation and display typical contraction and calcium transients, but morphologically they
represent the embryonic heart. One advantage of aggregate models is the ability of cardiomyocytes
to be placed in coculture with nonmyocytes to emulate the complex interplay between cells in the
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heart (48), resulting in superior sensitivity and pharmacological relevance to drugs that modulate
cardiac contractility (46).

To improve on these models, researchers have defined and validated several fundamental de-
sign principles: for example, dynamic mechanical loading to facilitate auxotonic contractions (49),
electrical stimulation (50), and inclusion of nonmyocytes for maturation (51). The ideal model
would incorporate all these features to ensure (a) appropriate tissue-specific architecture, bio-
chemistry, and molecular profiles; (b) synchronized and rhythmic contractions originating from a
functional syncytium with defined pacemaker cells; (c) classical responses to physical and pharma-
cological stimulation, such as a positive force frequency relationship and an inotropic response to
beta-adrenergic stimulation; and (d ) physiologically relevant electrophysiology.

Numerous MPS models have been developed that display some of these characteristics (52–59).
These models represent a significant advance because they have the potential to predict all aspects
of cardiotoxicity. The major difference between microtissue aggregate approaches (SCDCs) and
MPS models is their morphological maturity; specifically aligned sarcomeres; increasingly physio-
logically relevant resting membrane potentials; and synchronized, rhythmic contractions. Despite
this improved physiology and the fact that functional and structural integrity is maintained for
weeks, the pharmacological benefit still requires further characterization, thus highlighting the
need for industry and academia to work together to allow the potential of these models to reach
fruition.

The use of perfusion systems allows the microenvironment of the heart to be mimicked in terms
of hemodynamics (55, 59, 60). Cardiomyocytes in these conditions display typical contraction
transients and key cardiac proteins (e.g., α-actinin). In these approaches, cardiomyocytes are also
subjected to alignment, and consequently, it is unclear whether the improvements in cardiac
physiology result from perfusion or other physical cues, although such models do emphasize the
importance of the microenvironment.

The development of customized matrixes, electromechanical stimulation, and chemically de-
fined protocols are enabling further refinement and are moving the field forward (53, 54, 56, 61).
Cardiomyocytes that undergo these protocols develop M-bands and display t-tubulations, sta-
ble resting membrane potentials, and maturing calcium handling with a positive force frequency
relationship demonstrating improved excitation coupling properties. These advancements are a
significant advance in terms of replicating the function and morphology of the healthy and dis-
eased heart. Improvements to further capture the biological complexity of the heart incorporating
noncardiomyocyte interactions (e.g., endothelial cells, fibroblasts, progenitor cells, and pericytes)
and control of the heart via other organ systems (e.g., autonomic nervous system and renal control)
offer the potential to build on these approaches. These additional features, as well as methods to
enhance throughput, need to become a priority to enable the development of an in vitro model
capable of recapitulating all cardiac biology, thus allowing robust detection, mitigation, and in-
vestigation of cardiovascular liabilities.

OTHER TARGET ORGANS

Kidney

The kidney is a complex organ, composed of >30 distinct cell types that combine to form the
nephron, that actively secretes waste and toxins and reabsorbs water and xenobiotics. These actions
are, in part, regulated by the mechanical microenvironment that includes tubular fluid flow, blood
pressure, and osmotic gradients. Kidney glomerular and tubular epithelial cells are especially
sensitive to these mechanical stimuli, with fluid flow being a key modulator of cellular signal
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transduction, cytoskeleton organization, cell differentiation, and gene and protein expression for
both active transporters and Phase I/II enzymes in the kidney (62–64). Consequently, the kidney
is highly susceptible to drug-induced injury. Twenty percent of adult kidney disease cases are
iatrogenic (65), and patients with chronic kidney disease have greater susceptibility to adverse
drug reactions (66).

The cells in the proximal tubule are highly metabolically active and play a key role in the active
transport and reabsorption of solutes. Additionally, the proximal tubule is exposed to filtered or
secreted drugs and toxic metabolites from the glomerulus and peritubular capillaries (67, 68).
Thus, recapitulation of solute and drug transport into proximal cells is a crucial requirement
for accurate kidney toxicity models. But kidney cell lines have poor transport properties (69),
and primary human proximal tubule cells quickly lose their physiological properties in culture
(70).

MPS models that incorporate physiologically scaled apical fluid shear to the proximal tubu-
lar epithelial monolayer result in enhanced cell polarization, differentiation, alkaline phosphatase
activity, albumin transport, and glucose reabsorption compared to cells in traditional Transwell
culture (71). This MPS model also responds in the expected manner to toxic insult, including
improved transporter functionality (cation transporter 2 and P-glycoprotein). In vivo–like patho-
physiology observed in this system suggests that it can serve as a useful tool for evaluating human-
relevant nephrotoxicity and could offer a significant improvement in not only predicting toxicity
but also understanding the mechanism of toxicity.

More recently, a renal cell line MPS model was exposed to gentamicin using two different
regimens that mimic the PK associated with bolus injection or continuous infusion (72). The
bolus-type injection regimen showed lower cytotoxicity and nephrotoxicity based on kidney injury
marker 1 levels. Permeability of the epithelial layer was also improved when intravenous bolus was
compared to continuous infusion. A similar protocol in Transwell culture showed inconclusive
results owing to lack of cell polarization. The flow dynamics in MPS can therefore be used not
only to create appropriate microenvironments but also to leverage better compound PK when
evaluating toxicity.

MPS models hold great potential to reproduce physiology and characterize absorption, dis-
tribution, metabolism, and excretion (ADME) and drug toxicity in the kidney, but to accurately
capture its biological complexity, these models need to incorporate cell-matrix, cell-cell (e.g.,
podocyte–glomerular endothelial cells–mesangial cells, tubular epithelial cell–endothelial cells,
tubular epithelial cell–stromal cells), tubule-tubule (e.g., proximal tubule–distal tubule, glomeruli–
proximal tubule), and lumen-interstitium interactions (e.g., luminar flow to interstitial flow via
efflux or influx, osmotic gradient via countercurrent flow). These models also need to respond to
specific mechanical stimuli (e.g., flow shear stress, peristaltic motion). More research is required
to demonstrate the value of these systems in predicting the clearance of drugs via the specific path-
ways associated with the kidney (e.g., excretion via glomerular filtration, active transport, passive
transport) as well as drug metabolism in the kidney.

Lung

The respiratory system can be divided into conducting (trachea, bronchi, and terminal bronchioles)
and respiratory zones (bronchioles, alveolar ducts, and alveolar sacs). The respiratory region is
covered by a layer of epithelial cells, which form an efficient barrier to various insults and are
highly important in processes that involve the interplay with immune cells (73). Because of this
complex nature of the respiratory tract, there are multiple sites and cell types that could be targets
for toxicity after drug treatment, especially via inhalation.
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In one of the first MPS models described, the alveolar region of the lung was created with
epithelial cells that were seeded on one side of a membrane with endothelial cells on the other.
A vacuum was applied to emulate inspiration and expiration. By introducing stretch, researchers
demonstrated in vivo–like properties (74). In a further study, the investigators also recapitulated
IL-2–induced pulmonary edema (75). The importance of mimicking breathing movements was
also demonstrated in a different study in which patient-derived pulmonary alveolar epithelial cells
were shown to have different permeability properties, metabolic activity, and cytokine release
profiles when exposed to mechanical strain (76).

Researchers have described a growing number of 3-D air-liquid interface epithelial models for
drug efficacy or toxicity testing (77). Historically, most of these models represented the bronchial
epithelium that, owing to its role in barrier function, is a frequent site of drug-induced pathology
(78). However, because of the lack of flow in these models, they are not able to mimic the shear
stress influence on cell phenotype or replicate the circulation of nutrients or the transport of waste
products and mediators. The importance of flow was illustrated in a microfluidics study showing
human airway epithelial cells had increased sensitivity to pollen when compared to the equivalent
static setup (79). Similarly, in a bronchial epithelium model with a microvascular endothelium
exposed to fluid flow, there was a differential response between cells from healthy individuals and
those from chronic obstructive pulmonary disease patients (80).

Researchers have also developed a static human airway smooth muscle model (81). In this model,
the muscle layer contracts in response to a cholinergic agonist, and by inducing an asthmatic state
with IL-13, hypercontractility and altered relaxation could be observed.

Gastrointestinal Tract

The gastrointestinal tract is not only a target for toxicity after drug treatment but is also highly
important for bioavailability and activity of drug substances owing to its absorption and metabolic
functions. The intestinal epithelium forms a brush border to transport nutrients and also acts as
a barrier against pathogens. There is a complex interaction between the intestinal mucosa, gut
microbiota, and resident immune components (82, 83). Several complex human intestinal models
have been developed, including organoid models, which have been used successfully to determine
risk assessment profiles (84, 85). However, the drawbacks with these models are that they lack the
mechanical deformation or the luminal flow occurring in vivo and do not mimic the important and
complex host-microbe cross talk. Recently, multiple studies have demonstrated the impact of mi-
crofluidics on human intestinal epithelial Caco-2 3-D Transwell cell cultures. One study showed
that perfusion flow enhanced barrier function of Caco-2 cells (86), whereas others have shown the
effects of coculturing human intestinal cells with microbial cells to study host-microbe interactions
(87). As with the lung, cells in the gastrointestinal tract are subject to mechanical deformation dur-
ing peristalsis, which has been modeled in an MPS device (88). Cells in this model show enhanced
barrier function, cytochrome P450 activity, and apical mucus secretion. Recently, this model was
extended to include the microbiome and show its contribution to human pathophysiology (89).

Skin

The skin is the largest organ in our body and functions as the major barrier between the external
environment and our internal organs. Many variations of simple human in vitro skin models now
are available (90–92). These models display increasing complexity (93, 94), with the most recent
model including a perfusion component that supplies nutrition (95). Such models can also be used
to study systemic absorption, by measuring test molecule permeation from the epidermis to the
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vascular channels (96, 97). Although very early in development, these models offer the potential
to investigate systemic effects of drug application in multiorgan models. Further development of
skin disease models will require two-way migration of immune cells into and out of the skin via
the microfluidic vasculature (98).

MULTIORGAN MICROPHYSIOLOGICAL SYSTEMS

The improvements in physiological relevance of single-organ models have raised the possibility
that a combination of these models in a common media circuit might transform drug discovery.
Multiorgan MPS models mimic the physiological interaction of various interconnected organ
models, thus emulating whole-organism functionality and response to xenobiotics.

The value of interconnecting these single-organ models in a combined media circuit was first
reported by Viravaidya and colleagues (99), who showed that metabolites of naphthalene generated
by the liver led to lung toxicity in a multiorgan MPS. A recent study interconnecting liver and
colorectal tumor microtissues treated with the prodrug cyclophosphamide further highlighted
that only a perfused and interconnected coculture impacts tumor growth significantly (100). The
discontinuous transfer of supernatant via pipetting from static liver microtissues treated with
cyclophosphamide did not affect the tumor.

Because multiorgan MPS show broad possibilities for application, the systems that have been re-
ported in the literature have a similarly broad technological and biological background. The mode
of pumping [external peristaltic pumps (101); on-chip micropumps (102, 103); programmable elec-
tromagnetic micropumps (104); or passive, gravity-driven flow (100, 105, 106)] and the format of
the device (microtiter plate–based or proprietary design) are prominent examples.

To allow for interpretation of pharmacodynamic (PD) data obtained using multiorgan systems,
time-dependent concentration profiles of the drugs in the circulation and tissue models should
simulate those in the human body. The use of physiologically based MPS and the introduction
of relevant barrier tissues, such as skin, lung, and gastrointestinal tract, are needed to model the
bioavailability of a drug accurately. The rate of first-pass and systemic metabolism in the liver and
excretion by the kidney are key determinants in PK. A study describing a multiorgan device con-
necting a human primary intestinal model and a skin biopsy in a common media circulation with
liver spheroids and a kidney model was recently published (103). The kidney proximal tubule segre-
gated the media flow through the organs from fluids excreted by the kidney. All four-organ models
were viable over 28 days in coculture, and a reproducible homeostasis among the cocultures was
generated, representing a step toward an in vitro ADME assay platform with high in vivo relevance.

Another barrier tissue limiting drug distribution from the blood to tissues is the endothelial
lining of the microvasculature. Several studies have been performed integrating a vascular network
(107–109). These platforms exploit their highly adjustable flow rates and shear stresses. This is
essential when working with cells used to constant physical stimuli, such as endothelial cells
(110). The integration of a fully closed microvascular network, covering all channel surfaces
and penetrating organ models, is required for the integration of an immune system (111). The
compatibility among different cell types represents another major issue, although the exclusive
use of induced pluripotent stem cells from a single donor is a practical solution when attempting
to develop multiorgan devices comprising parts of the immune system.

A further challenge is the choice of media. A common medium supporting the function of
the entire microorganism that balances critical media components for each organ model in the
interacting system has yet to be found. However, the inclusion of serum or undefined serum
substitutes might limit the predictive capacity of MPS in drug development. Recently, a four-
organ MPS cocultivating heart, skeletal muscle, neuronal liver, and liver models in a serum-free
medium over 14 days reproduced the toxicity of five drugs (112).
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Although current multiorgan MPS show great potential in the early elimination of toxic
drug candidates, these models answer only specialized questions concerning drug distribution,
metabolism, and effects on predefined organ systems. A systemic model that recapitulates the
intact organism is required for a full testing paradigm that will eventually eliminate the need for
animal testing in drug discovery. This topic has been reviewed by members of academia, industry,
and regulatory bodies (111).

MATHEMATICAL MODELING AND SIMULATION

Effective safety assessment of drug candidates requires incorporating multiple pieces of quantita-
tive data, including exposure, time, and complex biological endpoints, which can benefit greatly
from iterative computational and experimental analyses. In particular, the design of MPS devices
and interpretation of readouts are often complicated by the need to account for differences in fea-
tures such as geometry, flow, or timescales. This is often necessary because when organ systems are
reduced to MPS scale, differences in geometry may follow different scaling relations (113, 114). As
these considerations are inherently quantitative decisions, a mathematical modeling and simulation
(M&S) approach can be used to tune MPS as well as translate readouts to the in vivo context (115).

A variety of computational techniques can be applied to design, analysis, and translation of
MPS devices, including modeling of convection and diffusion (116), physiologically based PK
(PBPK) models (117), exposure-response (i.e., PK/PD) models (105), and quantitative systems
pharmacology (QSP) models (118, 119). One common use of these modeling approaches has
been to describe the function of the device itself. By modeling the flow, volume, and mixing rates
of the MPS, for example, it becomes easier to quantify the kinetics of the drug and metabolite in
vitro (118, 120, 121). Additionally, these M&S approaches can help translate MPS endpoints to
an in vivo context. For example, in vivo drug candidate ADME predictions can be based on MPS
data. Specifically, measurement of drug clearance in MPS liver models can be converted to an
intrinsic clearance rate and then scaled to predict human PK by using predefined PBPK models
of human physiology (117).

M&S is also being applied to analyze the biological PD readouts of MPS through PK/PD and
QSP techniques. In these applications, a PK model describing drug and metabolite concentration
in the MPS is combined with a mathematical model of the PD endpoint. Such PK/PD models have
already been used to analyze metabolic activation in a liver-tumor model (120), in which the effect
of active metabolites on tumor cells was quantified with a traditional cell-kill PD model driven by
a PK model for the metabolite. More complex models of PD endpoints can also be accomplished.
For example, a liver-immune model has been developed (121) in which a mathematical model of
lipopolysaccharide-receptor binding and internalization was used to drive turnover models of both
tumor necrosis factor-α and IL-6. The mechanistic nature of this model illustrated a potential
mechanism for reduced response to repeated stimuli and provided a path to simulate responses
that were not tested directly in the MPS.

As more complex cellular data become available from high-throughput and omics approaches,
QSP models will likely be increasingly used to model MPS devices. An early example has recently
been applied to a model of renal toxicity (118) in which an existing systems biology model of nuclear
factor-like 2 signaling, glutathione, and reactive oxygen species was used to simultaneously analyze
multiple transcriptional and biochemical cellular responses in kidney cells to xenobiotic challenge.

As MPS models evolve in complexity, M&S will be a vital tool to maximize the value of the data
being generated. In particular, the importance of M&S will increase as multiorgan MPS devices
become more common. M&S will be key in the quantification of interactions between various
subunits through signaling molecules to understand how each tissue influences the others and in
translating these effects to reflect the in vivo scenario.
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REGULATORY PERSPECTIVE

The failure of new chemical entities to progress through preclinical and clinical development to
marketing authorizations is also a concern for regulatory authorities. The potential to improve
preclinical testing with innovative MPS is poised to accelerate the preclinical development of
new drugs with a better safety and efficacy profile and will help scientists understand how genetic
variations may affect responses to these drugs. European Union regulators and the US FDA are
already of the opinion that the potential of these systems cannot be ignored, particularly as an
alternative to conventional cell culture and animal models. Regulators are keen to support com-
panies and investigators in developing and applying new nonanimal approaches that can improve
drug development and should never be seen as barriers to this technology. It is the responsibility
of the MPS developers to demonstrate their capabilities to the regulators and to engage with them
at an early stage so they can provide guidance as data emerge and the technology grows. Given the
enormous potential these models hold, many regulators believe it is vital that they work alongside
investigators and industry in the development and validation processes, as this presents a new chal-
lenge to regulators and industry alike. One such example is being led by the American Institute
for Medical and Biological Engineering in partnership with the National Institute of Biomedical
Imaging and Bioengineering and the National Center for Advancing Translational Sciences.

Given the complexities of organ function and regulatory requirements, it is unlikely that MPS
will replace the current animal-based pivotal safety assessment testing paradigm anytime soon.
Data from MPS can, however, inform and add to information gained from these pivotal safety
studies, especially in investigating unexpected effects seen either in animals or in the clinic (D.R.
Jones, personal communication). As individual systems are improved, it should be possible to
progressively replace one animal-based assay at a time, particularly in PK/PD investigations but
also in safety pharmacology and, ultimately, repeat-dose toxicology studies.

FUTURE PERSPECTIVES

Complex organoid and MPS models of both human and animal systems will play a critical role
in optimizing discovery-phase toxicology. Together, their goal is to (a) improve the predic-
tion of organ toxicity liabilities, (b) support mechanistic understanding via biomarker investi-
gation (e.g., targeted or untargeted omics analysis) in a more physiologically relevant test system,
(c) provide a basis for comparative toxicology between preclinical test species and patients, and
(d ) inform future designs of higher-throughput experimentation to design out undesired effects
that could impede exploration of the clinical hypothesis or result in an unacceptable therapeutic
index (TI). Understanding the TI of lead compounds is of fundamental importance and, along-
side the translational relevance of advanced models, is critical to the assessment of candidate drug
safety. In addition to improving recapitulation of organ biology, minimally quantitative human-
relevant translational understanding is required that compensates for MPS and species differences
and accounts for PK and toxicokinetics. M&S methods based on human systems pharmacology
models offer a viable solution to providing a translational framework and critically quantifying
toxicological risk. The development of such systems pharmacology and toxicology models for
even the major toxicities is a daunting task that will likely require precompetitive data sharing and
the standardization of test models.

Key challenges still need to be overcome. The small scale of MPS models enables a more precise
control of environmental stimuli but may hinder detection of analytes owing to the small number
of cells and subsequent small volume available for analysis. Collaborative efforts from various fields
such as cell biology, pharmacology, toxicology, chemical engineering, sensors, microfluidics, and
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Hit identification Lead identification and optimization
Preclinical
development

Clinical
development

Routine in vitro screens
Molecular: Secondary pharmacology, ion channels, transporters, and selectivity panels
Phenotypic: Mitochondrial toxicity, organ stem cell function, and in vitro pathology models

Bespoke in vitro assays
3-D or multicellular models and microphysiological models

Decreasing throughput and increasing patient relevance to build mechanistic understanding of risk

Patient
Normal and diseased

MPS or animal models

+

Patient

Biomarker-driven translation

Feedback mechanistic understanding

Figure 2
A typical drug discovery operating model, including potential deployment of screening assays and microphysiological systems (MPS).
Small-molecule drug discovery typically involves three key phases: hit identification, lead identification and optimization, and clinical
development. Initially, large numbers of hits are screened and used to design and select the most promising drug-like candidates.
Establishing chemical liabilities involves the use of chemical structure–based computational in silico screens, selectivity and off-target
profiling, general cytotoxicity, genetic toxicology, and organ-specific toxicity assessments. However, increasingly complex, bespoke,
lower-throughput screens and assays are deployed as drug leads mature during the discovery phase. To improve translational
understanding of drug safety and efficacy in the context of disease, complex human and animal three-dimensional and MPS models are
now starting to facilitate selection of the best drug candidates and identify safety and efficacy biomarkers. Similarly, MPS can be used to
gain mechanistic insight into emerging clinical toxicology (back translation). In the future, inclusion of multiple patient samples will
enable insights into the variation of drug responses within disease populations.

engineering will be needed. Proper implementation must be encouraged, and potential end users
should understand the intent of MPS technology and set realistic expectations in study design.
These systems are not intended to fully recreate the entire organ but rather focus on specific regions
of the interest, often those that are more susceptible to compound-related toxicity. Effective MPS
study designs include a good understanding of the research question and what gaps remain, as well
as the MPS organ models’ context of use (5). The ultimate goal is to model human organs and
the whole body in health and disease. However, to validate the translational relevance, investment
in preclinical variants of MPS models will be critical. As these issues come to mind, it remains
evident that industry collaborations with MPS developers are essential. Building a valid MPS model
requires not only a precise cellular manipulation but also a detailed understanding of the human
body’s intricate response to xenobiotic insult. As such, today’s systems struggle to recreate aspects
of functioning that are governed by complex signals from the endocrine and immune systems.

In conclusion, we see a role for MPS models to assist in the goals of early drug discovery
(Figure 2). With the advent of MPS that preserve in vivo phenotypic characteristics as well
as the interindividual variability of sample donors, it will start to become possible to mimic in
vivo biological variability in an in vitro setting and thus to predict an increasing fraction of the
interindividual differences in drug efficacy, metabolism, and drug toxicity. In turn, this will improve
the probability of success of innovative medicines.
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