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Abstract

We review recent progress in cancer nanomedicine, including stimulus-
responsive drug delivery systems and nanoparticles responding to light for
phototherapy or tumor imaging. In addition, several new strategies to im-
prove the circulation of nanoparticles in vivo, tumor penetration, and tu-
mor targeting are discussed. The application of nanomedicine in cancer
immunology, a relatively new type of cancer therapy, is also highlighted.
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INTRODUCTION

Cancer nanomedicine refers to the application of nanotechnology-based therapeutics and imag-
ing agents for the diagnosis, monitoring, prevention, and treatment of cancer (1). Cancer
nanomedicine is expected to change chemotherapy by delivering a wide range of payloads with
favorable pharmacokinetics, capitalizing on molecular targeting for enhanced specificity, efficacy,
and therefore safety. Nanomaterial sizes below 100 nm match the length scales of the openings
in the relatively leaky tumor vessel endothelium, and lymphatic dysfunction in tumor causes poor
clearance of nanomaterials; both allow for enhanced permeation and retention (EPR) of nanopar-
ticles (NPs) into tumors (2). The EPR effect has been demonstrated to be the key pharmacokinetic
feature for passive tumor targeting and reduced systemic toxicity with cancer nanomedicines (3).

Many nanomaterials have been employed as delivery vehicles for drugs and/or imaging agents.
They have included liposomes; polymer carriers, such as micelles, hydrogels, polymersomes, den-
drimers, and nanofibers; metallic nanoparticles (e.g., gold, silver, titanium); carbon nanostructures
(e.g., nanotubes, nanodiamonds, graphene); inorganic particles, such as silica particles; and hybrid
nanomaterials (4). Different classes of nanomaterials with distinctive properties are optimal for
specific applications. For example, the incorporation of chemotherapeutic agents in liposomal or
polymeric NP delivery vehicles has resulted in improved drug solubility, reduced drug clearance,
reduced drug resistance, and enhanced therapeutic effectiveness (5, 6). Several NP therapeu-
tics [e.g., DoxilTM (approximately 100-nm PEGylated liposome loaded with doxorubicin) and
AbraxaneTM (approximately 130-nm albumin-bound paclitaxel NPs)] have been approved by the
FDA and have shown improved pharmacokinetics and reduced adverse effects compared with their
parent drugs (3). Other polymeric NPs that deliver small-molecule chemotherapeutics or small
interference RNA (siRNA) have also entered clinical trials (7, 8). In addition, metallic particles
are promising therapeutic agents that convert light to heat (the photothermal effect) to kill cancer
cells, with clinical trials in head and neck cancer and lung cancers. Small-sized inorganic NPs
(e.g., silica NPs) are in clinical trials as multimodal imaging agents for lesion detection and cancer
staging (9).

This review provides an overview of recent progress toward in vivo application of cancer
nanomedicine. We highlight some new nanomaterials in cancer nanomedicine, including new
stimulus-responsive drug delivery systems and new cancer imaging NPs. We then discuss some
emerging strategies to enhance the in vivo performance of nanomaterials by improving circula-
tion, tumor penetration, and tumor targeting. Nanomaterials for cancer immunotherapy are also
reviewed. Some of these new technologies or strategies may not be translated for clinical oncology
in the immediate future, but they are of great research interest and are potentially relevant to the
treatment of other diseases.

STIMULUS-RESPONSIVE DRUG DELIVERY

In recent years, there have been increasing efforts to develop stimulus-responsive nanomaterials
that utilize endogenous or exogenous stimuli to facilitate drug delivery (10, 11), usually by en-
hancing the preferential accumulation of those nanomaterials in target tissues. Endogenous stimuli
include small molecules, proteins (enzymes), nucleic acids, peptides, electron transfer reactions,
viscosity, osmotic pressure, and local environmental factors, such as pH, temperature, or redox
state. One of the problems in designing materials that respond to an endogenous stimulus is that
some environmental triggers (e.g., pH or a redox trigger) are found to varying degrees in multiple
locations throughout healthy or diseased tissue, which could activate nanomaterials at unwanted
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times or in unwanted locations. Exogenous stimuli, such as ultrasound, electromagnetism, light,
and temperature, can be applied directly to a tissue of interest to drive localization or release of
cargo (12, 13). Such spatiotemporal control over the activation of materials may maximize cargo
release at the desired site, and thus minimize side effects in surrounding, healthy tissue. Some
means of activation such as ultrasonic waves, sophisticated light sources, or strong magnetic fields
may not always be practical or cost-effective. Another problem related to the application of ex-
ogenous stimuli is the depth of tissue penetration that can be expected. A major challenge with
many stimulus-responsive delivery approaches is to translate relatively complicated designs from
the bench to a successful in vivo application. Triggerable systems have been reviewed elsewhere
(10–13); here, we highlight progress in this area. New nanomaterials for stimulus-responsive drug
delivery include self-immolative polymers, which degrade upon stimulation; nanomaterials with
autonomous motion; and nanomaterials that respond to near-infrared (NIR) light (for triggered
drug delivery and tumor imaging).

Self-Immolative Polymer Degrades Upon Stimulation

Self-immolative polymers, which degrade in response to various stimuli, have been designed for
triggered drug delivery (14). The backbone of such polymers is stable until a stimulus-responsive
trigger group is removed. The functional group exposed in this process subsequently initiates
a cascade of reactions that lead to complete depolymerization. The stimulus-responsive trig-
ger group has been designed to be sensitive to light, pH, oxidative stress, reductive condition,
or enzymes (14–17). One such polymer backbone is a polycarbamate based on 4-aminobenzyl
alcohol derivatives, which degrades entirely through intramolecular 1,6-elimination reactions
via quinone-methide intermediates (Figure 1a) (16, 18). Polycarbamates that depolymerize by
alternating elimination and cyclization reactions have also been synthesized (Figure 1b) (19).
Polyglyoxylate is another new class of self-immolative polymer, with monomers that can be
directly prepared from fumaric or maleic acid (Figure 1c); the monomers of the other two
self-immolative polymers require multistep syntheses (20). A NIR-light sensitive NP based on
quinone-methide polymers was developed for triggered drug delivery (21); upon irradiation
with light, the self-immolative polymer backbone decomposed and the encapsulated drug was
released.

Nanomaterials with Autonomous Motion

Some nanomaterials are capable of propelling themselves, with or without an externally applied
stimulus. It is hypothesized that this approach could be used to control nanomaterial localization or
tissue penetration. The first reported nanomaterial with autonomous motion involved the asym-
metric positioning of a platinum-based catalyst at one end of a gold-platinum nanorod (22). The
platinum catalyst converted hydrogen peroxide to oxygen, creating an oxygen concentration gra-
dient that created interfacial tension (on the order of piconewtons) to propel the nanorod. External
stimuli such as acoustic waves (23, 24) or magnetism (25–27) have also been used to direct nano-
material motion. For example, perfluorocarbon emulsions (approximately 300 nm) were loaded
inside hollow gold microtubes. An ultrasound pulse triggered vaporization of the perfluorocarbon
emulsions, which propelled the nanorod (23). In another example, flexible Au/Ag/Ni nanowires,
with a gold head, a nickel tail, and a partially dissolved and weakened silver bridge, responded to
external rotating magnetic fields with cyclic mechanical deformations at the flexible silver linker
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Figure 1
Self-immolative polymers degrade upon triggering. (a) A polycarbamate depolymerizes via a quinone-methide intermediate. (b) A
different polycarbamate depolymerizes via alternating cyclization and elimination. (c) Polyglyoxylate self-depolymerizes to glyoxylic
acid.

(27). Such nanomaterials have been investigated to enhance cell uptake or tissue penetration in
vitro (26). Their practicality in directing motion in vivo remains to be demonstrated.

The Use of Near-Infrared Light to Access Deep Tissue

Light is a useful stimulus for triggered drug delivery and imaging. However, light propagation
in tissue is affected by scattering owing to tissue heterogeneity and by absorbance by water and
endogenous dyes such as hemoglobin (28). The maximum skin permeability to light occurs in the
ranges circa 650–900 nm [the so-called NIR light window I (NIR-I)] (29, 30) and 1,100–1,400 nm
[NIR window II (NIR-II)] (Figure 2a) (31). NIR light can propagate through tissues with less
attenuation than can shorter-wavelength light (28, 32). The use of NIR light therefore has signif-
icant advantages for phototherapy and optical imaging within deep tissues. Consequently, many
NIR-I wavelength fluorescent dyes and inorganic NPs (e.g., gold NPs) have been applied as con-
trast agents for tumors in preclinical animal models or human patients (33, 34). Nonetheless, the
tissue penetration depth for noninvasive imaging using these agents is limited (35). NIR-II may
be more advantageous for in vivo imaging than NIR-I because of its reduced photon absorption
and scattering by tissues, its negligible tissue autofluorescence, and its deeper tissue penetration
(36, 37). Currently, only a few nanomaterials (e.g., single-walled carbon nanotube, quantum dots)
(31, 36–38) have been studied in preclinical animal models using light in the NIR-II window. The
frequency-domain photon migration technique, which is a sophisticated technique that eliminates
background light, may extend the depth to which light in the NIR window can be used for imaging
up to 10 cm, which is more practical for clinical use (39, 40).
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Figure 2
Light for in vivo imaging and therapy, and light-triggered nanoparticles (NPs). (a) The electromagnetic
spectrum of ultraviolet (UV), visible, and infrared (IR) light and of the near-infrared (NIR)-I and NIR-II
window for in vivo imaging and phototherapy. (b) Schematic illustration of a metallic NP that can absorb
visible or NIR light and dissipate such absorbed light energy as heat (photothermal effect). (c) Schematic
illustration of upconversion NPs that can be excited by NIR light to emit UV or visible light.

Nanomaterials for Light-Triggered Drug Delivery

Local heating of tumors to about 41–43◦C, known as hyperthermia therapy, has been shown to
increase the blood flow to and permeability of tumor vessels (41). Liposomes have been designed
to release drugs when tumors are preheated (42), and such liposomes containing doxorubicin are
currently in clinical trials (43). However, such conventional hyperthermia often takes approxi-
mately 30–60 min to heat tumors. More rapid heating (within minutes) (44) can be achieved by
irradiating metallic NPs that have surface plasmon resonance (e.g., gold NPs and CuS NPs),
which efficiently absorb light and convert it to heat (Figure 2b) (45, 46). The photothermal prop-
erties of gold NPs have been utilized to enhance the accumulation of subsequently administered
conventional NPs in tumors (47). In one application, the photothermal properties of gold NPs
disrupted tumor vessels; the resulting local overexpression of fibrin (44) was used as a target for the
accumulation of a second group of NPs that were surface modified with a peptide targeting fibrin,
administered 72 h later (47, 48). Organic NPs can be used in a similar manner. Nanoliposomes
composed of lipid conjugates of the photosensitizer pyropheophorbide (a chlorin analogue) can
efficiently absorb and transfer light energy into heat for photothermal therapy. The same nanoli-
posome can also carry doxorubicin for chemotherapy. Irradiation of the nanoliposomes in tumors
induces photothermal effects, and the generated heat enhances tumor permeation, which allows
for doxorubicin accumulation over 24 h (49, 50).

The type of NPs used in photothermal therapy can be also used as the heat source for ther-
moresponsive drug delivery systems. For instance, thermoresponsive polymers coated on hollow
porous gold nanostructures (51) shrink upon irradiation, uncovering the pores and allowing drug
efflux. The use of light to trigger drug release from NPs has been reviewed (12).

Light-triggered nanomaterials have also been used to enhance tumor penetration and drug
delivery. We recently developed a photoswitchable spiropyran-based drug delivery NP with a
light-induced reversible volume change from 100 to 40 nm (52). The volume change of the
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monodisperse NPs enabled repeated drug release, and enhanced NP diffusion into tumors. Trig-
gered release of docetaxel from the NPs decompressed tumor vessels by inducing tumor cell
apoptosis, and prompted NP penetration into and accumulation in the tumor interior (53).

Nanomaterials Using Near-Infrared Light for Tumor Imaging

Conventional approaches to making nanoparticulate tumor imaging agents include loading con-
trast agents inside NPs or onto their surfaces. Alternatively, the NPs themselves can be imaging
agents. In particular, a class of new imaging nanomaterials that can be activated with NIR lasers
has been developed recently: upconversion NPs. Most fluorophores emit light at a longer wave-
length (lower energy) than their excitation wavelength (so-called downconverting photolumines-
cence or Stokes emission). In contrast, upconversion NPs can be excited with continuous-wave
(power is constant over time, in contrast to pulsed lasers) NIR light (900–1,000 nm) to emit at
shorter wavelengths such as visible and UV light (Figure 2c) (54–57). Upconversion NPs are
usually NaYF4 NPs doped with trivalent rare-earth ions (e.g., Yb3+, Tm3+, Er3+, Ho3+) that
absorb 980-nm light. Such upconversion NPs have attracted considerable attention in bioimag-
ing applications because of their large anti-Stokes shifts (>400 nm), sharp emission bandwidths,
high resistance to photobleaching, stable emission, ability to be detected deep within tissue (us-
ing NIR light), and ability to undergo surface modification with biomolecules (58). However,
tissue overheating (and associated phototoxicity) can occur when using upconversion NPs be-
cause 980-nm light is strongly absorbed by water. Such light-induced injury can be minimized
by reducing the absorption wavelength from 980 to 800 nm using core-shell NaGdF4 upcon-
version NPs codoped with Nd3+, Yb3+, and Er3+ (59, 60). An alternative method involves using
NIR-absorbing organic dyes (e.g., cyanine) coordinated on the surface of upconversion NPs. The
dye absorbs NIR light (650–850 nm) and then transfers the energy to Yb3+ (absorption at 900–
1,000 nm); the energy is then extracted by Er3+ inside the upconversion NPs, emitting visible light
(61). The toxicity and safety of such lanthanide-doped upconversion NPs for in vivo applications
is still being evaluated. Recently, organic upconversion NPs have been prepared for bioimag-
ing (62): Albumin-dextran NPs contained photosensitizers that could absorb long-wavelength
light and emitted short-wavelength light via triplet-triplet annihilation (two long-lived triplet
state photons upconverting to a high-energy singlet state for emission). Such organic upconver-
sion NPs have higher quantum efficiency than NaYF4 upconversion NPs do for small-animal
imaging (62).

NIR light can also be used for photoacoustic (optoacoustic) imaging. Photoacoustic imaging
is an ultrasonic imaging technique in which wide-band ultrasonic waves can be induced by a pul-
satile excitation laser (NIR laser) owing to thermoelastic expansion of tissues. The loss of signal
in photoacoustic imaging is negligible compared with other optical imaging techniques because
acoustic waves have two to three orders of magnitude less scattering in tissue than light (63).
Inorganic NPs (e.g., carbon nanotubes and gold NPs; 64–68) have recently been shown to be
improved contrast agents for photoacoustic imaging, with better photophysical properties and
longer circulation times than small-molecule agents. The combination of photoacoustic tomog-
raphy imaging techniques with the potential therapeutic effects from metallic NPs (e.g., pho-
tothermal therapy) may provide a strategy for simultaneous diagnosis and treatment of cancers
(46). For example, tumors with accumulated hollow gold NPs could be imaged using photo-
acoustic technology (66). Accurate and efficient ablation of a tumor by photothermal therapy has
been achieved by simply switching laser power from a power suitable for photoacoustic imaging
(50 mW/cm2) to one suitable for photothermal therapy (16 W/cm2, 3 min) (66).
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STRATEGIES FOR PROLONGING NANOPARTICLE CIRCULATION

NPs have prolonged circulation in the blood compared with small-molecule drugs (<5 nm) (5,
69). Macrophages in the reticuloendothelial system can engulf and clear injected NPs, which
can lower the dose of NPs reaching tumors. Moreover, macrophage uptake of NPs can lead to
compromised host defenses (owing to the saturation of macrophage uptake capability by NPs)
(70), release of toxic by-products (from exposing NPs to a highly oxidative environment upon
phagocytosis) (71), and redistribution of NPs to the liver and spleen that can induce delayed
or chronic toxicity (72–74). Coating NPs with poly(ethylene glycol) (PEG), which is known as
PEGylation and mimics a cell’s glococalyx (75–77), can suppress protein absorption to NPs and de-
lay the rate of NP uptake and clearance, greatly prolonging circulation time. However, PEGylation
cannot eliminate macrophage uptake that is not mediated by serum absorption (78).

Another strategy for prolonging the circulation time is to change the aspect ratio of nanoma-
terials, which affects their interaction with cells (e.g., uptake) and with the hydrodynamic forces
of flowing blood (79). For example, cylindrical micelles had much longer circulation times in vivo
than their spherical counterparts (79). An intriguing approach to evading phagocytosis of NPs was
to graft a synthetic small peptide that was computationally designed from CD47—a cell-surface
marker of self that impedes macrophage uptake (80)—to mimic the CD47-CD172a interaction
that inhibits phagocytosis. This peptide prolonged the circulation time of NPs in vivo (81).

OVERCOMING PHYSIOLOGICAL BARRIERS THAT PREVENT
DEEP TUMOR PENETRATION

Nanoparticles with sub–100-nm sizes are optimal for the EPR effect (82). However, the transport
of NPs or drugs into tumors from the bloodstream is impeded by tumor blood-flow stasis or
collapsed tumor blood vessels (Figure 3) (3). NP access deep into tumors is hindered by the large
distance between blood vessels in tumors and by the dense interstitial matrix—a complex assembly
of collagen, glycosaminoglycans, and proteoglycans (83). For example, Doxil and Abraxane (both
about 100 nm) are found trapped less than 100 µm away from vessels (84–87). In many tumors
that are termed desmoplastic, blood vessels are surrounded by a dense stroma of matrix and
noncancer cells (e.g., fibroblasts) (88). NPs must penetrate up to hundreds of micrometers through
stroma to reach their target cancer cells. Deep penetration of NPs in tumors is necessary for
therapeutic effect (89). Various physicochemical parameters of NPs have been studied to develop
an understanding of NP-tumor interaction that might lead to enhanced tumor penetration. NP
size is one crucial determinant of accumulation and penetration into tumor tissue. It is reported
that approximately 30-nm polymeric micelles showed enhanced tissue penetration and potent
antitumor activity in pancreatic tumors compared with larger NPs (90). In another example,
50-nm silica NPs showed deeper tissue penetration and higher accumulation in breast tumors over
time, compared with 20 nm or larger NPs (91). Of note, recent studies showed that approximately
15-nm gold NPs surface decorated with siRNA could pass through a compromised blood-brain
barrier and accumulate in glioblastoma (92). NP size appears to be a critical determinant of
penetration into and accumulation within tumor tissue, although the effects of specific sizes depend
on the particular formulation studied.

Antiangiogenic Therapy for Drug Delivery

Antiangiogenic therapy can normalize the tumor vasculature by inducing vessel maturation such
that there is increased perfusion and more evenly distributed vasculature within tumors (93). This
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Figure 3
Scheme of the delivery barriers that prevent deep penetration of nanoparticles (NPs) in tumors. The
abnormal tumor vasculature, dense collagen matrix, and collapsed vessels in the tumor interior present
barriers to NP penetration deep into tumors.

normalization has been suggested as a means of modulating and perhaps improving NP delivery
into tumors. Recently it was found that blocking vascular endothelial growth factor receptor-2
(VEGFR2) in mouse mammary tumors greatly improved the delivery of small NPs (12 nm) but
not large NPs (125 nm) (94). The explanation for this observation may be that the maturation
of the tumor vasculature by the anti-VEGFR2 agent decreased the tumor vessel pore size, which
then allowed only the smaller NPs (<60 nm) to be rapidly transported in tumor tissue.

Targeting Tumor Extracellular Matrix to Improve Drug Delivery

In solid tumors, penetration of macromolecular agents and NPs is affected by tumor stromal
barriers such as the extracellular matrix (ECM) (e.g., collagen network) (85). Numerous studies
have shown that ECM-degrading enzymes, such as collagenase or hyaluronidase, can improve
NP penetration into solid tumors (84, 95, 96). However ECM-degrading agents may increase
the incidence of metastasis (97). The antihypertensive drug losartan was recently found to re-
duce tumor collagen content by blocking angiotensin-II-receptor 1 and has been successfully
used to enhance diffusive transport and efficacy of intravenously administered NPs such as Doxil
(98, 99). However, in a recent multicenter Phase II clinical study, combined chemotherapy with
gemcitabine and candesartan, a losartan analogue, failed to demonstrate prolonged progression-
free survival in advanced pancreatic cancer patients (100). A safety concern was also raised because
hypotension induced by candesartan was observed in some patients.

Tumor-Penetrating Peptides for Enhanced Tumor Penetration

Tumor-penetrating peptides, such as iRGD (a cyclic RGD peptide, CRGDKGPDC) and Lyp-
1 (CGNKRTRGC), were identified by phage library screening and were able to enhance drug
or NP penetration into tumors (101, 102). The iRGD peptide is proteolytically degraded into
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its active form and bound to neurophilin-1, which is expressed in tumor vasculature and tumor
cells, and it induces endocytic bulk transport through tumor tissue; the detailed pathway for tissue
penetration and endocytosis is still being elucidated (103). Co-administration of such peptides
with Abraxane NPs significantly increased their intratumoral accumulation (101).

BIOORTHOGONAL CHEMISTRY FOR TUMOR TARGETING

Selective targeted delivery of drugs to tumors is a major challenge in cancer therapy. Conjuga-
tion of tumor-targeting ligands to NPs has been widely used for tumor-selective drug delivery
or diagnostics. Recently, the use of bioorthogonal chemistry for tumor targeting has emerged as
a new strategy that can be independent of the use of targeting ligands. Bioorthogonal chemistry
refers to a variety of chemical reactions using functional groups that generally do not occur in the
host creature and that do not interfere with native biochemical reactions (104). Such reactions in-
clude azide-alkyne cycloaddition, azide-phosphine Staudinger ligation, and tetrazine-cyclooctene
Diels-Alder reactions (105, 106) (Figure 4a). Bioorthogonal chemistry can be used for cell surface
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Figure 4
Bioorthogonal reactions for tumor targeting. (a) Examples of bioorthogonal reactions: azide-alkyne
cycloaddition and cyclooctene-tetrazine Diels-Alder reaction. (b) Schematic illustration of tumor targeting
using bioorthogonal reactions. Tumor cells are first fed with unnatural aminosugars that contain one
functional group for the bioorthogonal reaction. That functional group is later expressed on the tumor cell
surface and can react via a bioorthogonal reaction with nanoparticles that are surface modified with another
functional group.
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modification in vitro. For example, aminosugars containing one unnatural functional group can
be taken up by cells and expressed on their surfaces; the introduced functional group can undergo
bioorthogonal chemistry to artificially label the cells (107). Such in vitro cellular modification in-
spired a two-step in vivo tumor-targeting strategy to enhance intratumoral NP accumulation (108).
The first step involved treating the tumor, by intratumoral injection, with an unnatural glycan
containing an azide group. Cancer cells would take up glycans and express them, with azide groups,
on cell surfaces. When NPs containing alkyne groups were administered systemically, they under-
went a bioorthogonal reaction with the azides in the tumor, which led to enhanced intratumoral
accumulation of NPs (Figure 4b). Bioorthogonal tumor-targeting strategies can also be applied to
tumor imaging. Tumor cells prelabeled with antibodies modified with cyclooctene were implanted
subcutaneously, and perfluorocarbon microbubbles surface modified with tetrazine groups were
injected systemically and reacted with the cyclooctene on the tumor cells, which could then be bet-
ter imaged by ultrasound in vivo (109). In another example of tumor imaging using bioorthogonal
chemistry, mice were first injected intravenously with a tumor-targeting peptide modified with
a tetrazine group. Liposomes containing the short-lived positron emission tomography (PET)
tracer 18F were surface modified with cyclooctene and administered systemically. The liposome
with cyclooctene quickly reacted with tetrazine-modified peptides bound to tumor cells, which
highlighted the tumor for PET imaging. The prolonged circulation of liposomes allowed for imag-
ing with enhanced signal intensity (110). An alternative targeting strategy that takes advantage
of biotin-streptavidin binding has also been reported: Biotin-coated gold NPs were first injected
into tumor-bearing mice and accumulated in the tumors via EPR. A streptavidin-labeled contrast
agent was then administered to image the tumor (111). Bioorthogonal approaches are intriguing,
but the initial step of introducing the unnatural functional group into tumors or tissues can be
technically challenging.

NANOMATERIALS FOR CANCER IMMUNOTHERAPY

Immunotherapy has become a promising approach for cancer treatment and management, owing
to the recent success of proof-of-concept clinical trials (112). Current cancer immunotherapeutics
target cancer cells by generating host immune cell responses to tumor antigens.

The use of nanomaterials in cancer immunotherapy can deliver agents to specific organs (e.g.,
lymph nodes) or cells. In particular, NPs have been used to target immune cells inside lymph
nodes (LNs) or mucosal tissues to induce immune responses toward tumors. NP size directly
affects which immune cells the NPs enter. Upon footpad injection in mice, particles between
500 and 2,000 nm are generally processed by antigen-presenting cells (APCs) at the injection
site, whereas sub–200-nm NPs can traffic to the LNs, where they are captured by LN-resident
dendritic cells (DCs) (113). After intradermal injection, 25-nm NPs can flow through lymphatic
capillaries to the draining LNs, whereas 100-nm NPs cannot be transported to LNs (114). Such
size-dependent LN-targeting has been used for both imaging and vaccination. In one example,
16-nm iron oxide/zinc oxide NPs carrying carcinoembryonic antigen were injected into the mouse
footpad and trafficked to draining LNs. The NPs could be imaged by MRI because of the iron
oxide, and they were also effective as vaccines, showing strong cytotoxic T lymphocyte responses
and significant reduction of tumor growth (115). NPs have been designed to target LNs for vacci-
nation against tumors. The immune-modulator molecule CpG and an adjuvant (ovalbumin) were
conjugated onto the surfaces of separate 30-nm polymeric NPs and were injected intradermally.
Both NP conjugates rapidly drained to the LNs and enhanced the DC uptake of both antigen
and adjuvant (116). This codelivery strategy induced potent effector CD8+ T cells and a more
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Figure 5
Scheme of nanoparticle (NP)-tethering T cells for adoptive cancer immunotherapy. T cells are linked with NPs that contain cytokines,
which can stimulate the T cells to kill tumor cells. The activated T cells are adoptively transferred in vivo; NPs release cytokines locally
to sustainably stimulate T cells to target tumors.

efficacious memory recall by cytotoxic T cells upon reinjection of tumor cells, compared with the
response when NP-conjugated antigen was used with free adjuvant.

NPs can be delivered via pulmonary administration to the numerous APCs in the lung, which
can take them up avidly (117). A subset of such lung APCs can further transport NPs containing
antigens to DCs in draining LNs. In mice vaccinated by pulmonary administration of nanovesicles
loaded with antigen and Toll-like receptor agonist, which both promote cytotoxic T cell response
(118), the antigen was detected in LNs for at least 7 days, whereas pulmonary immunization with
soluble vaccines led to rapid antigen clearance. Strong T cell responses elicited by this pulmonary
vaccine nanovesicle enhanced protective immune responses in tumors.

Cell therapy for cancer immunotherapy (e.g., adoptive transfer of T lymphocytes) represents
another promising approach (119). In this approach, immune cells (e.g., T cells) are harvested and
stimulated ex vivo with cytokines before they are reintroduced into the body. Cytokines used in
such therapy may cause systemic toxicity, but they have to be kept at high concentrations near
the administered therapeutic cells to maintain cell stimulation over an extended period. A new
approach to overcome this problem is to directly tether cytokine-loaded NPs to the surfaces of
the therapeutic cells prior to infusion (120). Liposomal NPs containing IL-15Sa and IL-21 were
conjugated to thiol groups on the surfaces of T lymphocytes. The NP-tethering strategy greatly
enhanced T cell survival and expansion after infusion and slowed tumor growth (Figure 5).

PERSPECTIVE

Cancer nanomedicine is a very rapidly growing field of translational medicine (121). Effective
therapeutics and diagnostics for cancer require delivery to tumors with appropriate temporal
resolution to achieve the most favorable pharmacokinetics. Various forms of tumor targeting,
including stimulus-responsive drug delivery systems, can address this need. The development of
new nanomaterials will be a crucial driver of progress in this field. However, a better under-
standing of the fundamental processes involved is necessary to overcome major hurdles in cancer
nanomedicine, including NP circulation, biodistribution, tumor targeting, and tumor penetration.
Further knowledge of cancer biology and oncology will enhance the rational design of NPs for
specific cancers. Research is needed to develop new strategies to treat metastatic tumors, which
account for the majority of cancer deaths (122). The early detection of tumor by NPs will also be
useful for catching cancer at an early stage. Biocompatibility, toxicity, and the numerous formu-
lation issues that pertain to all nanomaterials will remain important for the success of new cancer
nanomaterials (123).
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