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Abstract

Systems pharmacology aims to holistically understand mechanisms of drug
actions to support drug discovery and clinical practice. Systems pharmacol-
ogy modeling (SPM) is data driven. It integrates an exponentially growing
amount of data at multiple scales (genetic, molecular, cellular, organismal,
and environmental). The goal of SPM is to develop mechanistic or predic-
tive multiscale models that are interpretable and actionable. The current
explosions in genomics and other omics data, as well as the tremendous ad-
vances in big data technologies, have already enabled biologists to generate
novel hypotheses and gain new knowledge through computational models of
genome-wide, heterogeneous, and dynamic data sets. More work is needed
to interpret and predict a drug response phenotype, which is dependent on
many known and unknown factors. To gain a comprehensive understanding
of drug actions, SPM requires close collaborations between domain experts
from diverse fields and integration of heterogeneous models from biophysics,
mathematics, statistics, machine learning, and semantic webs. This creates
challenges in model management, model integration, model translation, and
knowledge integration. In this review, we discuss several emergent issues in
SPM and potential solutions using big data technology and analytics. The
concurrent development of high-throughput techniques, cloud computing,
data science, and the semantic web will likely allow SPM to be findable,
accessible, interoperable, reusable, reliable, interpretable, and actionable.
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Drug action: how a
drug interacts with and
affects the human
body; see agonist and
antagonist, below

Partial agonist:
a drug or ligand that
binds to a receptor but
does not have the
efficacy of a full agonist

Inverse agonist:
a drug or ligand that
binds to the same
receptor as an agonist
but produces different
effects

Polypharmacology:
designing drugs to
work on many
different targets,
diseases, or both

INTRODUCTION

Drug action is a complex process. A chemical, which can be synthesized, natural, or endogenous,
starts its effect on biological systems through its interactions with biomolecules (proteins, DNAs,
or RNAs), that is, its targets. In the case of most commonly investigated protein targets, many
types of interactions are determined by protein conformational dynamics, from antagonism to
partial agonism and inverse agonism, from biased signaling to allosteric modulation (1, 2). The
change in the functional state of the biomolecule, which depends on the kinetics of ligand bind-
ing and unbinding and the thermodynamic transitions that ensue, will ultimately drive biological
outcomes. Moreover, a chemical rarely binds to a single target. Multiple target binding (i.e.,
polypharmacology) is a common phenomenon (3). Even weak drug-target interactions can have
a collectively strong effect on the physiological response of an organism (4). To understand how
altering the functional state of multiple biomolecules changes the cellular milieu by regulating
gene expression, signal transduction, and metabolism and ultimately modifies the physiological
or pathological state of the individual, systems biology provides a means to model, simulate, and
predict the phenotypic response of drug action (5). The fate of the drug molecule itself is also
dependent on the activity and expression of transporters and metabolizing enzymes and the lo-
cal physiological environment. Individual genetic and epigenetic variations and lifestyle choices
such as diet add great diversity to the drug action. They may not only impose an effect on the
thermodynamics and kinetics of drug binding as well as pharmacokinetics, but also rewire the
biological network, thereby resulting in a dramatically different drug response. A reductionist
view of drug action is too simple to explain and predict the drug phenotypic response to complex
diseases. We need a holistic understanding of drug action in a background of diverse genetic, epi-
genetic, and environmental factors. These factors include conformational dynamics of drug-target
interactions, emergent properties of biological systems, enzyme reactions, and physiology-based
pharmacokinetics (6). Embracing the concept of multiscale systematic modeling of drug actions
by integrating multiple omics data and biological mechanisms speaks to the emergence of a new
discipline of systems pharmacology (6, 7). The fundamental features of systems pharmacology
are (a) the development of actionable and interpretable mechanistic or predictive models through
the integration of biological and clinical data at multiple temporal and spatial scales and (b) the
use of the output from the model for generating novel hypotheses, discovering new biomedi-
cal knowledge, and supporting decision making in drug discovery and clinical practice. Systems
pharmacology provides a promising avenue to gain a comprehensive and systematic view of drug
action under the complex interplay of genetic, molecular, cellular, organismal, and environmental
components. Such understanding may fill the current innovation gap in drug discovery (8).

Data-driven modeling plays a central role in systems pharmacology. Recent developments in
high-throughput experiments have generated a huge amount of data across the multiple biolog-
ical scales of the organism, across a wide range of timescales, and across multiple species. These
data provide unprecedented opportunities for systems pharmacology but impose great challenges
in data processing, management, sharing, and integration (9, 10). The rapid advances in cloud
computing, big data technology, and data science offer an opportunity to clear the hurdles in
data-driven modeling for systems pharmacology. The planned US National Strategic Comput-
ing Initiative will maximize the benefits of High Performance Computing. The development of
the US National Institutes of Health (NIH) Data Science Commons (https://datascience.nih.
gov/commons) will make biological data findable, accessible, interoperable, and reusable (11).
These efforts will enhance significantly the availability and quality of biological data, thereby en-
hancing the capability of systems pharmacology modeling. Indeed, systems pharmacology models
based on the integration of genome-wide, heterogeneous, and dynamic data sets have already
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Semantic web: “[A]
common framework
that allows data to be
shared and reused
across application,
enterprise, and
community
boundaries”
(https://www.w3.org/
RDF/FAQ)

Machine learning:
subfield of computer
science; builds a model
from an example data
set of observations and
makes predictions or
decisions for a new
data point

Elastic network
model: method to
study macromolecular
movements at short
and long timescales;
the macromolecule is
represented as a
mass-and-spring
network

Drugome: network
with nodes represented
by drugs and receptors
and edges representing
interactions between
nodes; used to predict
which drugs can be
repurposed

shown promise in drug repurposing (12–14), predicting drug side effects (15–18), and developing
combination therapy (19) and precision medicine (20).

With the explosion of mathematical and computational models for genomics, molecular dy-
namics (MD), biological networks, whole cells, tissues, organisms, and populations, we face new
challenges. How can we manage these diverse models efficiently and effectively, including sharing,
reuse, validation, reproducibility, access, and searching? How can we integrate diversified models
that are from different resources, based on different methodologies, and at different temporal
and spatial scales into a unified, potentially more powerful mechanistic or predictive model that
captures the whole spectrum of drug actions? How can we translate mathematical languages or
decipher black boxes representing these models into cause-and-effect relationships or simple rules
that can be comprehended by biologists and clinicians, and integrate them with existing knowledge
for automated reasoning and decision making? Addressing these challenges will no doubt facilitate
harnessing big data for systems pharmacology and realize the full power of systems pharmacology
in drug discovery and clinical practice. In this review, we discuss some of the unsolved issues in
the management, integration, and translation of systems pharmacology models, and we propose
possible solutions to them using big data technology and analytics. Researchers expect that parallel
developments in high-throughput techniques, cloud computing, data science, and the semantic
web will allow systems pharmacology models to be findable, accessible, interoperable, reusable,
reliable, interpretable, and actionable.

MODEL MANAGEMENT

A comprehensive and systematic understanding of drug action requires the integration of diverse
models from different data modalities (e.g., single-nucleotide variants, copy-number variations,
methylations, proteomics, transcriptomics, metabolomics) across multiscales of cellular organiza-
tion, from the atomic details of drug-target binding thermodynamics and kinetics to proteome-
scale drug-target interactions, from the functional impact of mutations to emergent properties of
biological networks, from cytochrome P450 enzyme reactions to physiology-based pharmacoki-
netics. They can be biophysics-based molecular models, machine learning models of molecular
interactions, mathematical models of systems biology or pharmacokinetics, or, taking this to the
extreme, connectome models of the human brain. Even in the same type of model, models can be
significantly different. For example, an MD model of protein structure could be a Cα-represented
coarse-grained elastic network model or an all-atomic conformational ensemble from microsec-
ond MD simulations. A drug-target interaction model could be a graphic representation that
abstracts each protein and drug as a single node and the interaction between them as an edge (21),
whereas a drugome model includes three-dimensional structures of drug-target complexes (22).
A systems biology model could be represented as a stoichiometric matrix and flux bounds (23),
based on ordinary differential equations, or encoded as three-dimensional geometries and partial
differential equations (24). Machine learning models could be inferred using different features
and base learners. Furthermore, the models from different domains are often interleaved. For
example, a drug-target binding/unbinding kinetics model could be a combination of an elastic
network model and machine learning model (25). The diversity of models makes it a nontrivial
task for scientists to discover, access, and reuse a model that is beyond their domain of exper-
tise, as well as to integrate multiple models. Moreover, a model alone may not be sufficient for a
real-world application; the model is often dependent on multiple data sets. Big data integration
is an important topic in systems pharmacology that has been covered elsewhere (9, 10). Beyond
the data challenge, models are coupled strongly with algorithms underlying the model, software
that implements the algorithm to execute the model, and tools that process inputs and outputs.
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Heterogeneous
models: models that
use different data
modalities or different
algorithms

Ontology: entities
within a domain and
their associated
relationships; some
ontologies are
machine readable and
actionable (e.g., the
gene ontology)

Software is often developed in different languages, compiled in different operating systems, and
changed over time, making its interoperability, reuse, and reproducibility difficult (26). Moreover,
software that is developed as part of a research program rather than a development process is rarely
professional grade, robust, and easy to use. Innovative model management strategies for systems
pharmacology, including but not limited to model storage, transfer, sharing, standardization, and
validation, are urgently needed.

Model Storage, Transfer, and Sharing

With the exponential increase of biological data and computing power, the number of systems
pharmacology models increases at an even faster pace. For example, understanding of drug binding
thermodynamics and kinetics requires detailed study of the conformational dynamics of protein
structures. Now it is possible to sample the conformational space of a protein structure at microsec-
ond timescales and longer using MD simulations (27). MD generates millions of conformations
for further analysis—ten times more than all the structures deposited in the Protein Data Bank
(28) to date. Recent development of the Macromolecular Transmission Format for compact and
accurate representation of biomolecular structural data may overcome storage and input-output
hurdles in biomolecular structural modeling (http://mmtf.rcsb.org).

Heterogeneous network models of chemicals and proteins are very useful to predict genome-
scale drug-target interactions. A network model of all chemicals in ChEMBL (29) may have
millions of nodes and tens of millions of edges. Similarly, a network model for all sequences in
UniProt (30) can quickly reach 100 million nodes. The number of edges will increase exponen-
tially with the increase in nodes. The size of systems pharmacology models will impose a hurdle
for model storage and transfer, making model sharing difficult. By taking advantage of the un-
derlying properties of biological systems (e.g., redundancy), systems pharmacology models can
be compressed without loss of information (31–34). Furthermore, big data storage and transfer
technology, which has already gained substantial attention in genomics (35), can be applied to
large-scale computational models in systems pharmacology.

Model Standardization

To make systems pharmacology modeling findable, accessible, interoperable, and reproducible,
computational models must adhere to a common standard of representation and annotation, in-
cluding a description of the execution and outcomes of the simulations. Much effort has been
devoted to standardization in systems biology to facilitate collaboration (36, 37). Now nearly all
modeling in systems biology follows the suggestion of the Minimal Information for Biological and
Biomedical Investigations project (38). The minimum information required in the annotation of
models (MIRIAM) provides guidelines to curate models (39). The MIRIAM registry proposes a
connection between ontologies, model format, databases, and tools (40, 41). Ontologies have been
developed to describe model structures and components, mathematical formulizations, and sim-
ulation algorithms (36). Several modeling formats have been proposed to encode systems biology
models (36). Notably, the Pharmacometric Markup Language PharmML for the representation
and exchange of pharmacometric models is under development (42). A recent development of the
YAML metabolic modeling format enables version tracking and provides a flexible infrastructure
for the distribution tracking and collaborative annotation of metabolic models (37).

The efforts made by the systems biology community should be extended to systems pharma-
cology, which is even more diversified than systems biology. It requires the development of new
modeling ontologies, utilities, and visualizations in a specific domain, as well as protocols and

248 Xie · Draizen · Bourne

http://mmtf.rcsb.org


PA57CH13-Xie ARI 24 November 2016 10:8

Stoichiometric
model:
see constraint-based
metabolic network
model

Flux constraint:
see constraint-based
metabolic network
model

Constraint-based
metabolic network
model: shows
metabolic pathways
separated into
metabolites, reactions,
and enzymes, with
each reaction
constrained by each
metabolite’s
concentration, also
known as flux or
stoichiometry

tools that enable communication across domains. For example, to predict how drug inhibition of
gene A and a mutation in gene B affect blood pressure collectively, we may need three models:
a biophysical model to determine the strength of competitive inhibition of the drug on its target
gene A, a machine learning model to predict the functional impact of mutations on gene B (e.g.,
neutral or deleterious), and a genome-scale metabolic model or a kinetic model that takes the
outputs from drug binding and mutation models as inputs. The output of a biophysical model is
usually in the form of a binding free energy. The output of a machine learning model of mutation
could be the probability that the mutation is predicted to be deleterious. The input required for
the stoichiometric or kinetic model is different: The stoichiometric model may need to constrain
the flux corresponding to the reaction catalyzed by the target of the drug or harbored mutation,
whereas the kinetic model may need to modify the kinetic parameters of the corresponding reac-
tion. The integration of popular bioinformatics workflow systems such as Galaxy (43) with cloud
computing (44) could be a powerful approach to linking diverse models together. However, ex-
isting workflow systems do not have sufficient semantic supports to represent and reproduce the
communications between models. An ontology is needed to represent common molecular com-
ponents and their interactions, which may have different representations in different models. For
example, a gene can be represented by a structure of the encoded protein in the biophysical model
but by a fragment of DNA sequence in the mutation model. Eventually they need to map to a
variable in a mathematical model. Moreover, detailed descriptions of the experimental procedure
(e.g., how to convert the binding free energy to a flux constraint) should be encoded in a way that
makes it understandable to both machines and humans. Such efforts cannot be successful without
an ecosystem that encourages collaborations. The NIH Data Science Commons is beginning to
address this challenge (11).

Model Validation

A more serious problem in the application of systems pharmacology modeling is how to validate
models, assess their accuracy and reliability on a new prediction, and define the scope of their
application domains. Recent debates on the origins of inconsistency of constraint-based network
modeling that describes a biological system by a set of constraints (e.g., mass balance, thermo-
dynamics) highlight the difficulties in model validation (31, 45, 46). Constraint-based network
modeling is a powerful tool in systems pharmacology. It has been applied to predict drug side
effect profiles resulting from off-target binding (47), elucidate mechanisms of antibiotics (48),
predict personalized drug responses (20), and identify drug targets and biomarkers (49). How-
ever, the application and reproducibility of constraint-based modeling are hampered by the lack
of standard formats for network models and associated tools to parse the models (31, 37, 45, 46).
A more fundamental issue is whether an exact arithmetic solver is required to achieve consistent
results (31, 45, 46). The standardization efforts in systems biology discussed above may facilitate
addressing these problems. The minimum information about a simulation experiment has been
proposed to define unambiguously how to reproduce simulation results (50). Such information
should be included in all types of models in systems pharmacology.

Machine learning–based big data analytics is playing an increasingly important role in systems
pharmacology (10). Owing to the nature of pharmacological data that are often biased, incomplete,
and heterogeneous, and our limited knowledge of biological systems and human physiology, the
machine leaning models generalized using a specific algorithm and one particular set of data may
not be applicable to a new case. Thus, the rigorous, on-the-fly validation of machine learning
models is critical, particularly in a risk-sensitive domain (e.g., to determine if a cancer patient is
sensitive to an experimental anticancer drug or if a lead compound should move into clinical trials,
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Active learning:
special case of
semisupervised
machine learning; a
learning algorithm
queries the user (or
another information
source) interactively to
obtain desired outputs
at new data points

Case-based
reasoning (CBR): a
way to apply solutions
from similar problems
to the current problem

Pharmacometrics
model: model used to
relate drugs and
patients using
pharmacology
(pharmacokinetics and
pharmacodynamics),
physiology, and disease

in which failure is costly). In this regard, the validation of a machine learning model for systems
pharmacology using conventional techniques, such as cross-validation or a limited number of
wet-lab experiments, is not sufficient, as such a model does not cover the whole pharmaceutical
and physiological space and provides a only global performance measure. To define clearly the
applicable domain of a model so that a nonexpert can have sufficient information to use the model
wisely, new standards are needed for the future development and description of machine learning
models for systems pharmacology. Firstly, the model should be evaluated constantly whenever
new data become available. Models must be associated with computational tools that extract and
format new data as well as metadata that describe the data on validation. Whenever feasible, the
model can be retrained in the framework of active learning (51). Secondly, multiple evaluation
metrics are needed, as different applications should be measured differently. For example, a ranking
is sufficient for a web search but not for determining if a drug is effective in a patient. Finally,
for each prediction, the reliability of the prediction should be estimated, as a new case may fall
outside the generalized hypothesis space of a model that is based on biased and incomplete data.
A case-based reasoning (CBR) framework may be useful to address this problem, as detailed
below.

Model Access and Reusability

Even if systems pharmacology models and their associated data, algorithms, and software are well
defined and validated, it may not be easy for a user to find the most suitable models unless all
relevant documents and literatures are studied. Researchers have developed several databases to
host computational models relevant to systems pharmacology, such as drug-target interaction
models (52), constraint-based metabolic network models (53), and pharmacometrics models (54).
However, several challenges still remain that hinder the accessibility and usability of systems
pharmacology modeling. Firstly, data, software, and models are scattered around the Internet.
Diverse systems pharmacology models have not been registered in a central place so that they can
be easily accessed. Secondly, data, algorithms, and software that are used to build the model are
often separated from each other. As discussed above, data and software that are used to develop
systems pharmacology models are inseparable components of those models. Finally, there is no
easy way to search for suitable models to use in a systems pharmacology modeling project.

The NIH Data Science Commons is building a shared virtual space that allows scientists to
find, manage, share, use, and reuse digital objects (data, software, metadata, and workflows). It
is a complex ecosystem including a computing environment, data sets, and software services and
tools. The computing environment (e.g., cloud) supports access, use, and storage of digital objects.
Publically available data sets need to adhere to Commons digital object compliance FAIR (findable,
accessible, interoperable, and reproducible) principles. Software services and tools will enable
scalable provisioning of compute resources; interoperability between digital objects within the
Commons; discoverability of digital objects; sharing of digital objects between individuals or groups;
access to and deployment of scientific analysis tools and pipeline workflows; and connectivity with
other repositories, registries, and resources.

The concept of the Commons can include systems pharmacology models, each of which is a
collection of model representation, data, software packages, and metadata that describe them. As
shown in Figure 1, model, data, software, and metadata can be stored in different computers in a
cloud computing environment. To make software reusable, big data technology such as Docker
(https://www.docker.com/) can be used to wrap the software. Metadata are needed to standardize
and characterize components of data, model, and software; define their interactions; and register
the model system in the Commons.
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Cloud computing
environment

Data 

Metadata 

Software
container

Model 

Model Commons 

Recommendation
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Model
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User interface
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c  Model Commons
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Model

Data

Algorithms
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Figure 1
Scheme of a systems pharmacology model management system that adheres to Commons digital object
compliance FAIR (findable, accessible, interoperable, and reusable) principles. (a) Architecture of model
management systems. Models are linked with associated data sets, metadata, and software that are wrapped
within a container and accessed through a model Commons. The whole system may be supported by a cloud
computing environment. (b) Model metadata are built on ontologies, including information on the model
itself, data, algorithms, and software. (c) The model Commons may need a recommendation system to rank
the relevant models based on user requests in addition to a model registry and user interface.

To make models findable and accessible, a recommendation system similar to those used in
Netflix or Amazon can be valuable. Each model can be associated with a set of features. These
features may include the usage information of the model, description of embedded data and
underlying algorithm in the model, summary of the software package used, and applications cited
in the literature. Existing techniques in big data analytics, especially those for the recommendation
system, can be applied to build the recommendation systems using the features associated with
the model. Thus, the models can be ranked based on the user’s interest.

In summary, a systems pharmacology model is useful only when it can be used routinely by
domain experts. The challenge in developing predictive models of drug action is highly complex
and multidisciplinary. It is not likely to be overcome by any one group of researchers. Enabling
scientists to reproduce and extend the work of others requires that the models and methods
be distributed in a manner that is both accessible and usable. It requires close collaboration
between model developers and end-users. The wise utilization of big data technology may facilitate
establishment of an environment that fosters the development, dissemination, and effective use of
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Vertical model
integration:
integrating models
across different scales

Horizontal model
integration:
integrating models on
the same scale

Ensemble learning:
a machine learning
method that averages
over multiple models
to establish one strong
learner

Data fusion:
a technique that uses
multiple data sets from
different data
modalities to build
predictive models

Sensitivity: true
positive rate or recall,
or the proportion of
positives correctly
classified; TP/(TP +
FN), where TP =
number of true
positives and FN =
number of false
negatives

Data modality: type
of data that describes
the problem of interest

systems pharmacology models, as well as the realization of community-based predictive modeling,
a lofty goal in drug discovery (55).

MODEL INTEGRATION

The integration of multiple diverse models is critical for the success of systems pharmacology
modeling. Firstly, investigators have recognized that multiscale modeling, from the atomic details
of protein conformational dynamics to the emergent properties of biological networks, is needed
for understanding drug actions comprehensively and holistically as well as developing precision
medicine (6). The success of multiscale modeling depends on the mechanistic integration of
molecular, network, tissue, organism, and populations models at several spatial and temporal
scales. Owing to its complexity, a semantic integration that links data and information from
diverse resources based on ontologies may be needed, as discussed in the next section. Secondly,
on the same scale, multiple models can be combined by a plethora of machine learning techniques.
The combination of multiple models will generally outperform a single model. However, there is
no one-size-fits-all solution to achieve the optimal model combination in the context of systems
pharmacology. Like the data integration in systems pharmacology (7), we refer to the model
integration across different scales as vertical model integration but refer to model combination
at the same scale as horizontal model integration. Finally, two of the fundamental questions in
systems pharmacology are how to link in vitro drug potency to in vivo drug activity and how to
extrapolate the drug response in animal models to that in humans. Solving these problems requires
effective methods to reduce the transportability bias. Such bias arises when the population from
which data are acquired is different from the one for which the inference is intended. Thus,
the success of model integration in systems pharmacology depends on solutions to multiscale
modeling (vertical model integration), horizontal model integration, and model transportability,
as shown in Figure 2. The problem of multiscale modeling and model transportability in systems
pharmacology (i.e., vertical integration) has been discussed elsewhere (10); here we focus on
horizontal model integration.

Overview of Existing Techniques in Big Data Analytics
for Horizontal Model Integration

Horizontal model integration can combine models that are built from different combinations of
data sets, samples, features, and machine learning methods. Depending on the training data and the
base method used, horizontal model integration can be cast as problems of ensemble learning, or
data fusion in data science. Ensemble learning is a machine learning method that combines multiple
predictive models to hopefully form a better model using the same base method, usually using a
single data set. Alternatively, data fusion techniques use multiple data sets that are from different
data modalities (a.k.a. views). For example, multiple genomics data sets such as those of mutations,
copy-number variations (CNVs), methylation profiles, and gene expression profiles can all be used
to develop predictive models for anticancer sensitivity. Each single data set is a modality or view.

Data fusion methods can be classified roughly into three categories. In the first category, a first-
level model is built for each modality independently. Then these first-level models are combined
by training a second-level model that uses the predictions of the first-level models as features (56)
or via a meta-predictor that takes the majority votes or weights from the prediction of the first-level
models; the meta-predictor has been widely used in chemoinformatics and bioinformatics (e.g.,
for predicting disease-associated mutations) (57). In the second category, a joint representation of
multiple data sets is learned using deep neural networks (58). The third category combines different
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Figure 2
Model integration in systems pharmacology. Diverse models need to be integrated across multiple
methodologies, multiple heterogeneous data sets, organismal hierarchy, and species (transportability).
Abbreviations: CNV, copy-number variation; GWAS, genome-wide association studies; SNP, single-
nucleotide polymorphisms.

Multikernel
learning: machine
learning methods that
use a predefined set of
kernels and learn an
optimal linear or
nonlinear combination
of kernels

Kernel: a similarity
function between data
points

Kernel-based matrix
factorization:
method to project data
(i.e., drug compounds
and target proteins in
pharmacological
models) into a
subspace with lower
dimensionality using
kernel functions that
estimate interactions
(62)

data sets based on their semantic relationships. The semantic relationship may include the similar-
ity that corresponds naturally to different viewers or biological dependencies between views (e.g.,
the regulation of gene expression through DNA methylation). Data fusion methods have been
applied to address many problems in systems pharmacology modeling. For example, a predictive
model based on multikernel learning that combines kernels of genomics data sets is one of the best
performers in the DREAM anticancer drug sensitivity challenge (59). The kernel is a similarity
function between data points. Kernel-based matrix factorization that combines drug similarity and
target similarity is a promising method to predict novel drug-target interactions (60). PARADIGM
uses Bayesian network models to combine genetic variation, gene expression, and pathway infor-
mation for gene enrichment analysis (61). The Bayesian network is a probabilistic graphic model
that represents a set of biological measurements and their dependencies. Multitask learning that
learns several related problems together at the same time using a shared representation of mul-
tiple data modalities has proved to be a valuable approach for inferring multitarget quantitative
structure-activity relationship models for lead optimization (62). The advances in big data tech-
nology provide new opportunities for model combination. As different models in the combination
can be trained independently, parallel and distributed computing models such as MapReduce will
facilitate the implementation of horizontal model integration (63, 64). In spite of these advances,
new strategies are needed to address inherent problems in systems pharmacology modeling.

Challenges in the Application of Big Data Analytics to Systems Pharmacology

When one is adapting existing techniques in big data analytics to model integration in systems
pharmacology, several challenges remain owing to the inherent complexity of biological and clin-
ical data. In addition to big volumes, pharmacological and clinical data are high dimensional,
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incomplete, biased, heterogeneous, dynamic, and noisy. Unlike big data in other domains such
as social networks, imaging processing, and natural language, where there are huge numbers of
samples, pharmacological and clinical data may be sparse but high dimensional. For example,
in genome-wide association studies (GWAS), the sequencing data of a whole genome can have
hundreds of gigabytes with hundreds of thousands of single-nucleotide polymorphisms. The sam-
ple size is typically in the range of hundreds of individual genomes. Although the total volume
of data can be hundreds of terabytes, the number of variables is far larger than the number of
samples. The One Million Genome Project cannot solve the under sampling problem completely
owing to the diversity of disease phenotypes and pharmacogenomics profiles. The issue of how to
handle extremely high-dimensional sparse data is an unsolved problem in big data analytics. For
example, without integrating with other data, GWAS data alone cannot identify disease-associated
mutations (65).

A second challenge is that existing data from pharmacology are often incomplete and biased.
For example, only several thousand genes from multiple organisms have associated ligand binding
information. Moreover, the number of associated ligands for each target is highly uneven, with
many uncharacterized proteins playing important roles in drug action. Thirdly, in terms of het-
erogeneity, these data span the hierarchical organization of an organism (molecule, pathway, cell,
tissue, organ, patient, and population), across a wide spectrum of timescales, and across multiple
species. As mentioned above, multiscale modeling is required (6). Even in the same organism and
at the same timescale of the same species, the data can be highly heterogeneous. For example,
intertumor and intratumor heterogeneity have been observed ubiquitously (66). It is difficult to
build a generalized machine learning model to predict anticancer drug sensitivity, as a new case
can be unique and be out of the hypothesis space of trained models. Fourthly, the biological re-
sponse to drug perturbation is dynamic. For example, cancer cells, bacteria, and viruses can evolve
rapidly to gain drug resistance. Systems pharmacology modeling should take the dynamics of drug
response into account. Finally, in terms of noise, systems pharmacology must not only consider
the signal-to-noise ratio of the various experimental methods and data sets but also incorporate
noise and stochasticity into its models, which are intrinsic properties of biological processes (67).

Conventional techniques for model integration in big data analytics are not sufficient to address
the aforementioned challenges in systems pharmacology. In the case of ensemble learning, the
most influential and practical methods that are based on random sampling of data points or fea-
tures have limitations. They may be incapable of dealing with noisy data sets (68) or have difficulty
in handing high-dimensional data. Moreover, the heterogeneity of samples may represent the
underlying functional space of biological system (e.g., different tissue types, pathogenicity, races).
The random sampling of data may not be the best strategy for ensemble learning to handle hetero-
geneous biological or clinical data. Several recently developed techniques may offer new solutions
to adapting the ensemble learning to model integration in systems pharmacology. For example,
researchers have proved that the minimization of sample intersections in the ensembled predictors
will improve the performance of sampling (69). This implies that sampling may take advantage of
the heterogeneity of data. Multiview ensemble learning is another technique that may facilitate
systems pharmacology modeling using high-dimensional data (70). Here, randomly generated
training sets (i.e., clustering or random feature set partitioning) are applied to select multiple sub-
sets of features. Each subset of features is used as a view to train a model. An ensemble is constructed
by the combination of these models. As discussed elsewhere (10), the incorporation of biological
knowledge into data-driven modeling is critical to the process of systems pharmacology modeling.
For example, protein-protein interaction networks may assist the optimal feature set partitioning.

A fundamental challenge in big data analytics is to discover unknowns outside the existing
domain of knowledge. It is particularly difficult for systems pharmacology. As mentioned above,
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pharmacological and clinical data are often incomplete, biased, and heterogeneous. As a result,
models built on these data cover only a portion of pharmacological and physiological space; that
is, each model may be biased toward a certain knowledge domain. For example, only a portion of
characterized druggable proteins have experimentally determined structures, and the pharmaceu-
tical relevance of many protein structures is unknown. Models built on these divergent data sets are
complementary but different. Existing paradigms for model integration may not be suitable. The
underlying hypothesis of existing methods for model combination is that each predictive model
can perform better than a random guess but not accurately enough to be useful. The existing algo-
rithm can find the set of optimal weights that are based on observed data by randomly sampling the
weight space. After training, the weight is fixed. It assumes that the high-weighted model always
performs better than the low-weighted model. Both of these hypotheses do not hold in many cases
of systems pharmacology, in which a model could be strong for one case but weak for another one.
If the case is outside the knowledge space covered by all models, it is possible that all models fail.
CBR may provide an alternative solution to integrate heterogeneous models in systems pharma-
cology. In the field of artificial intelligence, the CBR approach solves a new problem by adapting
solutions to a previously similar problem (71). When one is applying CBR to model integration, it
may work as follows: Firstly, old cases are clustered based on the similarity among them. Secondly,
the performance of each model is evaluated for each case cluster. This generates a performance
matrix. Then, given a new case, its similarity to each cluster is calculated. Finally, the models are
weighted using the similarity of their associated clusters to the query case and the performance
matrix. The model weight is case dependent in the CBR. The CBR strategy has been applied
successfully to combine multiple protein-ligand interaction models for docking scoring and im-
proved the performance of high-throughput screening significantly (72). The challenges for CBR
are how to select relevant features and how to assess the similarity between cases. The combination
of advances in data science and domain-specific knowledge may provide feasible solutions (10).

The ultimate goal of systems pharmacology modeling is to generate novel hypotheses for
discovering new knowledge and supporting decision making in drug discovery and clinical
practice. Followed by experimental validation, new biological knowledge can be discovered by
validating or refuting the hypothesis. In turn, this will increase the coverage of knowledge space,
thereby facilitating systems pharmacology modeling. It is more demanding to apply systems
pharmacology modeling to support decision making in drug discovery and clinical practice,
such as the prediction of anticancer drug efficacy for a particular patient. In such risk-sensitive
domains, a reliable assessment of predictive modeling quality on an individual basis is essential.
A fundamental assumption in machine learning is that the data sample on which an algorithm
learns is representative of the complete data set to which the algorithm is applied. As a result,
all methods proposed to address prediction reliability are tailored to generalize and may not
apply to an individual case that may fall outside the space of the training data (73, 74). To assess
the prediction reliability for a new case, it is critical to define the boundary of model space and
to determine if the new case falls within the model space. The CBR paradigm may provide a
solution to this problem. Another strategy is to incorporate the systems pharmacology modeling
into existing biological and clinical knowledge, as discussed in the following section.

In summary, drug action is so complicated that any single model of systems pharmacology can
touch just one part of the process. The information derived from any model can be biased, even mis-
leading. It is critically important to clearly understand the scope of each model and to integrate di-
verse models—as many as possible—to gain a more comprehensive and reliable picture of the whole
process of drug action. In spite of tremendous advances in data science, we still lack reliable and
usable tools to integrate systems pharmacology models horizontally, vertically, and across species.
More efforts are needed to develop new methods for model integration in systems pharmacology.
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MODEL INTERPRETATION AND KNOWLEDGE INTEGRATION

The notable aim of systems pharmacology modeling is not only to maximize prediction accuracy
but also to reveal the mechanism of drug action and to support decision making in drug discovery
and clinical practice. Thus, it is necessary to have interpretable models, to integrate the models
with existing knowledge, and to enable automated reasoning.

Systems pharmacology models can be assembled by either data-driven or mechanism-based
approaches. These two approaches are often combined in systems pharmacology. Data-driven
modeling—especially machine learning approaches—often generates a black box. Recent work
may facilitate opening the black box of machine learning models. For example, Random Prism
has been proposed as an alternative to the widely used Random Forest methods (75). The base
learner of Random Prism is the Prism algorithm that learns a set of IF-THEN rules instead of
trees. It may provide a better representation of knowledge, which cannot be encoded easily as
a decision tree. In another case, sequence motifs are extracted from the output of kernel-based
learning algorithms (76).

Although mechanistic-based models offer a more straightforward explanation of drug action,
challenges still remain before fragmented biophysical or mathematical descriptions can be
translated into unified biological knowledge. Firstly, computational models should be coupled
with existing biological and clinical knowledge. The coupling will allow us to evaluate the model,
generate new hypotheses, or identify knowledge gaps. Secondly, a mechanistic understanding
of drug actions requires the combination of molecular, network, phenotype, and other models.
However, these models are developed independently at different scales and using different
modeling languages. Thus, integrating them into a unified model is not straightforward. Finally,
mathematical languages used for modeling may not be comprehended easily by biologists
and clinicians trying to establish causal relationships between genetic mutations, molecular
interactions, and network modulations and pathophysiological processes and clinical outcomes.
It is necessary to translate mathematical language into not only accessible human knowledge but
also a machine-readable representation for automated reasoning. To address these challenges,
effective knowledge representations of input-output relationships from systems pharmacology
modeling, which can be understood by the researcher and read by machine, may be needed in
addition to the development of ontologies that enable efficient communications between models,
as discussed in the preceding section.

Using the Semantic Web for Knowledge Integration

The semantic web has promised to turn big data into linked and smart data and has emerged
as a powerful technique for knowledge integration in systems biology (77) and health care (78).
In the semantic web, knowledge is represented by the resource description framework (RDF)
(http://www.w3.org/RDF/) in the form of subject-predicate-object triples. Domain knowledge
is modeled as a graph of triples. The graph model is stored in RDF triple database management
systems. The query language SPARQL has been developed to retrieve information from the RDF
triple store. The Web Ontology Language (OWL) has been proposed to support database queries
and rule-based technologies.

As semantic web technologies have matured, researchers have exploited them to link heteroge-
neous data sets into a unified knowledge base in systems biology. For example, BioGateway uses
the semantic web to integrate the OBO foundry ontology, Gene Ontology, NCBI Taxonomy, and
UniProt (79). eXframe provides a reusable framework for creating semantic web repositories of ge-
nomics experiments (80). Bio2RDF Release 2 links 19 data sets (81). Many of them are directly rele-
vant to systems pharmacology modeling, such as the Comparative Toxicogenomics Database (82),
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DrugBank (83), Medical Subject Headings, National Drug Code Directory, Online Mendelian In-
heritance in Man (84), or Pharmacogenomics Knowledge Base (85). Bio2RDF includes 57,850,248
unique subjects, 298,470,583 unique objects, 1,003 unique predicates, and 1,101,758,291 triples.
In addition, the semantic web has been applied to manage electronic health records aiming to
capture, standardize, integrate, describe, and disseminate health-related information (86–89).
Researchers have proposed that a semantic data-driven environment is needed to address big
data challenges in health care (78). The consolidation of semantic systems biology and semantic
health care may provide new opportunities for GWAS, pharmacogenomics, and personalized
medicine.

Integration of Systems Pharmacology Modeling with Biological
and Clinical Knowledge

The efforts to apply the semantic web to systems biology and health care provide a solid
foundation to advance the knowledge integration of systems pharmacology modeling. The
incorporation of systems pharmacology modeling into a semantic, rich knowledge base may
harness the power of systems pharmacology modeling in generating novel hypotheses and support
decision making. It is important to transform the quantitative results from predictive models
into logical descriptions or rules between biological entities. Then the logical relationships can
be represented as RDF triples. The subject and the object are biological concepts (entities)
such as genes. The predicate is the molecular interaction, functional association, or causal
relationships between biological entities. For example, a predicted interaction between a chemical
A and an agonist conformation of receptor B can be represented as A activates B (Figure 3).
An ontology-driven uniformed concept mapping is needed to link genes, proteins, biological
pathways, and phenotypes as well as their interactions from diverse models. With the uniformed
concept mapping based on the ontologies and the translation of model outputs as an RDF triple,
systems pharmacology models can be incorporated into existing semantic-based systems biology
and health-care knowledge bases. In this way, software not only handles information to build
inferences and test hypotheses but also generates computational and mathematical models that
can be interpreted by humans. An example is shown in Figure 3. A knowledge graph has the
following triples: Agonist and antagonist binding of peroxisome proliferator-activated receptor
(PPAR) upregulate and downregulate the renin-angiotensin-aldosterone system (RAAS), respec-
tively. The upregulation of RAAS increases blood pressure, whereas its downregulation decreases
blood pressure. A computational model predicts that a drug binds the agonist or antagonist
conformation of PPAR. The model result can be transferred to a triple in the knowledge
base. Then the drug response phenotype (in this case, hypertension or hypotension) can be
inferred.

In summary, many systems pharmacology modeling approaches can provide only correlation
rather than causality relationships between biological variables. One should take extreme caution
when making decisions based on the correlation. For example, the correlation of a healthy heart
with high levels of high-density lipoprotein (HDL) raises a great interest in developing HDL-
targeted therapy for heart disease. However, the causal relationship between HDL and heart
disease is unclear. It is not conclusive whether HDL causes a healthy heart or a healthy heart
produces HDL (90). Such uncertainty may be the reason for several failed clinical trials in the
development of drugs that increase the level of HDL. Beyond model integration, the integration
of systems pharmacology modeling with existing biological and medical knowledge will be an
important step toward the ultimate goal of using computational modeling to support decision
making in drug discovery and clinical practice.
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Figure 3
An example to integrate systems pharmacology modeling and the semantic web. The output of systems
pharmacology models is translated into an RDF triple and associated with a knowledge base that is built on
semantic web technology. The knowledge base will support automated model validation, reasoning, and
decision making. Abbreviations: PPAR, peroxisome proliferator-activated receptor; RDF, resource
description framework.

CONCLUSION

The conventional one drug–one target–one disease drug discovery process has been less successful
in treating multigene, multifaceted, complex diseases. Systems pharmacology has emerged as a new
discipline to tackle the current challenges in drug discovery. Systems pharmacology modeling uses
diverse methodologies, integrates multiple omics data, crosses the hierarchy of an organism, spans
a wide range of timescales, and addresses the uniqueness of the individual. Successful systems phar-
macology modeling requires integrating multiple models to gain an integrated and comprehensive
understanding of drug actions under diverse genetic and environmental conditions. Although data
integration has already attracted tremendous attention in systems pharmacology, we face new chal-
lenges to enable systems pharmacology modeling to be findable, accessible, interoperable, reusable,
reliable, interpretable, and actionable. Advances in big data technologies and data science may pro-
vide technical solutions to address these challenges. Beyond this, we need new business models—
such as the NIH Commons—to prompt open science that is essential for systems pharmacology.
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76. Vidovic MM-C, Görnitz N, Müller K-R, Rätsch G, Kloft M. 2015. Opening the black box: revealing
interpretable sequence motifs in kernel-based learning algorithms. In Lecture Notes in Computer Science,
Vol. 9285: Machine Learning and Knowledge Discovery in Databases, ed. A Appice, PP Rodrigues, VS Costa,
J Gama, A Jorge, C Soares, pp. 137–53. Cham, Switz.: Springer

77. Antezana E, Mironov V, Kuiper M. 2013. The emergence of semantic systems biology. N. Biotechnol.
30:286–90

78. Panahiazar M, Taslimitehrani V, Jadhav A, Pathak J. 2014. Empowering personalized medicine with big
data and semantic web technology: promises, challenges, and use cases. Proc. Big Data, 2014 IEEE Int.
Conf., pp. 790–95

79. Antezana E, Blonde W, Egana M, Rutherford A, Stevens R, et al. 2009. BioGateway: a semantic systems
biology tool for the life sciences. BMC Bioinform. 10(Suppl. 10):S11

80. Merrill E, Corlosquet S, Ciccarese P, Clark T, Das S. 2014. Semantic Web repositories for genomics data
using the eXframe platform. J. Biomed. Semantics 5:1

81. Callahan A, Cruz-Toledo J, Ansell P, Dumontier M. 2013. Bio2RDF release 2: improved cover-
age, interoperability and provenance of life science linked data. In Lecture Notes in Computer Science,
Vol. 7882: The Semantic Web: Semantics and Big Data. ed. P Cimiano, O Corcho, V Presutti, L Hollink,
S Rudolph, pp. 200–12. Cham, Switz.: Springer

82. Davis AP, Murphy CG, Johnson R, Lay JM, Lennon-Hopkins K, et al. 2013. The Comparative Toxi-
cogenomics Database: update 2013. Nucleic Acids Res. 41:D1104–14

83. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, et al. 2008. DrugBank: a knowledgebase for
drugs, drug actions and drug targets. Nucleic Acids Res. 36:D901–6

84. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. 2005. Online Mendelian Inheritance in
Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33:D514–17

85. Thorn CF, Klein TE, Altman RB. 2005. PharmGKB: the pharmacogenetics and pharmacogenomics
knowledge base. Methods Mol. Biol. 311:179–91

86. Robles M, Fernández-Breis JT, Maldonado JA, Moner D, Martı́nez-Costa C, et al. 2010. ResearchEHR:
use of semantic web technologies and archetypes for the description of EHRs. Stud. Health Technol. Inform.
155:129

87. Tao C, Pathak J, Welch SR, Bouamrane M-M, Huff SM, Chute CG. 2011. Toward semantic web based
knowledge representation and extraction from electronic health records. Proc. Int. Workshop Manag. In-
teroperability Complex. Health Syst., pp. 75–78

88. Lozano-Rubı́ R, Pastor X, Lozano E. 2014. OWLing clinical data repositories with the ontology web
language. JMIR Med. Inform. 2:e14

89. Pathak J, Kiefer RC, Bielinski SJ, Chute CG. 2012. Applying semantic web technologies for phenome-
wide scan using an electronic health record linked Biobank. J. Biomed. Semantics 3:10

90. Rader DJ, Hovingh GK. 2014. HDL and cardiovascular disease. Lancet 384:618–25

262 Xie · Draizen · Bourne


