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Abstract

We are entering a new era in plant pathology in which whole-genome se-
quences of many individuals of a pathogen species are becoming readily
available. Population genomics aims to discover genetic mechanisms under-
lying phenotypes associated with adaptive traits such as pathogenicity, viru-
lence, fungicide resistance, and host specialization, as genome sequences or
large numbers of single nucleotide polymorphisms become readily available
from multiple individuals of the same species. This emerging field encom-
passes detailed genetic analyses of natural populations, comparative genomic
analyses of closely related species, identification of genes under selection,
and linkage analyses involving association studies in natural populations or
segregating populations resulting from crosses. The era of pathogen pop-
ulation genomics will provide new opportunities and challenges, requiring
new computational and analytical tools. This review focuses on conceptual
and methodological issues as well as the approaches to answering questions
in population genomics. The major steps start with defining relevant bio-
logical and evolutionary questions, followed by sampling, genotyping, and
phenotyping, and ending in analytical methods and interpretations. We pro-
vide examples of recent applications of population genomics to fungal and
oomycete plant pathogens.
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Population genetics:
the study of
evolutionary changes
in populations
resulting from
mutation, selection,
gene flow, random
genetic drift, and
recombination

Single-nucleotide
polymorphisms
(SNPs): variation in a
single nucleotide that
occurs at a specific
position in the genome

Population
genomics: population
genetics based on
large-scale SNP
typing, distributed
throughout the
genome and derived
from whole-genome
sequencing or
reduced-
representation library
sequencing

Resequencing:
genome sequencing of
multiple individuals at
relatively low read
depth; sequences are
assembled by
alignment to a
common reference
genome sequence

INTRODUCTION

Recent technological advances in both high-throughput sequencing and computational tools have
made it possible to sequence and analyze whole genomes of many plant pathogens. These tech-
nologies continue to advance rapidly, and costs have declined to the point that it is becoming
affordable to sequence genomes of many individuals within a species. Advanced sequencing tech-
nologies have enabled the current genomics era, in which we are learning a great deal about
genome organization and structure at an unprecedented level of detail (90).

The genomics revolution has also impacted population genetics studies that seek to understand
the ecological, evolutionary, and demographic processes acting on genomes and populations. The
large number of markers now available on a whole-genome scale provides fine-grained detail
regarding processes of divergence, differentiation, gene conversion, and recombination. New se-
quencing technologies also provide unprecedented scales of nucleotide sequence data for studying
the evolution of specific genes and entire chromosomes. For example, such studies have led to
a greater realization of the importance of horizontal gene transfer (HGT) and interspecific hy-
bridizations in pathogen origins. HGT of pathogenicity gene clusters has featured prominently
in the evolution of bacterial pathogens (100), but more recently HGT has also been well docu-
mented in fungi and oomycetes (35, 38, 77). All told, these types of population genetics studies
have the potential to provide a deeper and finer-grained understanding of the biology, genetics,
and evolution of plant pathogens.

Genome-scale sequence data enable advanced studies of nonmodel organisms that were in-
conceivable until recently because of limitations imposed by high costs and the lack of extensive
genetic resources, such as reference genomes and collections of knockout mutants. The increas-
ing availability of complete genome sequences, coupled with the ability to genotype thousands of
single-nucleotide polymorphisms (SNPs) simultaneously or resequence whole genomes of many
individuals within a species, makes it possible to go far beyond traditional population genetics
analyses. Thus, population genomics represents a new area of research that portends signifi-
cant conceptual breakthroughs in how we view the genetics, evolution, and emergence of plant
pathogens.

We begin this review with a definition of population genomics and a discussion of the types of
questions that can be addressed. This is followed by a discussion of the methodological challenges
likely to be encountered in population genomics projects and by examples of applications of
population genomics based on recent studies of plant-pathogenic fungi and oomycetes. We finish
by speculating about likely future developments in this area. We believe that this review provides a
useful entry point for anyone considering a population genomics project aiming to discover genetic
mechanisms underlying evolutionary processes based on population-scale genome genotyping or
resequencing of fungi and oomycetes.

WHAT IS POPULATION GENOMICS?

Population genomics can be viewed as an extension of population genetics, with several funda-
mental methodological differences that radically alter and expand the types of questions that can
be addressed. The simplest perspective is that population genomics is population genetics using
a large number of markers with a known distribution throughout the genome (85). With this
perspective, the questions addressed in population genomics are essentially identical to those in
population genetics. As in population genetics, the types of questions addressed in population ge-
nomics fit into three broad categories (44): genome-wide evolutionary and demographic processes
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Genome scan:
several techniques
whereby the entire
genome sequence(s) of
an individual or
population is searched
systematically for
sequences associated
with specific attributes,
such as regions of
unusually high or low
diversity

Genome-wide
association studies
(GWASs): analyses
that correlate SNPs
with phenotypes in
individuals drawn from
large, random-mating
populations to identify
candidate genes
explaining the trait
variance

Genetic architecture:
the genetic basis of a
measured phenotype,
for example,
quantitative or
Mendelian inheritance
involving additive or
dominant interactions
among few or many
genes

affecting population structure; evolutionary processes affecting speciation and the divergence of
closely related taxa; and locus-specific effects, particularly selection, acting on specific genes or
chromosomes that affect adaptation or defined phenotypes (Table 1). To date, most studies of
population genetics of fungal and oomycete plant pathogens have used neutral genetic markers
with the aim of inferring genome-wide demographic effects caused by migration, bottlenecks,
and mating systems (42, 70). The underlying principle is that evolutionary history and demogra-
phy affect all neutral loci equally across the entire genome. Therefore, genotyping a very large
number of loci (e.g., thousands of SNPs) or sequencing the genomes of many individuals (rese-
quencing) makes inferences of genome-wide effects more robust compared to studies based on a
limited number of genetic markers. However, the larger number of genetic markers alone does
not fundamentally change the types of questions being asked about genome-wide effects.

By contrast, population genomics marks a shift in emphasis from traditional population genet-
ics, in which genome-wide effects are inferred from a relatively small number of neutral markers,
to an emphasis on both genome-wide and locus-specific effects. The availability of genome-wide
measures of diversity, determined by genome scans of thousands of SNPs, makes it possible to
address some population genetics questions—particularly those involving locus-specific effects—
that were practically impossible previously. The shift in emphasis from genome-wide effects and
demographic considerations to locus-specific effects and a functional understanding of diversity is
a key distinction between traditional population genetics and population genomics. This distinc-
tion highlights the potential of population genomics to address conceptually novel questions, such
as what are the genes underlying adaptation or the divergence of closely related taxa, and what is
the genetic basis of phenotypic variation and evolutionary change? In plant pathology, a popu-
lation genomics approach can be used for identifying candidate genes involved in pathogenicity,
virulence (or aggressiveness), host specialization, fungicide resistance, and adaptation to different
environments (87). Identifying such genes and elucidating their mechanisms are major goals in
the study of plant-microbe interactions. Therefore, population genomics complements methods
in molecular biology and functional genomics aimed at achieving these goals.

Three main types of questions are addressed in population genomics, each of which is described
in subsections below. Research approaches to answering these questions vary depending on the
specific questions and the biology of the organism studied. These research approaches include
(a) detailed genetic analyses of demographic processes, (b) comparative genomics of closely re-
lated species, (c) identification of genes or genetic regions under selection, and linkage analyses
in (d ) genome-wide association studies (GWASs) or (e) segregating populations resulting from
crosses to identify genetic loci that explain observed phenotypes, i.e., the genetic architecture of
phenotypic variation (Table 1). Demography or traditional population genetics provides an un-
derstanding of basic pathogen biology that can inform many disease management strategies (42,
66, 70). Comparative population genomics of sister taxa uncovers genomic regions that diverged
during or after speciation as a first-level identification of genomic regions worthy of further inves-
tigation. Genome scans for genomic regions under positive selection can identify genes involved
in adaptation, both within and between closely related species, although the associated phenotype
may not be known in advance. GWASs and linkage mapping can identify genomic regions associ-
ated with particular phenotypes, leading to identification of quantitative trait loci (QTLs) or genes
associated with a measured phenotype. Thus, population genomics encompasses a continuum of
research approaches with the ultimate goal of finding the causal genetic loci and allelic variants
that explain adaptation or particular phenotypes and places them in the context of an organism’s
demographic and evolutionary history. These approaches are discussed in the following sections
that are organized according to the major questions addressed.
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Demographic Processes and Genome-Wide Effects

The first major type of biological question is an extension of the demographic studies conducted
previously in population genetics. As in traditional population genetics, population genomics can
address fundamental questions such as what evolutionary and demographic processes (genome-
wide effects) shape population structure. This type of question is addressed using neutral genetic
markers and is usually independent of selection (see next section for a discussion of selection).
Therefore, the evolutionary processes of most interest are migration, random genetic drift, and
recombination. These processes affect all neutral loci more or less equally. Most studies to date
in population genetics of pathogenic fungi and oomycetes deal with these types of genome-wide,
demographic effects (42, 70). The availability of a large number of genetic markers distributed
throughout the genome (e.g., SNPs) makes inferences more robust but also makes it possible to
refine inferences by uncovering variation that was previously undetectable. For example, detecting
fine-grained variation within lineages of clonal organisms makes it possible to make inferences
about the migration or evolution of a specific lineage (72, 79) or to detect rare recombination
events between lineages (71).

A conceptually more interesting advance in population genetics, made possible by the large
number of markers, is to refine our understanding of the relative roles of migration and drift. For
example, to estimate genetic differentiation between populations, FST is estimated for each locus
and averaged across loci to make inferences for the entire genome. Because the goal is to make
inferences about migration and drift from FST, all loci included in an analysis are assumed to be
selectively neutral, although this assumption is rarely tested. By doing an FST scan of many SNPs
across the genome, it is possible to identify loci that show much less or much greater differentiation
(very low or very high FST) than expected from random variation among loci caused by drift. Such
outlier loci are more likely to be under strong selection, as explained in the next section. Therefore,
identifying and eliminating such outliers improves estimates of demographic parameters based on
the remaining neutral loci.

Population genomics data sets can also be used to identify hot spots and cold spots of recom-
bination (20, 93) and may prove useful for identifying possible hot spots of mutation as well. The
concept of genomic regions that differ in their rates of evolution as a result of underlying dif-
ferences in recombination, mutation, or genome structure has been encapsulated in the concept
of a two-compartment genome (21, 76), similar to core and accessory genomes in bacteria. In
this model, selection favors the sequestering of housekeeping genes with vital conserved functions
into genomic regions that experience less recombination and mutation (e.g., GC-rich, gene-dense
regions located near centromeres). By contrast, genes under diversifying selection that evolve
rapidly (e.g., effector genes involved in arms-race coevolution) are selected to occur in more dy-
namic genomic regions. These regions are characterized by higher rates of recombination (e.g., in
telomeric or subtelomeric regions). They are also populated by repeat-rich transposable elements
or other repetitive DNA families prone to high mutation rates due to a combination of polymerase
error, transposition, and mismatch recombination.

Identifying Genes Under Selection

One of the most significant advances made possible in population genomics is the identification
of traits and genes that are under positive selection for adaptation. Variation in genome sequences
among individuals reflects their evolutionary histories, including signatures of selection. Genome
scans of individuals within a population can detect regions with marked reductions in genetic
diversity relative to the rest of the genome. Such local reductions are indicative of selective sweeps,
often reflecting adaptation, in which a gene under strong positive selection goes to fixation. This
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Linkage
disequilibrium (LD):
the nonrandom
association of DNA
sequences as a result of
an absence of
recombination
between those
sequences

process also sweeps away diversity at closely linked loci because of hitchhiking selection (12).
Linkage disequilibrium (LD) between the selected gene and the flanking regions decays over time
in recombining populations; hence, the signatures of selective sweeps are transient in the evolution
of chromosome segments.

A complementary approach is to scan the genome for regions showing greater or less divergence
(measured as FST) between populations or closely related taxa than expected for neutral loci. Outlier
loci (i.e., those with FST in the extreme tails of the distribution) are often interpreted as being
under selection. Regions of less than expected divergence (outliers with low FST) may indicate
regions under purifying selection that are conserved in all populations. Conversely, outliers with
high values of FST are interpreted as being under positive selection and therefore as candidate
genes contributing to local adaptation. For example, if local adaptation favors one allele in one
population and a different allele in another population, divergence at this locus would be greater
than that caused by random genetic drift at neutral loci (31, 68, 82). Signatures of positive selection
are often associated with gene-for-gene coevolution between pathogens and their hosts (10, 68,
104), including the emergence of host specialization. In addition to identifying candidate genes
for further study of locus-specific effects, inferences of genome-wide effects based on neutral loci
are improved by eliminating loci under selection (both high and low FST), as mentioned in the
previous section.

Until recently, it was only possible to investigate candidate genes known a priori to be associated
with phenotypes. In the candidate gene approach, researchers start by searching for homologs to
genes with known functions in other organisms and testing their function or association with
phenotypes in another organism. This approach has been applied successfully for understanding
phenotypes that affect fitness, such as effectors or genes conferring fungicide resistance (10, 18, 34,
68, 79, 82). By contrast, a significant advantage of population genomics is the ability to search for
genes under selection without any prior knowledge of traits they affect or their effects on fitness
(e.g., 31, 88). This approach has been referred to as reverse genetics or reverse ecology (30, 31).

Genome scans for selection have the potential to identify genes involved in adaptation either
within or between species. For example, comparative genomics of closely related pathogens can
identify genes involved in speciation (Table 1), such as genes underlying host specialization or
adaptation to domesticated crops (11, 88). Although the divergence and phylogenetic relationships
of closely related species can be inferred by sequencing a relatively small number of genes, this
approach cannot identify particular traits or genes contributing to speciation. Similarly, within-
species genome scans among individuals sampled from different populations, such as different
crop cultivars, have the potential to identify candidate genes involved in virulence or adaptation
to different host genotypes or environments (18, 79).

Recombination rates can affect how much of a genome is affected by selection. When recom-
bination rates are high, especially in natural populations of randomly mating species, selection
may have very localized, locus-specific effects on the genome. In highly recombining pathogens,
a recent selective sweep (characterized by regions with low diversity within populations) may be
evident for a relatively small number of generations after a favorable allele has gone to fixation
because LD between the favored allele and neighboring genes decays rapidly, causing the size of
the chromosomal region affected by the sweep to decrease and eventually disappear. When LD
decays over a scale of hundreds of base pairs, one needs a large number of markers distributed
throughout the genome for a selection scan to be useful. The sequencing technologies used for
population genomics provide the markers needed to detect genes under selection in highly re-
combined populations.

At the other extreme, because recombination is rare (or nonexistent) in clonal organisms,
selection on any one locus in clonal populations leads to hitchhiking selection affecting the entire
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Quantitative trait
nucleotides (QTNs):
In a GWAS, refers to
SNPs statistically
associated with a trait.
In QTL mapping,
refers to polymorphic
nucleotides explaining
the trait

genome, not just the neighboring genes, making it impossible to identify locus-specific effects
by analyzing genome scans. An extreme example is the mitochondrial genome, which is typically
nonrecombining (94–97). Knowledge of the mating system of a species is important to be able to
differentiate locus-specific effects from genome-wide effects. This is a crucial consideration because
many plant pathogens are clonal and lack regular sexual reproduction. Unfortunately, genome
scans for finding genes or regions under selection are mostly irrelevant for clonal populations
because of the extent of LD in the absence of repeated recombination.

Identifying Genes Underlying Known Phenotypes

Another approach to studying locus-specific effects is to identify alleles associated with known
phenotypes using GWASs or QTL mapping (Table 1). GWASs are conducted by sampling many
individuals from a naturally recombining population and genotyping them with large numbers of
markers distributed throughout the genome or by whole-genome resequencing. Genotyping is
coupled with phenotyping of sampled individuals to enable statistical tests for associations between
genotypes and phenotypes. When genotyping is done with SNPs in a GWAS, quantitative trait
nucleotides (QTNs) refer to SNPs that are statistically associated with a trait. Linkage mapping,
or QTL mapping, also aims to find genes associated with phenotypes, but this is accomplished
by analyzing segregating progeny from controlled crosses instead of individuals sampled from
nature. When genotyping is done with SNPs in this context, QTNs refer to the polymorphic
nucleotides in the alternative parental alleles that are ultimately responsible for the observed trait
variance in the offspring. A relatively small number of QTL mapping studies were conducted in
fungal plant pathogens before the widespread availability of short-read deep sequencing (23, 49,
61). These studies found statistically significant QTLs, but because of limitations in genotyping
and phenotyping technologies the identified regions contained too many candidate genes to be
considered for functional studies. In general, the ability to identify relevant genes improves with
increasing numbers of progeny and markers and with increasing precision of the phenotyping.

A pivotal difference of GWASs and QTL mapping compared to selection scans is that the
former start with known phenotypes and look for underlying genes, whereas the latter identifies
genes under selection, for which phenotypes may or may not be known. In plant pathology, we
are often interested in identifying specific genes or alleles underlying adaptive phenotypes such as
pathogenicity, virulence, fungicide resistance, and host specialization. Genes identified as being
under selection or associated with phenotypes involved in adaptation become candidates that
require further experimental testing to determine how they affect phenotypes, e.g., by conducting
knockout or allele-swap experiments. One of the upcoming challenges will be to determine the
effects of specific alleles on fitness and their functional role in adaptation in nature.

Depending on the biology of the organism being studied, GWASs and QTL mapping have
different advantages. For many species, randomly mating populations have relatively little LD
because of many generations of recombination involving many individuals. In this case, markers
associated with a particular phenotype are likely to be in a region close to or in the functional gene
underlying that phenotype. When LD is minimal, associations with phenotypes are not likely to be
found unless genotyping is done with a very large number of markers distributed throughout the
genome. Advanced sequencing technologies provide the necessary markers. With QTL mapping,
linkage groups from controlled crosses are defined by the crossovers occurring between markers
in the mapping populations. Markers with significant associations to phenotypes typically identify
genomic regions too large to directly identify the functional gene(s). For this reason, it may be
especially powerful to combine GWASs with QTL mapping (33), using a GWAS to determine
the genetic architecture of a trait and identify individuals with relevant markers and phenotypes
to cross for QTL mapping.
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The choice between a GWAS and QTL mapping may be determined, in part, by whether it is
possible to make controlled crosses in the laboratory. Some fungi and oomycetes may be randomly
mating in nature but cannot be crossed easily in the lab. For both methods, large numbers of
isolates may need to be analyzed to identify genes and genomic regions associated with small
effects on overall trait variance (51). Another significant limitation is the effort needed to obtain
accurate phenotypes for hundreds or thousands of individuals, especially for quantitative traits. A
major limitation of QTL mapping is that only the polymorphic alleles segregating in a particular
experimental population can be mapped and identified; gene sequences that do not differ between
the parents are not mapped as a QTL even if the associated genes make an important contribution
to the trait in natural populations. To overcome this limitation, it is common to make more than
one set of crosses or to construct specialized mapping populations that include multiple parents.
A disadvantage in GWASs is that only alleles present at relatively high frequencies are likely to
be detected, unless thousands of strains are analyzed. An important caveat for a GWAS is the
need to determine whether individuals are sampled from a population with an underlying genetic
structure. Associations between markers and phenotypes can be caused by admixture if individuals
are sampled from two or more genetically differentiated subpopulations. In this case, population
structure needs to be corrected statistically, leading to a reduction in the statistical power to detect
significant associations.

GWASs and QTL mapping require that the organisms being studied reproduce sexually,
either in nature or in the lab, respectively. Unfortunately, as with genome scans for selection,
these approaches to studying locus-specific effects are not relevant for clonal populations in which
entire genomes are inherited asexually as a single, nonrecombining linkage group. For clonal
organisms, a comparative genomics approach looking for associations between phenotypes and
genetic markers among closely related lineages can complement candidate gene approaches and
functional analyses of specific genes. This multifaceted approach has been used successfully with
Phytophthora infestans (18), Fusarium oxysporum f. sp. melonis (79), and Verticillium dahliae (27).

METHODOLOGICAL STEPS

Projects in population genomics can be designed along two axes. The first axis represents the
sequence of steps needed to conduct a population genomics project, as outlined in the first column
in Table 1. The second axis represents the desired research approaches associated with a specific
project. These approaches range from demographic analysis and comparative genomics of closely
related species to genome scans for selection, GWASs, and QTL mapping, all of which consider
variation within and among populations as outlined in the top row (left to right) in Table 1.
The choice of steps and approaches depends inextricably on the questions being addressed and
the biology of the organism being studied. Below, we outline the steps necessary for successfully
conducting a population genomics project.

Biological Questions

Population genomics investigations should be grounded in testable, biological, and evolutionary
questions. The research question, together with the known biology of the organism being studied,
dictates much of the experimental design. The sections above and below provide examples of the
kinds of questions that population genomics can address. After defining clear, testable hypotheses
and identifying the most appropriate research approach, the next important step is designing a
sampling strategy.

www.annualreviews.org • Fungal and Oomycete Population Genomics 331



PY54CH15-Milgroom ARI 15 July 2016 11:16

Sampling

An appropriate sampling strategy answers the specific question being addressed. For example,
controlled crosses segregating at the F1 or F2 generation might be most appropriate for a QTL
mapping project seeking to identify genes responsible for phenotypic differences between parents,
whereas individuals randomly drawn from a sexual population—lacking genetic structure—would
be appropriate for GWAS analyses seeking to determine the genetic architecture of a trait in
natural populations. Similarly, hierarchical sampling of field populations might be more suitable
for studying differentiation of populations by location or environment. The two common de-
nominators in all sampling designs are that (a) the sample size needs to be adequate to provide
sufficient statistical power for hypothesis testing, and (b) the target population needs to be sampled
randomly to approximate the true distribution of diversity in the population to which inferences
are applied. By contrast, samples composed of individuals readily available in extant culture col-
lections generally cannot be considered a random sample and are likely to poorly represent any
natural population. Some applications, in particular GWASs, may require large sample sizes drawn
from genetically unstructured populations to identify genes or genomic regions associated with
phenotypes.

Genotyping

Genotyping can be done by resequencing the whole genome or by reduced-representation se-
quencing. These genotyping technologies currently rely mainly on short-read, deep sequencing
technologies, such as the Illumina platform (San Diego, CA). For de novo whole-genome se-
quencing, long-read technologies like Pacific Biosciences (Menlo Park, CA) or Oxford Nanopore
Technologies (Oxford, United Kingdom) might be preferable. Most of this review focuses on
short-read technologies (e.g., Illumina). After sequencing and assembling a reference genome,
additional individuals of the same species can be resequenced at lower read depths by aligning
reads to the completed reference genome.

An alternative to whole-genome sequencing is to use reduced-representation sequencing. This
method is particularly useful for pathogens with larger genomes and an abundance of repetitive se-
quences, such as oomycetes and powdery mildew fungi (43, 81). It is also considerably cheaper than
resequencing at the present time and therefore also useful for organisms with smaller genomes.
The two most common methods are restriction site–associated DNA sequencing (RADseq) (4, 25)
and genotyping by sequencing (GBS) (32). Instead of sequencing whole genomes, these techniques
reduce the genome representation by sequencing only from the ends of restriction fragments. Ge-
nomic DNA is digested with a restriction enzyme, and fragments are barcoded with oligonucleotide
sequences unique for each individual, pooled into a library, and then sequenced on a short-read
platform (26). Read depth needs to be adjusted for genome size, ploidy, and choice of restriction
enzyme. The choice of restriction enzyme reduces representation to appropriate ranges, such as
500–1,000 SNPs for genome-wide population genetics inferences or >5,000 SNPs for genome
scans, GWASs, or linkage mapping. The resulting reads can be mapped against a reference genome
using tools such as Bowtie 2 or BWA (53, 58). In the absence of a reference genome, SNPs can
be called using Stacks (17) or the Universal Network Enabled Analysis Kit (UNEAK) pipeline in
TASSEL (62). Once reads are mapped to the reference genome, several programs can be used to
call SNPs, including TASSEL (5), GATK (29), Stacks (17), and SAMtools (59).

An essential requirement of reduced-representation sequencing is to filter the data extensively
before conducting analyses. Data need to be filtered for missing data (a common issue in RADseq
and GBS data sets), sequencing error, read depth, mapping quality, copy number variation, and
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minimum allele frequency (2, 3). Each of the programs for identifying SNPs (variant callers) has
different settings and options for filtering data. Unfortunately, there is not yet an agreed-upon set
of best practices for filtering. As a starting point, loci exhibiting copy number variation or paralogs,
or those with allele frequencies <5%, should be removed from most analyses. A panel of strains
that is deeply sequenced can provide a reference panel of SNP loci that can further improve data
quality. This type of extensive filtering is crucial for downstream analyses.

Genotype calling is also complex and currently lacks easily reproducible, standardized pro-
cesses (2, 3). In our recent experience, variant callers such as FreeBAYES, SAMtools, GATK, and
TASSEL differed in the number of SNPs recovered. For example, we used GBS on a Phytophthora
rubi population and compared the results of these four variant callers. After achieving an average
read depth of 21.5×, the total number of SNPs ranged from ∼48,000 to 450,000, and the per-
centage of heterozygous sites ranged from 4% to 25% before filtering for quality (J.F. Tabima
& N.J. Grünwald, unpublished results). Thus, data can be compared reliably only by using the
same filtering criteria with the same version of a given variant caller. Furthermore, the number of
SNPs shared among all four callers was unexpectedly low, ranging from 5% to 16% in pairwise
comparisons using identical input data. At this point, comparisons of genotypes determined by
different variant callers should be avoided until common standards emerge.

Data obtained for diploid or polyploid species can be phased to obtain haplotypes. Phasing
involves estimation of haplotypes at each homologous locus in a genome based on the obtained
sequence data using various statistical (e.g., multinomial) and/or genetic (e.g., coalescent) models
(8). These models make a range of assumptions that need to be considered, varying from statistical
assumptions (e.g., random sampling) to assuming a basic coalescent process or Hardy-Weinberg
equilibrium (9). In our experience, phasing is robust only for diploids and is not straightforward
for polyploids.

Imputation is a step in the variant calling process whereby missing genotype data are inferred
statistically from a well-characterized reference panel of genotype data (7, 60). Imputation, briefly,
copies haplotype stretches from the reference panel by assuming local linkage where data are
missing. These methods were developed for the human HapMap project, in which reference
panels are of high quality and data are phased to determine haplotypes. Programs such as BEAGLE
assume that the input reference panel is phased before imputation (6). One crucial, underlying
assumption is that the sample in the reference panel and the imputation set come from the same
population. Some variant callers include imputation by default, invariably resulting in some SNP
calls that are not supported by a single sequence read. In our recent experience, imputation does
not work well except in populations with a high quality reference panel in which phasing is known
(e.g., in controlled crosses with well-characterized parental genotypes). When imputation was
applied to the diploid P. rubi data mentioned above, homozygosity differed by factors of two to
ten among variant callers. Thus, imputation causes artifacts and should be avoided for natural
populations lacking reference panels.

As with traditional molecular marker research, experimental controls should be included. For
example, each sequencing run should include a panel of well-characterized reference isolates
for quality assurance and as positive controls for reproducibility. These isolates should be
genotyped using independent DNA extractions, barcoding, sequencing, and variant calling for
each experiment.

In the era of population genomics, defining clone or lineage boundaries requires new tools.
In contrast to traditional marker systems such as microsatellites, obtaining SNP data through
deep sequencing inevitably results in missing data, erroneous allele calls, and other errors. Given
data sets with thousands of SNPs, the definition of a multilocus genotype (MLG) becomes more
nuanced. Is a difference of one SNP between strains sufficient to define a new genotype? We
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expect that deep sequencing will lead to inflation of genotypic diversity estimates similar to the
findings of meta-barcoding studies inferring species diversity (52). An analytical tool was recently
developed in the statistical and programming language R that defines genotype boundaries based
on user-defined levels of genetic distance and varying clustering algorithms that can be more
or less stringent in defining MLGs and multilocus lineages (MLLs) (47). This is analogous to
defining operational taxonomic units (OTUs) for biological species, in which boundaries among
species are defined based on a predetermined level of sequence similarity (105).

Phenotyping

For GWASs and QTL mapping analyses that seek to connect genotype and phenotype, pheno-
typing has become the limiting step to making progress relative to the ease of genotyping. After
investigators choose a measurable trait that is relevant to the question of interest, the challenge
is to accurately phenotype hundreds or thousands of individuals in the experimental populations.
The measured traits may show Mendelian or quantitative inheritance. Quantitative traits present
a greater phenotyping challenge and are more likely to be affected by the environment; how-
ever, they are more common than Mendelian traits. Investigators need to decide whether trait
measurements should be made in the natural environment (i.e., in the field) or in an artificial en-
vironment (i.e., in a Petri dish, growth chamber, or greenhouse). Field measurements conducted
under naturally fluctuating environmental conditions are more difficult to obtain and are more
prone to experimental error compared to tightly controlled laboratory measurements. However,
field measurements have the advantage of being more likely to identify candidate genes that are rel-
evant under real-world field conditions (92). In all cases, phenotype measurements should ideally
be precise, accurate, and high-throughput, and minimize human-associated measurement errors.
For example, automated, computer-based analyses of digital images satisfy most of these criteria
for estimating aggressiveness based on leaf symptoms or growth rates on Petri dishes (57, 82, 84).

Analytical Methods and Inferences

Population genomics analyses vary depending on the biological questions and research approaches
(Table 1). Analyses for demographic processes and genome-wide effects in plant pathogen pop-
ulations have been reviewed extensively (42, 70) and are not discussed further. Selection in a
genome can be studied using several statistical approaches (reviewed in 1, 73, 91, 103), including
frequency-based spectrum methods (e.g., Tajima’s D), LD analysis, and FST scans that search
for allelic polymorphisms enriched in one population relative to another. Analyses for GWASs
and QTL mapping have also been reviewed extensively (106), and several software packages are
already available to conduct these analyses (106). All of these approaches can identify candidate
loci potentially involved in selection or adaptation, but further experimental work is needed to
demonstrate causality.

One of the advantages of population genomics is that sequences or SNPs are the ultimate
data. However, missing data or imputed SNPs add some uncertainty. Once the data are properly
checked for quality, further analysis needs to include two major objectives: (a) assuring that genetic
assumptions for analyses such as neutrality of markers or panmixia are valid and (b) testing the
specific hypotheses under investigation. Typically, analysis uses SNP data in the variant call format
(vcf) (https://vcftools.github.io/specs.html). Vcf files are text files that are machine readable and
store genotypic data, including indels, SNPs, and more. Several open source tools exist to read and
analyze these data (https://vcftools.github.io/specs.html). N.J.G. has recently developed more
derived tools in R for reading and analyzing population genomics data from vcf files (47, 48, 50;
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https://github.com/grunwaldlab/vcfR) that will be useful for analysis of population genomics
data in a whole-genome context.

APPLICATIONS OF POPULATION GENOMICS
IN PLANT PATHOLOGY

Pathogen population genomics will find many applications in plant pathology, especially through
improving our understanding of pathogen biology. It is also likely to inform resistance breed-
ing practices by providing insight into optimal resistance gene deployment strategies. In general,
knowledge of pathogen population genomics can inform disease management in the same ways
as pathogen population genetics (42, 66, 67), but the information is more extensive and enables
more conclusive interpretations on pathogen population biology. Beyond applications to disease
management, many novel insights will result from population genomics investigations of plant
pathogens. Ultimately, population genomics will enable the identification of genes affecting im-
portant pathogen traits. Examples of the types of studies done to date are given below.

Demographic Processes and Genome-Wide Effects

As described above, studies that genotype a large number of neutral markers can be used to
address questions concerning demographic processes and genome-wide effects, as previously done
in population genetics. The large number of markers makes more robust inferences possible on
genetic structure, gene or genotype flow, and mating systems, as shown in the following examples.

Fusarium graminearum. A population genomics analysis was conducted using 213 strains of
Fusarium graminearum sampled from 13 wheat fields across Germany (93). RADseq was used to
generate 1,129 SNPs distributed across the genome, present at frequencies between 7% and 92%,
and missing in no more than four strains. AMOVA (Analysis of MOlecular VAriance) revealed
that 99.7% of the total genetic variance was within field populations and only 0.3% was among
populations. An earlier analysis using the same isolates but based on 19 SSR (simple sequence
repeat) loci found that 20% of the genetic variance was distributed among field populations. This
comparison reveals how different types and densities of genetic markers can produce different
outcomes. LD decayed within 1,000 bp on average across all four chromosomes, indicating that
this population is highly recombined and undergoes regular recombination, despite the fact that
F. graminearum is homothallic. Analysis of SNP markers at a fine scale revealed over 200 hot spots
of recombination. These hot spots were fewer than ∼650 bp in length and exhibited up to 0.2
recombinations/(bp · generation). They were also enriched in genes encoding DNA repair and
membrane transport. The authors concluded that the German field populations of F. graminearum
represent a single panmictic population with sufficient genetic diversity in each field population
to enable rapid adaptation to changes in the local environment, including deployment of resistant
cultivars or applications of fungicides. Another outcome of this analysis was to illustrate that this
collection of isolates would be useful for a GWAS, as described later.

Verticillium dahliae. Genotyping with a large number of SNPs in Verticillium dahliae illustrates
two types of studies that were not previously possible. In the first study, genotyping by GBS
produced more than 26,000 SNPs in a diverse collection of 141 isolates (71). SNPs were evenly
distributed on all contigs of the reference genome and therefore ideally suited for population
genomics analysis. V. dahliae has no known sexual stage, and SNP genotyping confirmed that
populations have a highly clonal structure. Almost all SNP diversity was due to differences among
clonal lineages; very few SNPs were found within lineages. Most genotypes clearly belonged to
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well-defined lineages that correlate with vegetative compatibility groups (VCGs). However, sev-
eral isolates and one newly discovered lineage had genotypes that were recombinant between
known lineages. More extensive analysis indicated that nearly all clonal lineages arose by recom-
bination. Although V. dahliae is ostensibly asexual, genes required for meiosis were found in the
reference genome (71, 80), suggesting that recombination is most likely to have occurred by sexual
reproduction. As a follow up to this study, additional SNP genotyping was conducted to infer the
origin and migration of a highly virulent, defoliating lineage of V. dahliae (72). Coalescent analyses
of these genotypes made it possible to infer five separate introductions of this lineage from North
America into the Mediterranean basin. Because of the fine-grained genotyping afforded by GBS,
enough variation was detected within this lineage to infer the ancestral haplotype as coming from
North America, which is consistent with historical records.

Comparative Population Genomics

Comparative population genomics provides insight into pathogen origins and the underlying pro-
cesses driving pathogen speciation and emergence of novel clones or lineages (87), as well as the
roles of migration (39, 64, 65), host tracking (88), host jumps (e.g., Pyricularia graminis-tritici
causing wheat blast in Brazil) (16), hybridization (69, 89), selection (76), HGT (27, 36), and chro-
mosome rearrangements (22, 28) in the emergence of new pathogens. Ultimately, these analyses
may provide insight into the risk of emergence of novel pathogens in particular agroecosystems.

The most powerful comparative population genomics studies include multiple strains of each
species because differences observed between species are more meaningful with accurate mea-
surements of differences within species. A useful approach is to include wild pathogen populations
sampled from ancestral or undomesticated hosts growing at or near the center of origin of the
domesticated pathogen. This enables inference of the ancestral state and provides a measure of
the degree of divergence. If possible, collections should be made in sympatry, with wild pathogen
populations sampled at the same time, location, and spatial scale as the domesticated pathogen
populations. Sympatric collections of wild and domesticated pathogen species enable strong infer-
ences to be made regarding the underlying processes that led to pathogen domestication, including
host specialization and adaptation to the corresponding host agroecosystem.

Phytophthora infestans and related species. The potato late blight pathogen P. infestans and
its close clade 1c relatives Phytophthora ipomoeae and Phytophthora mirabilis are known to occur
at the putative center of origin in central Mexico (40, 41). Raffaele et al. (76) sequenced the
genomes of these three taxa and found evidence for compartmentalized genomes, with repeat-
rich regions of the genome showing higher evolutionary rates and transposon activity compared
to more conserved regions that are enriched for housekeeping genes. The repeat-rich regions
contain most of the pathogenicity genes, such as RxLR and Crinkler genes, that might be involved
in host jumping (43, 98). Other work provided evidence that Phytophthora andina is a hybrid
between P. infestans and another as yet unknown Phytophthora hybrid parent presumably of South
American origin (38). Hybridization has been described for several Phytophthora species, including,
for example, Phytophthora alni (46). Because of the hybrid nature of these genomes, it has not been
possible to assemble genome sequences from short-read sequencing (i.e., Illumina). Long-read
sequencing (e.g., Pacific Biosciences) will be necessary to solve this problem.

Pyricularia species on wheat and wild grasses. The wheat blast disease caused by P. graminis-
tritici and other Pyricularia species (16) was first reported in Brazil 30 years ago and has since
spread across the wheat-growing region of Brazil and into neighboring countries (reviewed in 15).
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It was long thought that the wheat blast disease emerged through a host jump from Pyricularia
strains infecting rice, although recent population genetics analyses based on 11 SSR loci indicated
that the rice- and wheat-infecting populations were genetically distinct (63). To further test this
hypothesis and identify alternative original hosts for the wheat blast pathogen, Pyricularia strains
were collected from wheat and rice fields across Brazil as well as from weeds and pasture grasses
growing near those fields. Comparative population genomics enabled differentiation of many
distinct lineages within the Pyricularia species complex and showed that the closest relatives of
the wheat pathogen were found on the widely grown pasture grass Urochloa as well as other
grasses growing in or near wheat fields (16, 19). By contrast, the Pyricularia population infecting
rice was distantly related. These findings, coupled with analyses of population genetics based
on SSRs and sequences of housekeeping genes in more than 500 strains (16, 63), indicated that
the wheat blast pathogen likely emerged through a host jump from the Pyricularia population
infecting Urochloa or other Brazilian grasses ∼30 years ago. An important application of these
population genomics comparisons is that they enabled a very rapid determination of the source
of the wheat blast outbreak occurring in Bangladesh in 2016 (13). The genome sequences of the
Bangladesh strains clustered tightly with the P. graminis-tritici genome sequences from Brazil,
indicating that the Bangladesh outbreak most likely originated from imported Brazilian wheat
(https://github.com/crolllab/wheat-blast).

Blumeria graminis on cereals. Powdery mildew on triticale (Blumeria graminis f. sp. triticale) is
another recently emerged pathogen that was first noticed ∼15 years ago in Europe (102). Triticale
became widely grown in Europe beginning in the 1960s. Comparative genomics indicated that
the new, host-specialized triticale pathogen emerged following hybridization between B. graminis
species specialized to infect either bread wheat (B. graminis f. sp. tritici ) or rye (B. graminis f.
sp. secalis), the two ancestors of triticale. Resequencing 40 Blumeria isolates from all three hosts
showed that triticale powdery mildew likely emerged through two independent hybridization
events that occurred in Europe between 7 and 47 years ago (69). Additional analyses that included
six B. graminis f. sp. dicocci strains from tetraploid durum wheat traced the origin of wheat powdery
mildew back to the domestication of wheat ∼11,000 years ago, providing another example of
pathogen emergence through host tracking.

Identifying Genes Under Selection

The candidate gene approach to finding genes under selection has been best exemplified by studies
on effectors. After candidate effector genes have been identified and validated, detailed analyses
of effector profiles (effectoromics) can be conducted at the population level to guide resistance
breeding strategies, as recently described for global populations of Parastagonospora nodorum (68),
regional populations of Leptosphaeria maculans in Australia (99), and local populations of P. infestans
(101). This practice is the modern equivalent of the race typing (pathotyping) conducted for many
fungal and oomycete pathogens by earlier generations of plant pathology researchers. Population
genomics analyses enable measurements of effector diversity across many loci simultaneously and
can lead to the discovery of new effectors that may become relevant when breeders deploy new
major resistance genes. Similarly, surveys of diversity in genes encoding proteins targeted by
fungicides may be used in the future to predict the emergence of fungicide resistance in local
pathogen populations and to formulate resistance management strategies.

The candidate gene approach, however, is limited to genes with already known functions. By
contrast, genome scans for genes under selection may lead to the identification of novel genes not
previously known to be associated with any phenotype.
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Zymoseptoria species on wheat and wild grasses. Genome scans in the wheat pathogen
Zymoseptoria tritici illustrate the potential of this approach to identify genes previously unknown
to be involved in host specialization. Iranian scientists sampled infected leaves from wild grasses
growing near Iranian wheat fields to identify sympatric, wild Zymoseptoria species (86). Although
the wild and domesticated species were sampled in sympatry, there was no evidence for recent
movement of individuals between wild and domesticated hosts, and the wild pathogens appeared
to be a different species from the wheat pathogen (91). Cross-inoculation experiments showed
that Z. tritici had become specialized to infect wheat, unlike the wild Zymoseptoria species that
infected multiple host species (88). Genome sequences were compared for ten isolates of Z. tritici,
five isolates of Zymoseptoria pseudotritici, four isolates of Zymoseptoria ardabiliae, and one isolate of
Zymoseptoria passerinii (a previously identified barley-specialized pathogen used as an outgroup).
Sequencing several strains of each species enabled a comparison of diversity within and between
species. These analyses identified 27 genes that diverged significantly more between species than
the rest of the genes in the genome, a pattern expected for genes involved in adaptation (host
specialization) and speciation (88). A coalescent analysis indicated that the domesticated wheat
pathogen diverged from the closest wild pathogen species, Z. pseudotritici, ∼11,000 years ago (86),
around the same time that wheat was domesticated (78), supporting the hypothesis that Z. tritici
emerged through host tracking (91). Four of the twenty-seven candidate genes for host specializa-
tion were functionally analyzed using allele swaps, and three of them were shown to have significant
effects on the ability to infect and reproduce on wheat (75), suggesting that these highly diverged
genes were involved in the emergence of host specialization toward wheat. Using a complemen-
tary candidate gene approach, Brunner et al. (11) conducted a targeted analysis of the 48 plant
cell wall–degrading enzymes (based on the CAZy classification system) (14) found in these strains
and identified three genes (two encoding cellulases and one encoding a cutinase) involved in host
specialization, with three additional genes encoding a cutinase, a cellulase, and a hemicellulase
showing an evolutionary pattern consistent with evading recognition by host receptors.

Genome-Wide Association Studies

The overall objective of a GWAS is to establish a firm link between genotype and phenotype
in natural populations. This analysis may eventually lead to identification of genes or genetic
markers associated with important traits, such as host specialization, virulence (aggressiveness),
fungicide sensitivity, thermal adaptation, pathogen reproduction, and pathogen growth rate. As
explained earlier, an important limitation in a GWAS is to analyze individuals sampled from single,
genetically undifferentiated populations. Otherwise, a GWAS needs to be statistically corrected
for population structure, leading to a significant reduction in the ability to detect significant
associations between phenotypes and genetic markers.

Fusarium graminearum. A GWAS was conducted using the same 220 strains of F. graminearum
described in the section on Demographic Processes and Genome-Wide Effects above (93). RAD-
seq was used to generate ∼29,000 SNP markers distributed across the genome. The traits aggres-
siveness and deoxynivalenol (DON) production were measured for 119 strains across four natural
field environments, and sensitivity to the azole fungicide propiconazole was measured for all 220
strains using EC50 measurements in a laboratory environment. A total of 50, 29, and 74 QTNs
were significantly associated with aggressiveness, DON production, and propiconazole sensitiv-
ity, respectively, with three QTNs exceeding the Bonferroni threshold of significance located in
genes not previously associated with azole sensitivity (92). Only ∼40% of the detected QTNs
caused nonsynonymous substitutions, representing candidate SNPs affecting gene function. The
majority of QTNs were synonymous substitutions or located in intergenic regions. These QTNs
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may represent regulatory elements, misannotated genes, or SNPs that are in LD with nearby genes
or regulatory sequences that are responsible for the trait variance. A highly significant QTN ex-
plaining 24% of the variance in aggressiveness was found in a gene encoding a RAS-GTPase
activating protein, implicating the RAS protein as an important contributor to aggressiveness in
F. graminearum. Seventeen percent of the genetic variance in azole sensitivity was explained by
each of the three QTNs that passed the Bonferroni significance threshold. One of the QTNs
was in a gene encoding an acyl-CoA thioesterase, a protein that plays a role in converting acti-
vated fatty acids into their corresponding nonesterified fatty acids. This indicates that acyl-CoA
thioesterase may play an important role in azole sensitivity, possibly through reprogramming the
regulation of lipid metabolism in fungal cells exposed to azoles. The other two QTNs were located
in genes representing completely novel contributors to fungicide resistance. These genes provide
good candidates for future studies on the mechanism of azole resistance in field populations of
pathogenic fungi.

Heterobasidion annosum. Dalman et al. (24) sequenced 23 haploid isolates of the basidiomycete
tree pathogen Heterobasidion annosum sampled from across Europe, with a mean read depth
of 2.6–12.6× for the individual isolates, resulting in ∼33,000 SNPs to include in a GWAS.
Virulence for each strain was measured as both lesion length formed under the bark and fungal
growth in the sapwood on Scots pine and Norway spruce. Twelve SNPs distributed across seven
assembled contigs were significantly associated with at least one of the four measured traits. Six of
the twelve SNPs were distributed among three tightly linked genes on one contig. One of these
genes was predicted to encode calcineurin, a phosphatase regulated by Ca2+ and calmodulin that
is involved in calcium-dependent signal transduction pathways. Calcineurin was shown to affect
virulence in several other fungi and this GWAS finding led the authors to postulate that natural
variation in this gene affects the ability of H. annosum to grow in pine trees. Five of the eight
candidate virulence genes identified by GWASs were found within QTLs identified in an earlier
linkage mapping study (61). This example illustrates well how GWASs can identify novel candidate
genes for important traits and lead to new insights into the biology of nonmodel pathogens.

Quantitative Trait Locus Mapping Using Controlled Crosses

QTL mapping is often done with the same goals as GWASs, i.e., to identify genes or genomic
regions associated with specific phenotypes. Relatively few QTL mapping studies have been done
with plant-pathogenic fungi (23, 49, 61), perhaps because making controlled, segregating crosses
is often difficult or impossible, and the only one we are aware of that uses population genomics
technologies is described here in Z. tritici.

Zymoseptoria tritici. Recent work with Z. tritici combined precise phenotype data generated
using high-throughput digital-image analyses with dense genetic marker sets based on RADseq
to determine the genetic architecture of several quantitative traits and identify candidate genes
responsible for these traits. Two crosses were made among four Swiss strains of Z. tritici, resulting
in ∼350 offspring for each cross. Complete genome sequences for all four parents were assembled
by combining Illumina and Pacific Biosciences sequencing technologies, enabling identification
of the specific point mutations in each candidate gene that could be responsible for the observed
trait variance. Approximately 8,500 SNPs were segregating in each cross to create genetic linkage
maps and conduct QTL analyses. Several significant QTLs were identified for each trait, including
degree of melanization, fungicide and temperature sensitivity, degree of hyphal growth, and a suite
of virulence traits, including pycnidial density, pycnidial size, and percentage of leaf area covered
by lesions. Several of the QTLs were associated with large LOD (logarithm of the odds) scores,
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explained a large percentage of the overall trait variance, and had fewer than 10 genes within
their 95% confidence intervals. By comparing the parental sequences of the genes in these QTLs
and focusing on nonsynonymous substitutions that are likely to affect protein function, high
priority candidate genes were identified for melanization (PKS1), fungicide sensitivity (CYP51),
thermal adaptation (MgPBS2), and hyphal growth (a guanine nucleotide exchange factor) (55–
57). In addition, it was possible to separate genes involved in the necrosis phenotype, reflecting
host damage, from genes involved in forming pycnidia, reflecting pathogen reproduction (83).
Candidate genes involved in host specialization were also identified (83). It is notable that all of
these QTLs are based on natural genetic variation existing in the parents; hence, they represent
the type of genetic variation on which selection can operate in natural field populations.

SUMMARY POINTS

1. Population genomics is an extension of population genetics, but the ability to identify
large numbers of SNPs distributed throughout the genome radically alters the types of
questions that can be addressed.

2. The availability of fine-resolution genotyping has enabled a shift in emphasis toward un-
derstanding locus-specific effects, such as discovering the genetic mechanisms underlying
pathogenicity, virulence, fungicide resistance, and host specialization.

3. Three main types of questions are addressed in population genomics related to under-
standing the genome-wide demographic process (as in traditional population genetics),
identifying genes under selection and involved in adaptation to different environments,
and determining the genetic architecture underlying known phenotypes.

4. Research approaches in population genomics include: genetic analyses of natural popu-
lations, comparative genomic analyses of closely related species, identification of genes
under selection, GWASs in natural populations, and QTL mapping in segregating pop-
ulations resulting from crosses.

5. This rapidly developing field has not yet established standardized best practices for either
genotyping methods or analyses, and therefore great care is needed to avoid artifacts that
lead to inappropriate conclusions.

6. Pathogen population genomics will find many applications in plant pathology, especially
through improving our understanding of pathogen biology, but also in contributing to
disease management and deployment of disease resistance.

FUTURE ISSUES

1. Additional advances in genomic technology are likely to continue driving down the costs
for genome sequencing. What will be the effects on plant pathology in 10 years when
a fungal or oomycete genome sequence can be routinely obtained at a cost affordable
by any lab? We expect that data analysis and interpretation will remain limiting factors
for progress, even though automated analysis software will be available for addressing
some specific questions and applications. However, major improvements in through-
put, reproducibility, and accuracy of phenotyping will be needed to firmly establish the
connections between genotype and phenotype, especially for quantitative traits.
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2. As families of effector genes encoding host-specific toxins and avirulence are identified
and validated in field experiments for their role in aggressiveness and virulence, molec-
ular phenotyping is likely to replace traditional pathotype analysis based on measuring
strain virulence on sets of differential hosts in the greenhouse. Similarly, traditional mea-
sures of fungicide sensitivity such as EC50 may be replaced by molecular phenotyping
for pathogens with well-established mutations that can be associated with fungicide re-
sistance in the field.

3. In the field of human medicine, molecular epidemiology is already applied for important
pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) (74), HIV-1 (45),
and the Ebola virus (37), providing examples of what can be achieved when sufficient
resources are brought to bear on an urgent disease outbreak. Similar applications will
become commonplace in plant pathology, as illustrated recently for the wheat blast out-
break in Bangladesh (13, https://github.com/crolllab/wheat-blast). After sequencing
an appropriate number of pathogen strains in key locations to establish the baseline data
sets needed to minimize ascertainment bias, molecular epidemiology—using the tools of
population genomics—can be applied to identify new emerging clones, races, or patho-
types that exhibit novel properties (e.g., changes in virulence, fungicide sensitivity, or
thermal adaptation) in real time to identify the source of the new pathogen population
and its likely pathway of migration.

4. Connected to these developments, we also foresee the implementation of virtual col-
lections of pathogen isolates based on archived genome sequences stored in databases
on computer servers that can be accessed by plant pathologists worldwide, regardless
of quarantine restrictions on the movement of pathogens across borders. These virtual
collections would complement existing collections of living pathogen specimens that oc-
cupy physical space and require regular and expensive upkeep. As costs for sequencing
and data storage continue to fall, we can imagine that the number of pathogen strains
maintained in virtual collections will quickly exceed the number of strains maintained in
physical collections, although the traditional, physical culture collection will remain an
indispensable biological resource far into the future.

5. Regardless of whether any of these predictions come to pass, it is clear that research in the
field of pathogen population genomics will make major contributions to plant pathology
for the foreseeable future.
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