
PY54CH04-Poland ARI 1 July 2016 10:29

Advances and Challenges
in Genomic Selection
for Disease Resistance
Jesse Poland1 and Jessica Rutkoski2,3

1Wheat Genetics Resource Center, Department of Plant Pathology and Department of
Agronomy, Kansas State University, Manhattan, Kansas, 66506; email: jpoland@ksu.edu
2Plant Breeding and Genetics Section, Cornell University, Ithaca, New York, 14853;
email: jer263@cornell.edu
3International Maize and Wheat Research Center (CIMMYT), Texcoco, Estado de México,
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Abstract

Breeding for disease resistance is a central focus of plant breeding programs,
as any successful variety must have the complete package of high yield, disease
resistance, agronomic performance, and end-use quality. With the need to
accelerate the development of improved varieties, genomics-assisted breed-
ing is becoming an important tool in breeding programs. With marker-
assisted selection, there has been success in breeding for disease resistance;
however, much of this work and research has focused on identifying, map-
ping, and selecting for major resistance genes that tend to be highly effective
but vulnerable to breakdown with rapid changes in pathogen races. In con-
trast, breeding for minor-gene quantitative resistance tends to produce more
durable varieties but is a more challenging breeding objective. As the genetic
architecture of resistance shifts from single major R genes to a diffused ar-
chitecture of many minor genes, the best approach for molecular breeding
will shift from marker-assisted selection to genomic selection. Genomics-
assisted breeding for quantitative resistance will therefore necessitate whole-
genome prediction models and selection methodology as implemented for
classical complex traits such as yield. Here, we examine multiple case studies
testing whole-genome prediction models and genomic selection for disease
resistance. In general, whole-genome models for disease resistance can pro-
duce prediction accuracy suitable for application in breeding. These models
also largely outperform multiple linear regression as would be applied in
marker-assisted selection. With the implementation of genomic selection
for yield and other agronomic traits, whole-genome marker profiles will be
available for the entire set of breeding lines, enabling genomic selection for
disease at no additional direct cost. In this context, the scope of implement-
ing genomics selection for disease resistance, and specifically for quantitative
resistance and quarantined pathogens, becomes a tractable and powerful ap-
proach in breeding programs.
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INTRODUCTION

Types of Disease Resistance

Disease resistance is often classified into qualitative and quantitative resistance (84). The scope
of qualitative disease resistance is generally resistance conditioned by a single resistance (R) gene
recognizing avirulence factors in a classic gene-for-gene mechanism, and the inheritance is said
to be qualitative or Mendelian. In contrast, quantitative resistance is usually conditioned by many
genes of small effect, and the inheritance is said to be quantitative or polygenic (56). However,
the dichotomy between these two classifications of disease resistance is not clear-cut, with many
examples of pathosystems having a genetic architecture between qualitative genes with major effect
and purely quantitative resistance (59).

From a breeding perspective, quantitative resistance is considered to be more durable when
deployed in varieties for agricultural production (44). Unlike resistance based on R genes, quanti-
tative resistance generally does not appear to be race specific (38). Both qualitative and quantitative
resistance have been, and continue to be, targets of selection for breeding programs. In the scope of
quantitative genetics and genomics-assisted breeding, differential reaction to different populations
or races of a given pathogen (race-specific resistance) contributes to genotype-by-environment
(G×E) interaction, which can be observed as differences in resistance levels across different en-
vironments and may consist of scale differences or changes in rank of the varieties tested. With
race-specific resistance, the prevalent pathogen race(s) is a component of the environment, lead-
ing to greater observed G×E. By comparison, minor-gene resistance that has no or minimal
gene-for-gene interaction leads to much less G×E. In breeding, yield stability is the ideal target,
especially because good performance across years is desired. Stability in resistance, resistance with
minimal G×E, is important for achieving yield stability, particularly in areas prone to epidemics.
Breeding for race-nonspecific minor-gene resistance is one way to minimize G×E of resistance. In
addition to minimizing G×E, there are also quantitative genetic and genomic prediction models
that can help improve breeding efficiency when G×E is present, as long as there is some genetic
correlation between environments (12, 41).

Genetic Architecture of Disease Resistance

The genetic architecture of a trait includes the number of gene(s) controlling the trait, the genomic
location and allele substitution effect of these genes, and the overall heritability of the trait (49).
Important agronomic traits such as grain yield or lodging tolerance are generally considered to
have a complex genetic architecture, meaning that the trait is controlled by many genes, each with
a small effect. There are notable examples of important, large-effect genes in breeding programs.
However, these genes are rapidly selected to fixation and are therefore inconsequential for future
gain from selection. The breeding methodologies employed for different traits largely depend on
the genetic architecture, the heritability, and the economic importance of that trait (25, 31).

Breeding methods for disease resistance vary depending on whether the resistance is consid-
ered to be qualitative or quantitative. It follows that the genetic architecture of disease resistance
is closely tied to whether the resistance is quantitative or qualitative, and hence both the phe-
notypic and molecular breeding approaches must be matched accordingly. As can be expected,
qualitative resistance conditioned by single, major genes does not have a complex genetic archi-
tecture and hence is more suitable for identifying and mapping single resistance genes of large
effect. In contrast, quantitative resistance can be approached similarly to other agronomic traits,
using breeding methodology and whole-genome prediction models developed for quantitative
traits.
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BREEDING FOR DISEASE RESISTANCE

As a selection objective, breeding for disease resistance is often completed in early generations with
selection of lines or single plants in dedicated disease nurseries. In a typical selected bulk or pedigree
program, many hundreds of populations are developed from which individual plants or lines are
selected for general agronomic performance (e.g., height, maturity) and disease resistance. Another
strategy is to generate lines using doubled haploids or single-seed descent, and then phenotype
lines for disease resistance and all other traits of interest prior to selection. This is suitable if
heritability is low, making single plant selection too inaccurate to warrant its application.

For molecular breeding, marker-assisted selection (MAS) has been implemented in breeding
for selection and stacking (gene pyramids) of major resistance genes. As outlined in detail below,
the use of molecular markers and MAS can facilitate gene pyramids for more durable resistance,
as multiple genes that are effective against the pathogen isolates can be combined into a single
breeding line or a variety in a manner that would not be possible with only phenotypic selection.

Breeding for Qualitative Disease Resistance

Breeding for qualitative resistance usually involves screening large numbers of progeny in early
generations to identify and discard susceptible individuals that do not carry the resistance gene
allele(s) of interest. This can be done phenotypically in a greenhouse, often at very early growth
stages, or in the field on adult plants. Resistant plants or lines are then selected and advanced in the
breeding program. The same process can be done using markers linked to the resistance genes,
enabling screening at very early stages in the absence of the pathogen. By screening large numbers
of individuals in early generations, the targeted resistance allele(s) can be fixed or enriched in the
population (7) before individuals are advanced in the breeding program and subjected to selection
for other traits. Large population sizes are important so that many selection candidates remain
after screening for resistance, enabling selection for other key traits.

Backcrossing is another possible breeding strategy that can be implemented for disease resis-
tance. With backcrossing, a resistant parent is crossed to an elite but susceptible parent. Resistant
progeny are then crossed to the elite parent, and the process is continued until a line is developed
that has the desired resistance allele in the elite parent background. The selection imposed during
backcrossing can be based on either phenotype or a marker linked to the resistance gene. To
expedite the process, markers distributed on all chromosomes can be used to select for the elite
parent background (33). One of the key features of breeding for qualitative disease resistance is
that resistance alleles can be fixed in relatively few cycles of breeding, and there is a clear endpoint
at which selection for a resistance allele is no longer necessary (20).

Breeding for Quantitative Disease Resistance

Unlike qualitative resistance, breeding for quantitative resistance requires multiple cycles of breed-
ing, leading to a gradual improvement in resistance over time. Breeding methodology for quanti-
tative resistance may be the same as those for other quantitative traits, such as yield, and selection
is generally imposed on all quantitative traits at once, with each trait weighted either implicitly
or explicitly according to economic value or other criteria (30). In a typical breeding program
that aims to develop lines (Figure 1), a breeding cycle begins with the identification and crossing
of parents with the highest breeding values, taking into account all target traits. The progeny
of the cross are then self-pollinated to create an F2 population that will segregate for most or
all traits. The F2 population is grown, and selection can be imposed for highly heritable traits,
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possibly including quantitative disease resistance. The selected F2 plants are self-pollinated, and
advanced to generate the F3 population. Selection and advancement are continued in the F3 and
F4 populations. In many programs, single plants from the F4 are harvested individually, and all
the seed is kept and stored separately. Seed from the F4 plants is planted, giving rise to the F4:F5

generation. At this point, selection among F4:F5 lines for multiple high-heritability traits is usually
imposed. All seed from the F4:F5 lines are harvested and then planted for advanced testing (F4:F6
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generation). The next generation is planted the next year for another year of advanced testing. The
self-pollination stages from F2 to F4 are required for the development of pure-breeding lines that
may be needed for commercialization, depending on the crop, and for enabling accurate measure-
ment of low-heritability traits at realistic planting densities. Various modifications to the scheme
outlined above are common, and for crops that do not require line development, as in the case of
clonally propagated crops, the selfing stages may be replaced with clone or seed-increase genera-
tions where selection may be imposed. Likewise, the use of double haploid (DH) technology can
enable advancement directly from F1 plants to fixed, inbred lines with selection on DH popula-
tions employing techniques equivalent to F5 lines in the program (19). The development of hybrid
cultivars follows an equivalent scheme to generate inbred lines with the notable exception that the
agronomic and yield testing are done with test-cross hybrids generated from the inbred lines.

Selection for quantitative disease resistance can occur at any stage of the breeding process,
including the early and late generation stages, as long as its evaluation is feasible. However,
because yield is generally considered the most important trait, selection for new parents to initiate
a new cycle of breeding generally occurs after yield testing, during late generations.

Gain from selection can be predicted using the theoretical formula R = irσa (18) where i is the
selection intensity, r is the accuracy of selection, and σa is the additive genetic standard deviation
among the selection candidates. When selection occurs at several stages throughout the breeding
cycle, the total gain from selection is the sum across all selection events, Rtotal =

∑
R. Thus,

selecting at multiple stages can be beneficial; however, it can be less effective than expected for
several reasons. First, selecting in early generations is generally less accurate because it must be
based on a single plant without replication. Second, σa in early generations prior to inbreeding
is partitioned both within and among lines, limiting the effectiveness of selection as progeny
segregate from the parental phenotype. Third, selection reduces σa (11), and there is less potential
gain in subsequent stages.

Gain from selection per unit time is formalized as

�G = Rtotal

L
,

where L is the length of the breeding cycle. The gain per unit time is of ultimate importance
because it indicates the rate of genetic improvement and can be used to evaluate breeding schemes

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1
Examples of phenotypic and genomic selection schemes enabling population improvement and line development. In both the
phenotypic and genomic selection schemes, inbred parents are intermated, giving rise to the F1 generation. F1 plants are self-
pollinated, giving rise to F2 seed that becomes the F2 population. Undesirable F2 plants are culled based on highly heritable traits,
possibly including disease resistance. One or multiple seeds are harvested from the remaining F2 plants and then planted to give rise to
the F3 generation. Culling and harvesting are carried out as before, giving rise to the F4 generation. In phenotypic selection (left),
selected F4 plants are harvested and stored separately. The set of F5 seeds, each derived from a single F4 plant (F4:F5), is planted in a
small plot, and culling selection among plots is imposed. Seed from each remaining plot is harvested and stored, giving rise to the F4:F6
generation. The F4:F6s are phenotyped for all traits, and the best lines are selected for advancement. The next generation, F4:F7, is
phenotyped again, and new parents are identified for crossing based on all phenotypic data. In genomic selection (right), F4 plants are
genotyped, their breeding values for all traits of interest are predicted, and new parents for crossing are identified. Seed from F4 plants
is harvested and stored separately, giving rise to the F4:F5 generation. An optimal subset of the F4:F5 population is planted in small
plots. Seed from each plot is harvested and stored, giving rise to the F4:F6 generation. The F4:F6s are phenotyped for model updating
and also for variety release. F4:F6s are harvested and the next generation, F4:F7, is phenotyped for model updating and variety release.
Each stage in the breeding pipeline represents a decrease in the overall number of lines and an increase in the level of replication and
phenotypic testing after the F4 stage.
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of different cycle lengths. The length of the breeding cycle can have a major impact on the rate of
genetic gain, and thus efforts to reduce L without drastically reducing gain per cycle are key for
increasing the rate of genetic gain. It is important to note that in plant breeding programs that
target multiple traits, L is usually determined by the trait that takes the longest to evaluate, which
is generally yield. Furthermore, when selecting for multiple traits the gain for each individual
trait is usually less than that observed when breeding for only one trait (25). Thus, breeding for
quantitative disease resistance is effectively slowed by the need to improve other important traits
to develop commercially viable varieties.

Breeding for Exotic and Quarantined Diseases

There are a number of important exotic and quarantined diseases for which preemptive breeding
efforts are warranted. For example, highly virulent stem rust races in wheat from the Ug99 lineage
have received considerable breeding effort in regions where the races are not found (76, 77). This
is facilitated through shuttle breeding by moving cycles of selection between locations where the
disease/races are present and locations that represent the environment(s) targeted by the breed-
ing program (77). Also, resource intensive screening can be conducted in quarantined pathogen
facilities, such as the USDA-ARS BL3 (United States Department of Agriculture–Agricultural
Research Service Biosafety Level 3) Cereal Disease Laboratory (53). Although these types of ap-
proaches are effective, they ultimately impose a limit on the size of breeding populations that can
be screened. Owing to the limitations and challenges in evaluating breeding lines for resistance
to exotic or quarantined diseases, genomics-assisted breeding becomes an increasingly attractive
methodology.

Breeding for Multiple Disease Resistance

Likewise, breeding for multiple diseases presents a challenge for breeders (8). Implementation of
a single disease nursery that gives effective screening for the suite of important pathogens can be
difficult, and high pressure from multiple diseases can confound scoring and selection. Selection for
any set of diseases that would require multiple locations or replications is not possible until later in
the breeding cycle when inbred lines are developed. For crops and target locations where multiple
disease resistance is important, molecular breeding approaches become a tractable approach for
identifying superior lines.

Molecular Breeding for Disease Resistance

In the scope of using molecular breeding for improving disease resistance, there has been con-
siderable effort focused on the identification of markers linked with major genes and mapping
quantitative trait loci (QTLs) for disease resistance. With molecular markers for R genes, direct
selection with these markers for disease resistance can be implemented in the breeding programs.
Many hundreds of R genes have been mapped across important crops, including rice (e.g., 10, 82,
86), wheat (e.g., 42, 57, 73), maize (13, 14, 36, 43, 60, 64, 87), soybean (e.g., 4, 15), and potato
(e.g., 3, 81) as well as numerous other crop pathosystems (e.g., 39, 67, 92). Work in Arabidopsis
thaliana has identified many genes and provided a strong fundamental foundation in molecular
plant-pathogen interactions.

However, given the economic importance of these diseases and the overall effort invested in
genetic markers, there are relatively few examples of large-scale implementation of MAS for dis-
ease resistance in applied breeding programs. As noted by Miedaner & Korzun (51) in relation to
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wheat and barley breeding, the lack of markers applied in commercial breeding for disease resis-
tance could be due to having few diagnostic markers, the prevalence of QTL background effects,
and overall economic constraints from a low return of investment for implementing markers.
Furthermore, few monogenic resistances are durable, and only a few QTLs with high effects have
been successfully transferred into elite breeding material, limiting the practical use of MAS for
R genes (51).

Following mapping and implementation of markers for multiple R genes, pyramiding of se-
lected genes is possible (e.g., 34, 61, 78). However, the practical implementation of MAS for
stacking multiple disease resistance genes adds an additional layer of complexity to applied breed-
ing programs, as the population size needed for maintaining and fixing multiple genes quickly
outgrows the reasonable available resources for MAS. For example, in a simple F2 population,
an expected 25% of the lines would be fixed for the favorable allele at any given locus and only
1.5% of the plants would be fixed for all favorable alleles at three different loci. It is possible with
a reasonable population size of a few hundred to identify plants through MAS with a three-gene
pyramid. However, this must be put in the context of breeding programs in which breeders want
to have many hundreds of lines for advancement to yield testing. It would take a population size
of 10,000 with MAS to identify 150 lines carrying a three resistance gene pyramid that could
be advanced for yield testing, which is still far too few for making progress for yield. Although
the probability in the F2 increases to 42% if just maintaining the favorable allele combination
(in a heterozygous or homozygous condition), further rounds of marker testing are needed in
subsequent generations.

Backcross introgression is another option for combining multiple R genes into an elite back-
ground. Although varieties have been developed using this approach (5, 75, 79), it often fails
because by the time the backcrossing is completed, the recurrent parent is no longer one of the
highest yielding lines (91). Thus, this strategy works best if the backcrossing can be done very
quickly, possibly requiring foreground and background selection, or if the market demands a
specific variety that is very difficult to improve upon, such as the case with malting barley.

GENOMIC SELECTION

Genomic selection (GS) was first proposed by Meuwissen et al. (50) as an approach to capture
the total additive genetic variance using genome-wide molecular markers and to apply molecular
breeding for difficult quantitative traits. This approach represented a convergence between pedi-
gree predictions using traditional estimates of relationships between individuals and the prediction
of genetic effects using molecular markers. GS extends from currently implemented methods for
molecular breeding of complex traits in that the GS prediction models forgo significance testing
and simultaneously estimate the effect of all markers. Contrasting to MAS, the use of whole-
genome prediction models generally has greater power to capture small-effect loci that would be
missed by MAS because of limited power for declaring significant marker effects (29).

In the scope of molecular breeding, the preferred and best performing models for prediction
using markers can be thought of as following a continuum based on the genetic architecture of the
trait. On one end of the spectrum a very simple genetic architecture in which a trait is conditioned
by a single gene of large effect and the other end represented by highly polygenic traits that are
controlled by hundreds or thousands of genes each with very small effects. GS is ideal for complex
traits with lower heritability and a complex genetic architecture. With this genetic architecture,
whole-genome prediction models as employed in GS have consistently shown superior prediction
accuracy over models that use significance testing to first identify individual markers and then
model the effect of these markers (46).
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GS using only molecular information prior to phenotyping could be especially useful for in-
creasing the rate of genetic gain by reducing the breeding cycle time, increasing the selection
intensity, and possibly increasing selection accuracy. GS as proposed by Meuwissen (50) and re-
viewed in plants by Lorenz et al. (46) involves predicting the total breeding values of selection
candidates based on genome-wide markers. To implement GS, a training population consisting
of breeding lines phenotyped for target traits and genotyped with genome-wide markers is used to
train a prediction model. That prediction model is then applied to a new set of selection candidates
that have been genotyped with genome-wide markers. One of the key features of GS is that all
markers, rather than a subset of markers deemed to be significant, are used for prediction modeling
(50). By using all markers, GS attempts to capture all the additive genetic variance for the traits of
interest. As a result, GS is more accurate than MAS approaches that capture only a portion of the
total genetic variance (26, 27, 35). GS can be used to predict breeding values for candidates with
or without phenotypic information of their own. In the former case, GS can increase the selection
accuracy and in the latter case GS can decrease the breeding cycle length because phenotypic data
on candidates are no longer needed prior to selection. It is also possible to predict breeding values
for a very large number of candidates that could not be feasibly evaluated phenotypically, thus
leading to increased selection intensity. GS can also be applied at multiple stages in the breeding
process to increase Rtotal .

Models for Genomic Selection

There are a variety of statistical models used to estimate breeding values in GS. Some are consid-
ered suitable for highly quantitative traits, whereas others are better suited for traits that fall be-
tween qualitative and quantitative inheritance. Two of the most commonly used models for purely
quantitative traits are genomic best linear unbiased prediction (G-BLUP) and ridge-regression
BLUP (RR-BLUP). G-BLUP is a mixed linear model, with individuals as random effects, and the
covariance among individuals is assumed to be proportional to the genomic relationship matrix
estimated with genome-wide markers. This leads to the utilization of information from relatives
for breeding value prediction, with closer relative information weighted more heavily. G-BLUP
is a modification of the conventional BLUP model (31), which uses pedigree relationships rather
than genomic relationships. When using G-BLUP for prediction, both the model-training and
validation individuals are included in the relationship matrix, but only the model-training indi-
viduals have phenotypic data. RR-BLUP is also a mixed linear model, but markers are considered
random effects (88). Covariance between markers is considered to be zero, and the marker vari-
ance is assumed to be the total genetic variance divided by the number of markers. This assumes
that variance is equal for all markers, which enables many more marker effects to be estimated
than there are phenotypic records. To avoid overfitting, creating a model that fits the test data
perfectly but performs poorly when applied to another data set, RR-BLUP imposes shrinkage on
the marker effect estimates, which pushes marker estimates closer to zero and reduces variance of
the estimates. To use RR-BLUP for prediction, the model is fit using the training set to estimate
marker effects and then the marker effect estimates are multiplied by the marker genotypes of the
validation individuals to generate predicted breeding values. RR-BLUP is equivalent to G-BLUP
(22), which indicates that the marker effects with RR-BLUP are actually capturing genomic rela-
tionships. Both RR-BLUP and G-BLUP assume that the trait is conditioned by an infinitesimally
large number of additive loci. Although not true, this assumption is the foundation for many
quantitative genetics principles and works quite well for prediction. However, in cases in which
there is a large-effect locus or loci, assuming unique marker variances can lead to better prediction
accuracies.
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Genomic Selection with Major Genes

When there is a large-effect locus present, a simple way to allow it to have a unique variance is
to consider it as a fixed effect in G-BLUP or RR-BLUP (6). This has been shown to increase
prediction accuracy for quantitative stem rust resistance in wheat (72), and, based on simulation,
modeling a locus as fixed is expected to improve accuracy when the locus explains more than 10%
of the variation (6). Other suitable models for traits that fall between quantitative and qualitative
inheritance are the Bayesian models BayesA, BayesB (50), BayesCπ (23), and Bayesian LASSO
(55). With BayesA, each marker is assumed to have a unique variance. BayesB is an extension
of BayesA and allows some markers to have no effect. Because Bayesian models use a different
approach for parameter estimation compared with mixed linear models, they are able to estimate
unique marker variances when there are fewer phenotypic records than markers. BayesCπ assumes
all markers have an equal variance, but a certain proportion of markers are assumed to have no
effect. In Bayesian LASSO, markers are assumed to have an equal variance, but shrinkage of
marker effects is more severe on small-effect markers, whereas larger-effect loci shrink less. These
models essentially lead to variable selection, as some loci are estimated to have near zero effect.
Most studies comparing GS models for quantitative disease resistance in crops have found that
RR-BLUP performs about as well as Bayesian LASSO (47, 68, 72) and BayesCπ (47, 52, 72, 74).
In one study of GS for wheat rust resistance, Bayesian LASSO was found to perform slightly better
than RR-BLUP (54), whereas a study of GS for Fusarium head blight (FHB) resistance in wheat
found that Bayesian LASSO performed poorly compared with RR-BLUP (1).

Thus far, the models discussed have the underlying assumption that the genetic variance is
additive. This is key for prediction of breeding value, which is by definition the sum of the
additive loci effects. However, in some instances it may be useful to predict total genetic value,
and in these cases models that can capture nonadditive effects are useful. Two such models are
Reproducing Kernel Hilbert Space (RKHS) (21) and Random Forest (RF) (9). RKHS is similar
to G-BLUP, but the relationship matrix is defined as the squared Euclidean distance divided by
a scale parameter that influences how quickly the genetic covariance decays with distance. This
enables more weight placed on more related individuals. Because closer relatives are known to
share more nonadditive genetic variance, this leads to capturing nonadditive effects for prediction.
RF is a machine-learning algorithm, unlike any other model yet discussed. With RF, a series of
regression trees are grown using the model-training set. The trees are then applied to new data,
and results are averaged to generate a final prediction. The tree structure of the prediction model
essentially allows the effect of markers to vary depending on the genotypes of other markers, which
implicitly captures nonadditive effects. Some studies of GS for quantitative disease resistance have
found either RF or RKHS to lead to higher prediction accuracies compared with linear models
(52, 68).

Selection Accuracy and Implementation of Genomic Selection

Factors that affect the accuracy of GS include the heritability of the trait, the rate of linkage equi-
librium (LD) decay, the marker density, and the number of individuals in the training population
(16). When LD decays more rapidly with physical distance, then a greater number of markers and
individuals for model training are needed. When predicting across populations, as in the case where
previous breeding candidates are used for model training to predict new selection candidates, the
relationship between the model-training population and the selection candidates is important (62).
To maintain a close relationship between the training and selection candidate individuals, the GS
prediction model should be updated each time new phenotypic data are available.
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GS accuracy is calculated using validation studies in which a set of individuals is used to train
the model and a separate set of individuals is predicted. There are different types of validation
methods, the most common are k-fold cross-validation, resampling-based cross-validation, for-
ward validation, and progeny validation. In k-fold cross validation a data set is randomly split into
k number of folds. Then prediction models are fit to k times, each time leaving out the kth fold,
which serves as the validation set. In resampling-based cross-validation, a random sample of indi-
viduals is selected and used for model training, and the prediction model is then used to predict
a specific validation set or the remaining individuals not sampled for model training. Forward
validation attempts to mimic a breeding program scenario by training the model with data from a
series of years and then predicting a new set of individuals observed in a new year. Progeny vali-
dation uses one generation for model training, and the progeny of that generation for validation.
For each of the validation methods, predictive ability is estimated as the Pearson’s correlation (r)
between the breeding values estimated using phenotype and the breeding values predicted from
GS. The prediction accuracy can then be calculated by dividing the predictive ability by the square
root of the line mean heritability (r/h) in the validation set. For k-fold and resampling based cross-
validation, average predictive ability or prediction accuracy is reported. GS prediction accuracy is
a useful metric because it can be used directly in the gain from selection formula; however, many
report predictive ability when estimates of line-mean heritability are thought to be inaccurate.

A GS breeding scheme amenable for line development (Figure 1) may be similar to a typical
line development breeding scheme. However, GS could be applied for selection for quantitative
disease resistance and all other target traits among plants or lines at the F4 or F4:F5 stage (or DH),
for example. If phenotypic information for a given individual is available for some traits at the time
of GS, that information can be integrated in the prediction model for better prediction accuracy.
For example, if quantitative disease resistance data can be measured on the F4 plants or F4:F5 lines,
then that information can be used in the prediction model. Thus, GS need not be purely based
on marker-only predictions. Using both markers and available phenotypes can increase selection
accuracy compared with GS based on markers only or purely phenotypic selection, especially
if measured traits are correlated with or are themselves traits of interest. After selection of new
parents, the F4-derived lines can be phenotyped for all target traits to update the prediction model.
For traits that are expensive to phenotype, an optimal subset of individuals can be selected for
model updating. In the case of quantitative disease resistance, individuals with major race-specific
loci should be excluded from the model-training set because these loci interfere with phenotyping
quantitative resistance by masking effects of other resistance loci.

GENOMIC SELECTION FOR DISEASE RESISTANCE

Over the past several years, there have been a number of studies demonstrating the utility of
whole-genome prediction models and GS approaches for disease resistance in crops (Table 1).
Overall, these studies have demonstrated the effectiveness of the current GS models to capture
and predict the genetic variation for disease resistance, particularly quantitative disease resistance.

Genomic Selection for Wheat Rusts

Perhaps one of the best-studied pathosystems for using GS models in disease resistance breeding is
rusts in wheat (Triticum aestivum L.). Broadly grouped together, the major rust pathogens of wheat
include Puccinia graminis (stem rust), Puccinia striiformis (yellow/stripe rust), and Puccinia triticina
(leaf/brown rust) and are obligate biotrophic fungal pathogens that are endemic throughout the
wheat-growing world and historically have been the most severe pathogens of wheat.
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Table 1 Compiled publications demonstrating genomic selection for disease resistance

Reference Pathosystema Phenob h2 Validation type r/h (r)c

Ornella et al. 2012 (54) Stem rust/wheat Severity 0.72–0.9 Cross-validation
within full-sib family

(0.39–0.85)

Cross-validation
across family

(0.14–0.67)

Yellow
rust/wheat

Severity 0.45–0.66 Cross-validation
within full-sib family

(0.14–0.63)

Cross-validation
across family

(0.14–0.63)

Rutkoski et al. 2014 (72) Stem rust/wheat Severity 0.82 k-fold cross-validation (0.56–0.62)

Rutkoski et al. 2015 (70) Stem rust/wheat Severity 0.61 Forward validation (0.2–0.4)

Cross-validation (0.55)

Lorenz et al. 2012 (47) FHB/barley Severity 0.44–0.56 Forward validation 0.41–0.68

DON 0.55–0.76 Forward validation 0.47–0.76

Rutkoski et al. 2012 (68) FHB/wheat Severity – k-fold cross-validation (0.59–0.64)

DON – k-fold cross-validation (0.19–0.41)

Sallam et al. 2015 (74) FHB/barley Severity ∼0.35–0.7 Progeny validation ∼0.2–1

DON ∼0.5–0.65 Progeny validation ∼0.75–0.85

Jiang et al. 2014 (37) FHB/wheat FHB-index 0.91 k-fold cross-validation 0.68–0.74

Mirdita et al. 2015 (52) FHB/wheat Severity 0.4–0.8 k-fold cross-validation (∼0.46–0.64)

Septoria tritici
blotch/wheat

Severity 0.2–0.6 k-fold cross-validation (∼0.36–0.59)

Arruda et al. 2015 (1) FHB/wheat Severity – k-fold cross-validation 0.4–0.48

DON – k-fold cross-validation 0.53–0.64

Technow et al. 2013 (83) NCLB/maize Severity – Cross-validation 0.64–0.71

– Cross-validation across
heterotic group

0.11–0.29

Riedelsheimer et al.
2013 (65)

Gibberella ear
rot/maize

Severity 0.7–0.83 Cross-validation
within full-sib family

∼0.65–0.7

Cross-validation
across family

∼-0.25–0.6

DON 0.64–0.8 Cross-validation
within full-sib family

∼0.65–0.7

Cross-validation
across family

∼-0.05–0.7

Ly et al. 2013 (48) Cassava mosaic
disease

Severity 0.63 k-fold cross-validation 0.503

Cassava
anthracnose
disease

Severity 0.17 k-fold cross-validation 0.17

aThe crops disease pathosystem in the reported study.
bThe disease phenotype measured and modeled.
cThe observed prediction accuracy as reported by correlation divided by square root of heritability or in parenthesis as the direct correlation.
Abbreviations: DON, deoxynivalenol; FHB, Fusarium head blight; NCLB, Northern corn leaf blight.
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Resistance to wheat rusts can be either qualitative or quantitative, with numerous race-specific
R genes identified in these pathosystems (77). The R genes can be detected in the seedling stage,
whereas quantitative resistance loci generally confer resistance only in the adult plants, and quan-
titative resistance is therefore also referred to as adult plant resistance (APR). APR is often based
on minor effect loci that have not been shown to be race specific. APR has been shown to vary to
some degree across environments, which could be due to race, temperature, or other unknown en-
vironmental factors. However, heritability of APR across environments is usually high. Although
resistance breeding efforts using major R genes for rust have produced highly resistant varieties,
these varieties are often short lived as they are subject to the boom-and-bust cycles of deploying
race-specific R genes (77). Therefore, considerable effort has focused on breeding minor-gene
(quantitative) resistance as a deployment strategy for durable resistance. In addition to being race
nonspecific, the quantitative resistance to rust can sometimes be effective against more than one
rust species or other biotrophic pathogens (32, 40, 42, 89).

Implementing GS for disease resistance was proposed in wheat rust by Rutkoski et al. (71) with
the scope of reducing cycle time by up to twofold while facilitating pyramiding of major genes
with APR genes. Ornella et al. (54) found that whole-genome prediction accuracy using biparental
populations was correlated to the broad-sense heritability of the disease screening. They observed
moderate to high prediction accuracies ranging from 0.3 to 0.8 and were able to predict both
within and across environments with comparable accuracy, indicating that G×E for predicting
rust resistance was minimal in these populations, likely because the resistance was mostly race
nonspecific. However, the accuracy for predictions in new populations was considerably lower,
confirming previous studies that relatedness of the training population and selection candidates has
a strong influence on the accuracy (24, 47). This study also found that linear models outperformed
nonlinear models, and Bayesian LASSO led to only slightly higher prediction accuracy compared to
RR-BLUP. Rutkoski and colleagues further advanced the work on predicting stem rust resistance
while evaluating realized gain from GS (69, 70, 72). They found that GS could be implemented
as an effective breeding method for quantitative stem rust resistance even with a relatively small
training population. They also found that G-BLUP, Bayesian LASSO, and Bayes Cπ led to very
similar accuracies, but incorporating previously discovered large-effect loci as fixed effects in G-
BLUP led to the highest prediction accuracy overall (6, 72). Based on this, it has been proposed
that for disease resistance in which the genetic architecture is often a combination of a few large-
effect QTLs combined with a polygenic background, these types of mixed models using gene
information can be valuable.

Genomic Selection for Fusarium Head Blight in Wheat

There are also a number of examples of exploring GS models for predicting FHB in wheat.
FHB is a serious disease throughout the world, particularly in regions with cropping systems
in rotation with maize and high humidity and moisture through heading and maturity. It is
primarily caused by the fungal pathogen, Fusarium graminearum Schwabe, which infects the
spikes of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). The disease results in
yield loss and reduction of grain quality (17). More seriously, the infections lead to shriveled
and discolored grain and contamination from the mycotoxin deoxynivalenol (DON), resulting
in the whole crop being unusable (58). From a number of classic genetic studies, it is known
that resistance to FHB in wheat is quantitatively inherited (45, 85) and that genetic variation
for FHB resistance is predominantly additive (2, 80), indicating that accumulation of resis-
tance genes may be possible. As described above, this combination of quantitatively inherited
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resistance and a challenging, complex phenotype makes resistance to FHB an excellent target for
GS approaches.

Rutkoski et al.’s (68) first report evaluating GS models for FHB resistance in wheat found
that various prediction models have accuracy high enough to be useful in breeding, GS models
always significantly outperform MLR, and the nonlinear models RHKS and RF consistently
lead to higher accuracies compared with linear models. This study also examined the benefit of
genotyping FHB QTL-linked markers in addition to whole-genome profiling and found that
QTL-targeted genotyping significantly improved prediction accuracy for DON concentration,
whereas for other resistance traits there was no improvement. The authors also found that accuracy
for DON concentration could be further improved by including correlated trait data on the
selection candidates in the prediction model.

Arruda et al. (1) also evaluated RR-BLUP as well as a nonlinear and a variable selection model
on a diverse set of breeding lines for FHB. They confirmed that the various traits associated with
FHB resistance, including infection incidence and severity and DON levels, could be predicted
with moderate to high accuracy. However, in contrast to the previous study by Rutkoski et al. (68),
Arruda et al. (1) found that simple RR-BLUP with genome-wide markers led to high accuracies
for DON and outperformed other models tested for all resistance traits. They also confirmed
that prediction accuracies using genomic information were significantly higher than when using
only pedigree-based information. Mirdita et al. (52) evaluated prediction accuracies for FHB
resistance using RR-BLUP, Bayes Cπ, RKHS, and an additional nonadditive model. The authors
reported that compared to the linear models, nonlinear models led to a 10% improvement in
accuracy.

Jiang et al. (37) compared prediction accuracies using three different marker platforms at vary-
ing densities and three different prediction models, including RR-BLUP, BayesCπ, and RKHS.
The authors found that marker density had only a small impact on accuracy, and there was no
difference between accuracies from the prediction models tested. Overall, half of the studies of
GS for FHB resistance have found that the simple, linear RR-BLUP model performs as well as
other more complex models, whereas the other half have found nonlinear models to perform best,
indicating that for FHB resistance the choice of prediction model should depend on the genetic
background.

Genomic Selection for Leaf Blight in Maize

Northern leaf blight (NLB) of maize, caused by Setosphaeria turcica, is a pathosystem with genetic
architecture and complexities, including both major R-gene and quantitative resistance similar to
wheat rusts. NLB is a hemibiotrophic fungus with resistance primarily conferred by quantitative
genes of small effect, but a number of large-effect, race-specific loci are known (90). In addition, a
number of studies have implicated numerous QTLs with multiple alleles in the complex genetic
architecture of NLB resistance (60). As such, resistance breeding for NLB is another good target
for GS approaches.

Using a standard G-BLUP model, Technow et al. (83) observed prediction accuracies across
different heterotic groups up to 0.706 (dent genotypes) and 0.690 (flint genotypes). Finding that
the genetic background had little effect, they were able to combine training sets from the different
heterotic groups to increase accuracy. It was observed that the cycle time for GS needed to be
only 80% or less of the phenotypic cycle to have superior gains from implementing GS. With the
ability to run off-season nurseries and generate marker profiles on seedlings, this is very obtainable
in a commercial breeding program.
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CURRENT AND FUTURE PROSPECTS

Potential of Genomics-Assisted Breeding for Disease Resistance

Given the rapid escalation of overall molecular breeding and GS approaches in breeding pro-
grams, there is great potential for applying GS for disease resistance across a range of crops and
pathosystems. An important consideration for applying GS as a breeding methodology for disease
resistance is recognizing that yield remains the primary objective and that GS for yield is the
primary driver of generating whole-genome molecular profiles. It is significant to note that once
the genotyping is completed, prediction models can be applied for no additional cost to any trait
for which sufficient phenotypic data are available on the training sets. Therefore, the economic
considerations weighing the direct costs of phenotypic selection versus GS of disease resistance
are greatly diminished.

One of the major benefits to applying GS for quantitative disease resistance breeding is that
more breeding candidates can be evaluated, leading to higher selection intensity. With phenotyp-
ing selection, there is a limit to the number of entries one can measure in an inoculated disease
nursery. Typically, there are few locations where one can reliably create artificial epidemics for
a given disease, and inoculation can be labor intensive. This limits the number of entries that a
given breeding program can screen, unless a substantial investment in infrastructure and staff is
made, and, even so, land in environments favorable for the disease may not be available. Given the
increasing availability of whole-genome profiling, it is feasible to genotype many more individuals
than can be phenotyped in a disease nursery. This is especially important for selection prior to
advanced testing when there are tens of thousands of selection candidates and when disease testing
is severely constrained, as in the case of exotic or quarantined diseases. The ability to select among
such a large number of candidates prior to advanced testing leads to not only increased selection
intensity but decreased breeding cycle time.

Decreasing breeding cycle time can have a major impact on increasing rates of genetic gain.
GS can be applied to select among single plants in early generations or among lines prior to
advanced testing for all traits of interest. In either case, the breeding cycle time is reduced if new
parents are selected based on predictions prior to advanced testing. Although it is true that many
disease resistances can be evaluated in early generations, it is important to be able to select for
yield when selecting new parents, because yield is generally the most important trait. Thus, yield
testing becomes the rate-limiting step in breeding that limits progress in all other traits of interest
regardless of when these other traits can be measured. By applying GS, all traits can be selected
upon at any stage, and yield testing is no longer the bottleneck.

Another advantage to using GS to select for quantitative disease resistance is that quantitative
resistance can be selected even when R genes are present. Many R genes confer a very high level of
resistance and are epistatic in that they can largely mask the effect of other resistance QTLs in the
background. In fact, the use of R genes in breeding programs can lead to the vertifolia effect, which
is an erosion of quantitative resistance due to the inability to phenotype for quantitative resistance
in the presence of R genes (84). In many breeding populations, quantitative resistance loci and
R genes are both present, and the ideal genotype may be one with at least one effective R gene along
with a high level of quantitative resistance. This would lead to a very high level of resistance as
long as the R gene is effective, and when the R gene is rendered ineffective, quantitative resistance
in the background would still provide a good level of protection against yield loss and a pathogen
population boom. With GS, quantitative resistance can be predicted in any individual or line
regardless of whether R genes are present; however, it is important that the training population
for quantitative resistance be devoid of major R genes.
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Figure 2
A genomic selection scheme for combining resistance (R) genes and quantitative resistance (QR). First, a
parent positive (+) for a race-specific R gene is crossed with a parent absent (−) for the same R gene to
generate a segregating population of selection candidates. The selection candidates are genotyped and split
into a +R-gene group and a −R-gene group. The −R-gene candidates are phenotyped for QR, and their
phenotypic and genotypic data are used for genomic prediction model training. The prediction model is
then applied to the +R-gene candidates that were genotyped previously. Candidates with high levels of QR
in combination with the R gene (QR + R-gene candidates) are then selected for use in crossing or further
testing.

The implementation of genomics-assisted breeding for disease resistance opens opportunities
for combined selection of both R-gene and quantitative resistance (Figure 2). The process begins
with crossing two parents that segregate for R gene–based resistance to generate a population of
selection candidates. The selection candidates are then genotyped with genome-wide markers.
The selection candidates without effective R genes are then phenotyped for quantitative resistance.
The phenotypes and genotypes are used to train the model, which is then used to predict the level
of quantitative resistance in the individuals with the effective R genes. The individuals with R genes
with the highest level of quantitative resistance are then selected for advancement and/or for
crossing.

Selection for quarantined pathogens also presents a unique challenge for both phenotypic se-
lection and GS because phenotyping can only occur in countries or states where the disease or
pathogen strain has already been reported, or in expensive biocontainment facilities. For pheno-
typic selection, seed of the selection candidates would need to be imported to a specific region for
evaluation; for GS, seed of the training population would need to be imported for evaluation. This
may lead to an increased cost of phenotyping and a decreased phenotyping capacity. For GS, an
optimal subset of training individuals could be selected so that prediction accuracy is maximized,
given a fixed phenotyping capacity (66, 69). Then a large number of selection candidates could be
predicted and selected using a training population that fits within the phenotyping constraints.

Challenges in Genomic Selection for Disease Resistance

High heritability makes GS more accurate but also less competitive with phenotypic selection.
One of the major challenges with GS for disease resistance is that many disease resistances are
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highly heritable, which makes phenotypic selection hard to beat in both per-cycle and per-unit
genetic gain (28, 70). In order for GS to outperform phenotypic selection for quantitative disease
resistance, it may be necessary to increase the selection intensity in addition to decreasing cycle
time. We expect that this will be possible in most breeding programs because when selecting
at earlier stages there are naturally more selection candidates that have not yet been culled. In
some GS breeding schemes, genomic prediction models may include both phenotype of the can-
didates per se and the phenotypes of the candidates’ relatives. For low-heritability traits, using
genotype in addition to phenotype can substantially improve selection accuracy (63). However,
for high-heritability traits, such as many disease resistances, there may very little benefit. The
direct cost-to-benefit ratio of genome profiling (or markers) may not outweigh phenotypic selec-
tion for disease resistance; however, as noted, the genomic profile will be already generated for
predicting yield and present no additional cost for the genotypic data needed to predict disease
resistance.

CONCLUSIONS

With the implementation of routine whole-genome profiling in breeding programs, prediction
models for any trait can be applied for selection and advancement. The primary driver for imple-
menting GS in a breeding program is selection for yield, to offset and reduce the time and costs
associated with yield testing. However, any successful variety must have a complete package of
disease resistance, agronomic performance, and end-use quality.

Within the breeding program, disease screening nurseries can generally be run very efficiently
with single plants or on single rows and with large numbers of entries, making the cost per line
relatively low. In a direct comparison, the cost of disease phenotyping will likely be lower than
whole-genome genotyping. However, in contrast to phenotypic measurements that are relevant
only to the trait, the single set of genotypic information can be used for any and all traits. This
quickly amortizes the cost of genotyping, leaving only a marginal cost to be offset by any single
trait. Therefore, viewed in the scope of a holistic breeding program and objectives, there are only
marginal costs associated with predicting disease resistance. As such, GS for disease resistance
becomes a very tractable implementation to a breeding program.

There has been considerable effort and focus on genetically mapping important disease re-
sistance genes and identifying markers for MAS. However, for many genes for many diseases,
MAS quickly becomes very complex and intractable in an applied breeding program, leading to
bottlenecks in population sizes and challenges in practical implementation. Designing an array
for MAS in many traits likewise quickly turns into a whole-genome profile.

Overall, there is a strong foundation for further implementation of genomics-assisted breeding
for disease resistance. A quickly growing number of R genes are being identified, cloned, and char-
acterized. This refined biological information can be incorporated into whole-genome prediction
models to simultaneously select for gene pyramids in a background with high levels of quanti-
tative resistance. A number of studies have demonstrated that current whole-genome prediction
models can be effectively applied to predict and select for quantitative disease resistance. Reduced
disease phenotyping is unlikely to directly offset the cost associated with genotyping; however, the
genotyping cost can be offset by the sum of all traits that are targeted in the breeding program.
As breeders implement GS to decrease the breeding cycle time, increase selection intensity, and
increase the overall rate of gain, they will continue to select for the whole suite of traits that com-
pose a successful variety. Disease resistance will need to be one of the key traits that is predicted
for selection.
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66. Rincent R, Laloë D, Nicolas S, Altmann T, Brunel D, et al. 2012. Maximizing the reliability of genomic
selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse
groups of maize inbreds (Zea mays L.). Genetics 192:715–28

67. Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, et al. 2002. A natural recessive resistance
gene against Potato virus Y in pepper corresponds to the eukaryotic initiation factor 4e (eIF4e). Plant J.
32:1067–75

68. Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink J-L, Sorrells M. 2012. Evaluation of genomic
prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51–61

69. Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, et al. 2015. Efficient use of historical
data for genomic selection: a case study of stem rust resistance in wheat. Plant Genome doi: 10.3835/
plantgenome2014.09.0046

70. Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, et al. 2015. Genetic gain from phenotypic
and genomic selection for quantitative resistance to stem rust of wheat. Plant Genome doi: 10.3835/
plantgenome2014.10.0074

71. Rutkoski JE, Heffner EL, Sorrells ME. 2011. Genomic selection for durable stem rust resistance in wheat.
Euphytica 179:161–73

www.annualreviews.org • Advances and Challenges in Genomic Selection 97



PY54CH04-Poland ARI 1 July 2016 10:29

72. Rutkoski JE, Poland JA, Singh RP, Huerta-Espino J, Bhavani S, et al. 2014. Genomic selection for quan-
titative adult plant stem rust resistance in wheat. Plant Genome doi: 10.3835/plantgenome2014.02.0006

73. Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, et al. 2013. Identification of wheat gene Sr35
that confers resistance to Ug99 stem rust race group. Science 341:783–86

74. Sallam AH, Endelman JB, Jannink J-L, Smith KP. 2015. Assessing genomic selection prediction accuracy
in a dynamic barley breeding population. Plant Genome doi: 10.3835/plantgenome2014.05.0020

75. Singh AK, Singh VK, Singh A, Ellur RK, Pandian R, et al. 2015. Introgression of multiple disease resistance
into a maintainer of basmati rice CMS line by marker assisted backcross breeding. Euphytica 203:97–107

76. Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, et al. 2006. Current status, likely migration
and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen.
CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 1:13

77. Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, et al. 2015. Emergence and spread of new races of
wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology
105:872–84

78. Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, et al. 2001. Pyramiding three bacterial blight resistance genes
(xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor. Appl. Genet.
102:1011–15

79. Singh VK, Singh A, Singh S, Ellur RK, Choudhary V, et al. 2012. Incorporation of blast resistance into
“PRR78”, an elite basmati rice restorer line, through marker assisted backcross breeding. Field Crops Res.
128:8–16

80. Snijders C. 1990. Fusarium head blight and mycotoxin contamination of wheat: a review. Neth. J. Plant
Pathol. 96:187–98

81. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, et al. 2003. Gene RB cloned from Solanum
bulbocastanum confers broad spectrum resistance to potato late blight. PNAS 100:9128–33

82. Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, et al. 1995. A receptor kinase-like protein encoded
by the rice disease resistance gene, Xa21. Science 270:1804–6

83. Technow F, Bürger A, Melchinger AE. 2013. Genomic prediction of northern corn leaf blight resistance
in maize with combined or separated training sets for heterotic groups. G3 3:197–203

84. Vanderplank JE. 2012. Disease Resistance in Plants. Philadelphia: Elsevier
85. Van Ginkel M, Van Der Schaar W, Zhuping Y, Rajaram S. 1996. Inheritance of resistance to scab in two

wheat cultivars from Brazil and China. Plant Dis. 80:863–67
86. Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ. 1994. RFLP mapping

of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics
136:1421–34

87. Webb CA, Richter TE, Collins NC, Nicolas M, Trick HN, et al. 2002. Genetic and molecular charac-
terization of the maize Rp3 rust resistance locus. Genetics 162:381–94

88. Whittaker JC, Thompson R, Denham MC. 2000. Marker-assisted selection using ridge regression. Genet.
Res. 75:249–52

89. William M, Singh R, Huerta-Espino J, Islas SO, Hoisington D. 2003. Molecular marker mapping of leaf
rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology
93:153–59

90. Wisser RJ, Balint-Kurti PJ, Nelson RJ. 2006. The genetic architecture of disease resistance in maize: a
synthesis of published studies. Phytopathology 96:120–29

91. Xu Y, Crouch JH. 2008. Marker-assisted selection in plant breeding: from publications to practice. Crop
Sci. 48:2

92. Zhou J, Loh Y-T, Bressan RA, Martin GB. 1995. The tomato gene Pti1 encodes a serine/threonine kinase
that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83:925–35

98 Poland · Rutkoski


