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Abstract

Gene-by-environment interactions (G × Es) can provide important biolog-
ical insights into psychiatric disorders and may consequently have direct
clinical implications. In this review, we begin with an overview of the major
challenges G × E studies have faced (e.g., difficulties replicating findings and
high false discovery rates). In light of these challenges, this review focuses on
describing examples in which we might begin to understand G × Es on the
molecular, cellular, circuit, and behavioral level and link this interaction to
altered risk for the development of psychiatric disorders. We also describe
recent studies that utilize a polygenic approach to examine G × Es. Finally,
we discuss how gaining a deeper understanding of G × Es may translate into
a therapeutic practice with more targeted treatments.
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INTRODUCTION

It is widely accepted that psychiatric disorders are multifactorial diseases that emerge through
the interplay between environmental factors and genetic predisposition. Gene-by-environment
interaction (G × E) studies address the extent to which genetic predisposition in combination
with environmental determinants shapes the risk for psychiatric disorders (see the sidebar G × E
Terminology; Figure 1). G × E studies examine the main effects of environmental and genetic
determinants as predictors of phenotypes or pathology, as well as whether their joint effects
differ from the product of their individual effects. A significant interaction indicates that both
independent variables together influence the dependent variable.

Several theoretical models have been proposed to describe G × Es. Among the most promi-
nently used is the diathesis-stress model, which stipulates that genetic vulnerability predisposes
an individual to the development of a psychiatric disorder when exposed to adversity. In other
words, an individual may be genetically susceptible to a psychiatric disorder, but the disorder

G × E TERMINOLOGY

Before discussing G × Es, it is worthwhile to review commonly used terminology. Genes are small sections of the
chromosome that code for RNA molecules and, in consequence, proteins. The human genome is composed of 46
chromosomes, which are long sequences of DNA. The DNA sequence is composed of a chain of the nucleotide
bases adenine (A), cytosine (C), guanine (G), and thymine (T). An allele is a variant form of a gene in a specific
genetic locus on a chromosome. Humans have two alleles at each genetic locus, one from each parent. Each pair of
alleles represents the genotype of a specific gene. Genotypes can be either homozygous, with two identical alleles at a
particular locus, or heterozygous, with two differing alleles at a locus. Most G × E studies examine single-nucleotide
polymorphisms (SNPs) (see Figure 1a). A haplotype is a set of SNPs in close proximity to each other with alleles
that are inherited together.

Another important aspect of genetic studies is gene expression, i.e., the way in which DNA is read (see Figure 1b).
Gene expression occurs via two steps, called transcription (DNA to RNA) and translation (RNA to proteins), within
the cell. Cells respond to changes in their environment through these two processes.
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(a) The DNA sequence is composed of a chain of the nucleotide bases adenine (A), cytosine (C), guanine (G),
and thymine (T). A single-nucleotide polymorphism (SNP) is a variation in a single nucleotide occurring at a
certain position, or genetic locus, on a chromosome. Variations at the SNP level account for many of the
differences seen across individuals. (b) Schematic representation of transcription and translation.
Transcription occurs within the nucleus when DNA is copied into RNA and then messenger RNA (mRNA).
During translation, information from the mRNA is used to create a protein.
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does not develop unless triggered by an environmental stressor. Conversely, individuals without
this genetic predisposition do not develop a psychiatric disorder when confronted with adversity.
This model has proven very fruitful in stimulating research, and the majority of conducted G × E
studies adhere to this model. However, the diathesis-stress model has been criticized for dispro-
portionately focusing on stressors and negative life events and ignoring positive environments
(Belsky & Pluess 2009). Among the critics of this model, Belsky and colleagues (2007, Belsky &
Pluess 2009) argue that the diathesis-stress model risks misclassifying environmental influences
by focusing mainly on negative environmental influences; thus, they propose an alternative, the
differential-susceptibility perspective (Belsky et al. 2007, Belsky & Pluess 2009). This model pro-
poses that individuals vary in their susceptibility to environmental influences (both negative and
positive) rather than claiming that specific genotypes are inherently good or bad (Belsky et al.
2007, Belsky & Pluess 2009). That is, the genotype can either exacerbate an individual’s risk of
psychopathology in negative environmental conditions or mitigate the risk of psychopathology in
positive environmental conditions. Thus, it is more appropriate to refer to variants for such en-
vironmentally dependent genotypes as plasticity variants rather than risk or vulnerability variants
because they appear to make individuals more susceptible to both negative and positive environ-
mental influences (see Figure 2). As noted above, most G × E studies have limited their analyses
to negative environmental risk factors. To represent both perspectives, we point out in this review
any G × E studies depicting the differential-susceptibility framework.

G × E studies can provide important biological insights into psychiatric disorders and may
consequently have direct clinical implications. It is currently an exciting time for research on the
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psychiatric
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Figure 2
The differential-susceptibility model proposes that genetic predisposition makes an individual more
susceptible to both negative and positive environmental conditions and thereby either exacerbates or
mitigates the risk of psychiatric symptoms in accordance with the environmental conditions.
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genetic underpinnings of psychiatric disorders. New genotyping technologies and analytical tools
are emerging, enabling the examination of the effects of genetic variants in multinational collab-
orations with large sample sizes. At the same time, it is important to view the current literature in
light of the methodological challenges that G × E studies have faced. Toward this end, this review
begins by discussing some of these challenges associated with G × E studies, namely difficulties
replicating findings and high false discovery rates. Due to these challenges, we have selected G × E
studies for this review that have moved beyond candidate gene association testing and offer mul-
tilevel validation for the interactions detected, including corroborating neuroimaging, endocrine,
and molecular findings. Among the new analytical tools, we describe recent studies utilizing a
polygenic approach to examine G × Es. Finally, we discuss how gaining a deeper understanding
of G × Es may translate into a therapeutic practice with more targeted treatments.

G × E CHALLENGES

As with research in any other field, G × E studies are faced with a number of criticisms and
limitations (Dick et al. 2015). In this section, we discuss the major challenges facing the field at
present and some of the proposed solutions.

To date, most G × E studies have relied on candidate-gene approaches. In these studies,
researchers choose a specific gene of interest on the basis of its biological function in a psychiatric
disorder and test whether the association between variation in this gene and the disorder differs
across environments. In spite of the hundreds of candidate G × E publications on psychiatric
outcomes, few findings are generally accepted by the genetics community because only a small
number of interactions have been robustly associated with a psychiatric disorder across multiple
studies. This lack of reproducibility is in part because of the small sample sizes (mostly <1,000
participants) in these studies and the resulting lack of power to detect interactions with small effect
sizes.

Variation in heritability estimates of psychiatric disorders in different environmental contexts is
another complicating factor that increases the difficulty of replication. High heritability indicates
that genetic factors account for a large portion of the susceptibility to a particular psychiatric disor-
der. However, this does not mean that genes cause the disorder. Similarly, it does not imply that the
same genetic factors will account for the same amount of variance under all circumstances. Indeed,
when environmental or genetic conditions change, so do heritability estimates (Rutter et al. 2006).
This poses a methodological challenge to G × E studies, given that heritability is likely to differ
across studies when the samples vary in terms of level or range of environmental risk. However, this
same variation in heritability estimates underscores the need to examine genetic and environmen-
tal determinants jointly. Similarly, findings may also differ on the basis of the operationalization
and scaling of measures. Thus, there is a need for high-quality measurement of genetic and envi-
ronmental factors, along with transparency in the operationalization of variables, to enhance the
probability of study findings being replicated (Rutter et al. 2006, Rutter & Pickles 2015).

Candidate-gene approaches have also been criticized for their simplification of genetic models.
These studies typically rely on one individual single-nucleotide polymorphism (SNP) or other
types of genetic variants such as repeat polymorphisms or a set of variants that explain only a
small portion of the genetic variation in psychiatric disorders (Duncan & Keller 2011). Research
from both epidemiological and genetic studies, however, indicates that the genetic architecture of
psychiatric disorders is highly complex and that psychiatric disorders are polygenic (i.e., involve
multiple genes). This combination of low likelihood that a candidate gene accounts for a large
portion of the variance, low power, and small effect sizes can lead to high false discovery rates
(Duncan & Keller 2011). In addition, G × E studies often account only for confounds using main
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effects but not their interaction terms, which may also contribute to spurious associations (Duncan
& Keller 2011).

Despite these challenges, we are not claiming that G × Es have only yielded erroneous find-
ings. These challenges do, however, highlight the need to replicate findings and validate them on a
mechanistic level. As a starting point for navigating this challenging field, Rutters and colleagues’
(2006) recommended strategy has been to focus hypotheses on potential biological pathways that
incorporate both genetic and environmental determinants rather than to use an open-ended search
for statistical interactions, which would likely result in a high number of false positive findings.
They recommend examining genes found to be susceptible to environmental factors rather than
genes associated directly with a psychiatric disorder. Hypotheses must be built on the empiri-
cal evidence of biological information about the gene and the environmental determinants. The
combination of risk-increasing genes and risk-increasing environmental influences likely results
in specific pathophysiological disturbances in molecular pathways, which may in turn impact the
neural circuits associated with psychopathology. Toward that end, this review focuses on illus-
trating examples in which we might begin to understand G × E on the molecular, cellular, circuit,
and behavioral level and link this interaction to altered risk for the development of psychiatric
disorders.

GENE-BY-ENVIRONMENT INTERACTIONS VALIDATED ACROSS
MULTIPLE LEVELS

Serotonin Transporter Promoter Polymorphism

Following its initial discovery by Lesch et al. (1996), a polymorphism in the promoter of the
serotonin transporter gene (5-HTTLPR) has become one of the most studied polymorphisms in
psychological and psychiatric research, including in G × E studies (for an overview of 5-HTTLPR
studies, see Caspi et al 2010, Karg et al. 2011, Munafo et al. 2009). The 5-HTTLPR polymorphism
is a variation of repeats in the promoter region of the serotonin transporter (the SLC6A4 gene
encoding the SERT protein), which is involved in the reuptake of serotonin by brain synapses
and is the target of the selective serotonin reuptake inhibitor (SSRI) medications commonly used
to treat depression and anxiety disorders. 5-HTTLPR polymorphisms are categorized into short
(S) alleles with 14 repeats and long (L) alleles with 16 repeats; the short alleles are associated
with lower transporter expression and serotonin uptake (Lesch et al. 1996). Although these are
the most common alleles, others have been described and are often specific to certain ethnicities
(e.g., Xie et al. 2009). In addition, an SNP within the repeat region has been shown to moderate
the functionality of 5-HTTLPR alleles (Hu et al. 2006). A handful of studies have related this
polymorphism to the actual binding capacity of SERT in positron emission tomography (PET)-
ligand studies or to the abundance of the transporter in postmortem studies, but with inconsistent
results (e.g., Cannon et al. 2006, Frankle et al. 2005, Mann et al. 2000).

In the first G × E study involving 5-HTTLPR, Caspi et al. (2003) demonstrated that individ-
uals with one or two copies of the low-expressing S allele of 5-HTTLPR were at greater risk
for depression (measured at both the symptomatic and diagnostic level) and exhibited greater
suicidality after exposure to stressful life events (both in childhood and adulthood) compared
to individuals not carrying this risk allele. In the absence of adverse life events, the polymor-
phism did not alter risk, a result that is consistent with a large number of studies finding no
case/control differences of this polymorphism with the diagnosis of depression per se (for a review,
see Karg et al. 2011). This influential article was one of the first to demonstrate genetically driven
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individual differences in the response to environmental stress and vulnerability to psychopathol-
ogy. Since this study, 5-HTTLPR has been found to moderate the relationship between various
other environmental stressors and various psychiatric problems, including anxiety, posttraumatic
stress disorder (PTSD), suicide attempts, alcohol consumption, eating disorders, substance use,
and attention-deficit/hyperactivity disorder (ADHD) (Gibb et al. 2006, Kilpatrick et al. 2007,
Koenen et al. 2009, Kranzler et al. 2012, Laucht et al. 2009, Liu et al. 2015, Roy et al. 2007, Stein
et al. 2008, Stoltenberg et al. 2012, van der Meer et al. 2014).

Consistent with the differential-susceptibility perspective, the same genotype (S-allele carriers)
has also been found to decrease the risk of psychopathology in enriched environments (Belsky &
Pluess 2009, Hankin et al. 2011, Pluess et al. 2010). Specifically, carriers of the 5-HTTLPR S
allele are at greater risk of psychopathology when exposed to stressors, but they display the fewest
depressive symptoms when they grew up in a supportive environment or experienced recent
positive events (Eley et al. 2004, Taylor et al. 2006).

What mechanisms could confer such differential susceptibility? As described above, 5-HTTLPR
in its environmentally sensitive short form has been associated with lower efficiency of SERT in cell
systems compared to its long form. The way this relates to serotonergic signaling in neural circuits
is much less clear. Functional brain imaging studies suggest that the polymorphism is associated
with an inherently different neural circuit activation during emotion processing. Specifically,
differential brain activity in regions involved in emotion processing (e.g., amygdala, cingulate
cortex, hypothalamus) has been observed in individuals following exposure to emotional stimuli
based on the 5-HTTLPR genotype (Alexander et al. 2012; Canli et al. 2006; Dannlowski et al.
2007, 2008; Fortier et al. 2010; Hariri et al. 2005; Munafo et al. 2008; Pezawas et al. 2005). For
instance, Fortier et al. (2010) found greater regional brain activation in children with the S-allele
genotype when watching a sad movie compared to children with the alternate genotype. This
altered processing of emotional stimuli may emerge on the behavioral level due to a differential
systemic response to stress. In fact, increased neuroticism has been observed in individuals carrying
the S allele compared to L-allele carriers (Munafo et al. 2009).

At the endocrine level, enhanced cortisol secretion following an acute stressor has been ob-
served in healthy S-allele carriers with a history of stressful life events but not in individuals
homozygous for the L allele with a similar history of stressful events (Alexander et al. 2009).
Differences between 5-HTTLPR genotypes have also been reported in the autonomic nervous
system. Specifically, children carrying the L allele have a higher stress-induced increase in salivary
α-amylase, which is elicited by the autonomic nervous system, compared to S-allele carriers. This
finding suggests differential stress-related autonomic changes in the body based on genotype and
an overall sharper recovery following stressor exposure in the L-allele carriers than in the S-allele
carriers (Mueller et al. 2012). Taken together, the putative differences in serotonergic neurotrans-
mission, which drive altered activation in various brain regions and differences in stress reactivity,
may lead to dysregulated emotional processing of stressors in S-allele carriers and thus cause
increased vulnerability to the development of a psychiatric disorder. In-depth knowledge about
these mechanisms may also allow more individualized therapeutic interventions, as discussed in
the section Implications for Treatment.

Despite the large number of studies conducted on 5-HTTLPR, the moderating effect of this
polymorphism remains controversial. Two meta-analyses have yielded a negative result for the
moderation effect of 5-HTTLPR on the relationship between stressful life events and depression
(Munafo et al. 2009, Risch et al. 2009), whereas two more recent meta-analyses supported the mod-
eration findings (Karg et al. 2011, Sharpley et al. 2014). Researchers have explained such incongru-
ent findings in several ways, including heterogeneity of both the measurement of the environmental
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determinants and phenotypes across studies (Caspi et al. 2010, Uher & McGuffin 2008). For exam-
ple, early-life stress and childhood abuse have consistently been shown to interact with 5-HTTLPR
polymorphisms in predicting depression (Karg et al. 2011). When stressors at other stages of life
are examined, the results are less consistent. Other studies indicate that aggregated life stressors at
the group level (e.g., living in a dangerous neighborhood), not just the individual level, can mod-
erate G × E findings but are often not accounted for (Kilpatrick et al. 2007, Koenen et al. 2009).
Findings have also varied depending on how depression is operationalized. For instance, Uher
and colleagues (2011) showed that 5-HTTPLR moderated the relationship between stressful life
events and depression only in patients with persistent depression and not in patients with a single
episode of depression. In sum, these findings highlight the importance of careful characterization
of the environmental determinant in G × Es, as well as the outcome measure.

FK506 Binding Protein-5 Polymorphisms

Gene variants moderating the stress response and the regulation of the hypothalamic-pituitary-
adrenal (HPA) axis are among the most promising candidates for G × E studies in psychiatry
(see sidebar The Hypothalamic-Pituitary-Adrenal Axis; Figure 3). Among these genes, one of the
most comprehensively studied is FK506 binding protein-5 (FKBP5), encoding the protein FKBP51.
Within the cell, FKBP51 is a central regulator of stress responsivity because it is part of the steroid
receptor complex (Grad & Picard 2007). Glucocorticoid receptor (GR) function, an important
part of the stress system (Figure 3), is regulated by a large molecular complex that includes
chaperones as well as co-chaperones such as FKBP51. When FKBP51 is bound to the GR complex,
the receptor has low affinity to cortisol and does not translocate readily to the nucleus (Davies
et al. 2002, Wochnik et al. 2005). Importantly, FKBP5 is also a target of GR activation, and its
messenger RNA (mRNA) and protein are induced by cortisol. This creates an ultrashort negative
feedback loop in which GR induces FKBP51, which then limits GR activity (Vermeer et al.
2003). This induction of FKBP5 mRNA and the resulting intracellular regulation of GR activity
are moderated by common genetic variants in the FKBP5 locus. The associated changes in GR
sensitivity during the feedback regulation of the HPA axis lead to prolonged stress-related cortisol
release in individuals carrying the variant that is associated with higher FKBP5 mRNA induction

THE HYPOTHALAMIC-PITUITARY-ADRENAL AXIS

Dysregulation in the hypothalamic-pituitary-adrenal (HPA) axis in psychiatric patients has been well documented
(Baumeister et al. 2014), making genes associated with the axis attractive targets for G × E researchers.

The HPA axis is central to stress response. When confronted with a stressor, corticotropin-releasing hormone
(CRH) is excreted from the paraventricular nucleus of the hypothalamus. CRH acts on the pituitary gland, resulting
in the release of adrenocorticotropic hormone (ACTH) from the anterior pituitary. This induces the release of
cortisol from the adrenal cortex. Subsequently, ACTH acts on the adrenal glands, stimulating the production and
release of glucocorticoids by the adrenal cortices (Vale et al. 1981) (Figure 3). Glucocorticoids bind to glucocorticoid
receptors (GRs), which inhibit the synthesis and release of CRH in the hypothalamus and of ACTH in the pituitary.
This enables a negative feedback regulation, allowing the reduction of HPA axis activation and the restoration of
homeostasis once the threat has subsided (Holsboer 2000).

Disruption of this feedback regulation can have long-lasting effects on brain activity and the regulation of the
stress hormone system (Bale & Vale 2004). Among the HPA axis–associated genes, FK506 binding protein-5 (FKBP5)
and corticotropin-releasing hormone receptor 1 (CRHR1) have received the most attention in G × E studies.
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Figure 3
In the hypothalamic-pituitary-adrenal axis, corticotropin-releasing hormone (CRH) is excreted from the
paraventricular nucleus of the hypothalamus within minutes of being confronted with a stressor. CRH acts
on the pituitary gland, resulting in the release of adrenocorticotropic hormone (ACTH) from the anterior
pituitary, which further induces the release of cortisol from the adrenal cortex. Subsequently, ACTH acts on
the adrenal glands, stimulating the production and release of glucocorticoids by the adrenal cortices. Of
note, CRH and its receptors are also important regulators of the stress response in other, mainly limbic,
brain regions.

(Binder et al. 2004, Buchmann et al. 2014, Klengel et al. 2013). This genetic change in the
physiologic stress response is associated with an altered risk for psychiatric disorders.

In the case of FKBP5, genetic and epigenetic changes must come together (Figure 4). Specifi-
cally, changes in the DNA methylation of FKBP5 locus glucocorticoid response elements (GREs;
short DNA motifs that can bind to GRs) have been implicated in this additional disinhibition
(Klengel et al. 2013). DNA methylation refers to the transfer of a methyl group (CH3) to any of
the millions of cytosine-phosphate-guanosine dinucleotide sites in the human genome. This alters
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Figure 4
Schematic representation of the interaction of glucocorticoid receptor elements (GREs) in introns 2 and 7 in
the rs1360780 single-nucleotide polymorphism of FKBP5 at the genetic level (a,b) and epigenetic level
(c,d ) following exposure to early trauma. (a) The protective rs1360780 major allele reduces the interaction
between GRE intron 2 and the RNA polymerase II (Pol II), thereby decreasing the production of FKBP5
messenger RNA (mRNA) in response to glucocorticoid receptor (GR) activation. (b) The risk rs1360780
minor allele increases the interaction between GRE intron 2 and the promoter, resulting in increased FKBP5
induction. In other words, risk-allele carriers have genetically determined higher FKBP5 mRNA expression
and GR resistance. (c) When exposed to early trauma, the negative feedback of FKBP5 in protective allele
carriers remains stable. Regular transcriptional activation of FKBP5 results in the GR terminating the stress
response and in regular normalization of cortisol levels once the threat has subsided. (d ) In contrast, the
negative feedback loop is impaired in risk-allele carriers following exposure to childhood trauma.
Specifically, early trauma leads to increased activation of FKBP5, which in turn results in the reduction of
DNA methylation (M) around intron 7 and higher and prolonged cortisol levels. Figure adapted from
Klengel & Binder (2015) with permission.
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the three-dimensional structure of the DNA and leads to a reduced accessibility of methylated
sites to transcriptional regulators (Novik et al. 2002). The likely causal FKBP5 SNP, rs1360780, is
in close proximity to a GRE in intron 2 of the gene (Figure 4a,b). Introns are noncoding sections
of an RNA transcript that are removed before the RNA molecule is translated into protein but
often harbor regions that are important for gene transcription regulation. In the risk-allele con-
formation, this transcriptional enhancer is in close proximity to the promoter and thus enhances
GR signaling in FKBP5 transcription. This has been associated with an enhanced short feedback
on GR sensitivity and a delayed systemic negative feedback on the cortisol response to stress
(Klengel et al. 2013). This leads to longer cortisol exposure following stress and, consequently,
active demethylation of another GRE (see Figure 4d ). In fact, binding of the GR to GREs can
lead to active demethylation, sensitizing the target to future exposure (Thomassin et al. 2001).
The demethylation further derepresses the transcriptional response of FKBP5 to GR (Klengel &
Binder 2015, Sharma et al. 2016). This disruption in regulatory homeostasis is thought to result
in long-lasting changes in the neural circuits involved in stress and anxiety regulation via both
changes in GR tone and a direct downstream effect of FKBP51 on additional pathways that are
highly relevant for neuronal function and synaptic plasticity (Zannas et al. 2016).

Interactions between FKBP5 and stressful life events have been found to be associated with
a variety of psychiatric disorders and traits, including PTSD, depression, aggression, suicidality,
and psychosis, by many studies that include well over 12,000 individuals (for a review, see Zan-
nas et al. 2016). The majority of these studies report a general vulnerability to psychopathology
in individuals carrying alleles associated with higher FKBP5 induction following stress exposure.
These findings have largely been proven robust across studies and in different ethnic groups. Im-
portantly, genome-wide association studies (GWASs) and candidate gene case-control association
studies have not found a main effect for the gene in predicting psychopathology, indicating that
the effect is dependent on environmental influences (Binder et al. 2008, Nievergelt et al. 2015,
Solovieff et al. 2014). This suggests that additional mechanisms besides the genetic regulation of
FKBP5 are necessary to trigger the stress interaction effect.

A wealth of evidence from animal and human studies supports the association of high FKBP51
function and psychiatric disorders. In animals, increased FKBP51 function has been associated
with increased anxiety, decreased stress coping, delayed fear extinction, and a more dysregulated
stress response (Albu et al. 2014, Attwood et al. 2011, Hartmann et al. 2012, O’Leary et al. 2011,
Sawamura et al. 2016, Touma et al. 2011). In humans, the alleles with high FKBP5 reactivity
are associated with behavioral risk phenotypes, such as increased dissociation following trauma,
increased bias toward threat, and increased intrusions (Cheung & Bryant 2015, Fani et al. 2013,
Koenen et al. 2005), as well as a prolonged cortisol response following stress exposure (Buchmann
et al. 2014, Ising et al. 2008).

At the circuit level, brain regions associated with emotion processing, inhibition, and memory,
including the amygdala and hippocampus, are thought to be involved in FKBP5-related vulnera-
bility to psychopathology. Overall, the hippocampus is the brain region with the highest baseline
levels of FKBP51 expression, yet it shows little transcriptional reactivity to stress. Other brain
regions, such as the amygdala and the hypothalamus, have low baseline levels but show dramatic
increases in expression following stress (Scharf et al. 2011). Animal studies have shown that over-
expression of FKBP51 in the amygdala increases anxiety behavior and decreases stress coping, and
the opposite is true when FKBP51 is blocked in this brain area (Attwood et al. 2011, Hartmann
et al. 2015).

Human structural and functional neuroimaging studies also indicate that the FKBP5 genotype
has a major effect on these brain regions (Fani et al. 2013, 2014, 2016; Hirakawa et al. 2016;
Holz et al. 2015) and that the interaction with early adversity compounds this effect (Grabe et al.
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2016, Holz et al. 2015, Tozzi et al. 2016, White et al. 2012). Increased hippocampal and amygdala
activity in response to threat and white matter abnormalities in the posterior cingulum have been
observed in risk-allele carriers compared to alternative genotypes (Fani et al. 2013, 2014, 2016;
Hirakawa et al. 2016; Holz et al. 2015). Two studies have found that the FKBP5 risk genotypes
interact with childhood neglect to predict increased threat-related activity in the amygdala (Holz
et al. 2015, White et al. 2012). Specifically, both studies found that the right amygdala activity
increased in parallel with the level of childhood neglect reported by homozygote rs1360780 risk-
allele carrier young adults during an emotional face-matching task, whereas the opposite was true
for homozygotes of the protective allele. Heterozygotes exhibited intermediate levels of activity.
Holz et al. (2015) also found that homozygote rs1360780 risk-allele carriers displayed increased
amygdala-hippocampus coupling, indicating that FKBP5 may play a role in emotional memory
formation, which may result in the negative emotional memory often seen in depressed patients
(Hamilton & Gotlib 2008). Another study indicated that the combination of the FKBP5 risk allele
with a history of childhood abuse may predispose an individual to more widespread structural
brain changes in other subcortical and cortical emotion-processing brain regions in addition to
the amygdala and hippocampus (Grabe et al. 2016). In particular, Grabe and colleagues (2016)
found that minor allele carriers of FKBP5 rs1360780 exposed to child abuse had reduced gray
matter volumes in the bilateral insula, the superior and middle temporal gyrus, and the bilateral
anterior cingulate cortex, as well as the hippocampus and amygdala, compared to abused major
allele carriers. Although the findings have been less consistent, postmortem studies have shown
that FKBP5 gene and protein expression are reduced in the amygdala of suicide victims compared
to controls (Pérez-Ortiz et al. 2013) but increased in the prefrontal cortex of schizophrenia and
bipolar patients compared to healthy controls (Sinclair et al. 2013).

These collective multilevel neurobiological findings suggest that an inherent genetic disin-
hibition of FKBP5 in several emotion-processing brain regions is associated with increased bias
toward threat, enhanced cortisol response, and altered amygdala and hippocampal response to
threat. In combination with exposure to trauma in childhood, this genotype results in additional
GR-mediated epigenetic disinhibition, which pushes this regulatory circuit over a threshold and
leads to disease phenotypes. This result may be due to altered stress-related synaptic plasticity,
possibly mediated by the effects of FKBP5 on relevant pathways (Zannas et al. 2016). In support
of this hypothesis, a recent postmortem study comparing PTSD patients and controls suggested
that high FKBP51 levels in the orbitofrontal cortex were associated with a decrease in overall
dendritic spine density (Young et al. 2015).

Corticotropin-Releasing Hormone Receptor 1

Corticotropin-releasing hormone receptor 1 (CRHR1) is another well-studied gene involved in the reg-
ulation of the stress response via the HPA axis. CRHR1 is a guanine nucleotide-binding protein
(G-protein) receptor that binds corticotropin-releasing hormone (CRH) and is consequently a ma-
jor physiological regulator of the HPA axis. The encoded protein plays a key role in the activation
of signal transduction pathways involved in the regulation of the stress response (Koob 1999).

The link between genetic variants of both CRH and CRHR1 and psychopathology has been
extensively studied (for a review, see Binder & Nemeroff 2010). In terms of G × Es, CRHR1 poly-
morphisms have been shown to predict both risk of and resilience to depressive symptoms in adults
who have endured child abuse. More specifically, a haplotype composed of intronic SNPs in the
CRHR1 gene was found to protect against the development of depression in adults with a history of
abuse across different ethnic groups (Bradley et al. 2008, Polanczyk et al. 2009). This indicates that
genetically determined differences in CRH-mediated neurotransmission may increase or decrease
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the detrimental effects of child abuse on the stress hormone system and thus influence an
individual’s susceptibility to developing depressive symptoms in adulthood. Replication of these
findings in larger samples is still necessary to rule out false positive associations. Additionally,
the ways in which early adversity is assessed may be relevant in the context of this G × E finding
given that retrospective self-report of childhood abuse has been found to interact significantly
with the gene whereas the prospective assessment of maltreatment has not (Bradley et al. 2008,
Polanczyk et al. 2009).

Further support for the CRHR1 findings has come from endocrine and neuroimaging studies.
In healthy adults with a history of childhood trauma, Tyrka et al. (2009) showed that individu-
als carrying the CRHR1 risk haplotype experienced an increased cortisol response to combined
dexamethasone/CRH stimulation but no differences across the genotypes were observed in adults
with no history of early trauma. These findings were supported by Heim et al. (2009). Similarly,
the CRHR1 haplotype was found to interact with maltreatment in predicting diurnal regulation
of cortisol levels in children (Cicchetti et al. 2011). These findings suggest that CRHR1 risk-
haplotype carriers have a genetic vulnerability to early trauma exposure, which may contribute to
a long-lasting increase in CRHR1 signaling and dysregulation in the stress hormone system.

On a circuit level, preclinical studies in rodents have observed altered CRHR1 mRNA expression
and CRH binding in the hypothalamus, amygdala, and other brain regions associated with emotion
response (Potter et al. 1994). It is thought that CRH activity at the CRHR1 in extrahypothalamic
regions contributes to anxiety and depressive symptoms (Binder & Nemeroff 2010). CRHR1 risk
variants have also been shown to predict differential activation of limbic and cortical areas in
emotion paradigms. For example, increased activity in the subgenual cingulate has been observed
in depressed homozygote risk-allele carriers (i.e., G carriers) compared to depressed resilience
allele carriers (i.e., A carriers) and controls when viewing negative versus neutral words (Hsu et al.
2012). Moreover, deactivation in the hypothalamus, amygdala, and nucleus accumbens was found
in the depressed A carriers compared to controls during the same experiment. These findings
may suggest biologically different types of depression depending on CRHR1 genotype (Hsu et al.
2012). Interestingly, both depression and early-life stress were associated with changes in brain
activity depending on genotype. Specifically, early-life stress and hypothalamus activation were
negatively correlated only in A carriers (Hsu et al. 2012). These findings further support the notion
that exposure to early-life stress can differentially impact emotional processing based on CRHR1
genotype. CRHR1 genotype–dependent differences have also been observed on a behavioral level
with CRHR1 risk-allele carriers exhibiting increased fear and stress sensitization compared to
carriers of the alternative genotype (Starr et al. 2014, Weber et al. 2016).

Catechol-O-Methyltransferase

Although environmental stressors, such as early trauma, are the most common environmental
determinant used in G × E studies, several studies suggest genotypic differences in outcomes
based on cannabis use. In this and the following section, we review genes found to moderate the
relationship between cannabis use and psychotic symptoms and schizophrenia.

Dysregulation in dopaminergic function has been implicated in the pathogenesis of schizophre-
nia (e.g., Kapur 2003). Cannabis use may also impact dopamine circuits (Colizzi et al. 2016), in-
teracting with genetic variants associated with this system to predict risk for schizophrenia. The
catechol-O-methyltransferase (COMT ) gene, located on chromosome 22, encodes an enzyme that
metabolizes dopamine and has been linked to schizophrenia.

Caspi and colleagues (2005) reported that a functional COMT gene polymorphism had a mod-
erating effect on the increased risk for psychosis in adulthood following cannabis use during
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adolescence. They examined a G-to-A missense variation (i.e., one amino acid is altered in the
protein product) in which the amino acid valine (Val) substitutes methionine (Met) at codon 158
(Val158Met). This variation has been shown to decrease COMT’s enzymatic activity and result
in a slower breakdown of dopamine. The homozygous Met genotype has been found to have the
lowest COMT activity and the homozygous Val genotype the highest, with heterozygous carriers
displaying intermediate activity (Männistö & Kaakkola 1999). Caspi et al. (2005) reported that
homozygous Val genotype carriers were more likely to develop psychotic symptoms in adulthood
after using cannabis during adolescence compared to the homo- and heterozygous Met genotype
carriers. These associations have since been replicated, although some studies have yielded null
findings for this interaction (Costas et al. 2011; Funke et al. 2005; van Winkel 2011; Zammit et al.
2007, 2011). These findings were further extended by the discovery that the effects of cannabis
were dependent on the proportion of THC and cannabidiol (another type of cannabinoid found
in cannabis) in the cannabis (Niesink & van Laar 2013, Schubart et al. 2011). A higher concentra-
tion of cannabidiol in the cannabis mitigated the risk of the psychotic symptoms associated with
cannabis use. Interestingly, two additional studies found a three-way interaction between adoles-
cent cannabis use, the COMT gene, and childhood maltreatment (Alemany et al. 2014, Vinkers
et al. 2013). In particular, cannabis use and a history of childhood abuse together were associated
with increased psychotic symptoms in Val carriers compared to heterozygous or homozygous Met
carriers. These genetic differences may increase the impact of cannabis use on dopamine circuits
and, consequently, increase the risk for psychotic disorders (Sami et al. 2015).

The cellular and molecular mechanisms by which cannabis use contributes to vulnerability to
psychotic symptoms remain unclear (for a review, see Malone et al. 2010). However, neuroimaging
studies have provided further support for the relationship between COMT Val status and psychotic
symptoms (for a review, see Lawrie et al. 2008). For instance, greater activation in the dorsolat-
eral prefrontal cortex and reduced volumes of the prefrontal cortex and temporal lobes have been
observed in Val carriers compared to Met carriers (Egan et al. 2001, Ohnishi et al. 2006). In accor-
dance with these brain anomalies, the COMT gene variation may also increase cognitive vulnerabil-
ity to other psychiatric disorders, including depression (Antypa et al. 2013, Craddock et al. 2006).
Indeed, the COMT gene has been linked to heightened risk of broader personality traits associ-
ated with various psychopathologies (Hettema et al. 2015). For example, Val carriers tend to score
higher on both introversion and extraversion measures than Met carriers (Hettema et al. 2008,
2015). Furthermore, the COMT genotype has been found to moderate the relationship between
stressful life events and pathologies other than psychotic symptoms, including aggression, ADHD,
and depression (Antypa et al. 2013, Hettema et al. 2015, Hygen et al. 2015, Thapar et al. 2005).

Cannabinoid Receptor Type 1 and Mitogen-Activated Protein Kinase 14

Two other genes, cannabinoid receptor type 1 (CNR1) and mitogen-activated protein kinase 14
(MAPK14), have also been found to moderate the relationship between cannabis use and
schizophrenia. The main active component in cannabis, tetrahydrocannabinol (THC), activates
cannabinoid receptors such as CNR1 in the brain. Activation of CNR1 has been found to induce
apoptosis (i.e., the process of programmed cell death) through a complex cascade of kinases (i.e.,
an enzyme that adds phosphate groups to other molecules) and caspases (i.e., enzymes involved in
apoptosis) (Chan et al. 1998, Downer et al. 2003), including MAPK14 (Derkinderen et al. 2001,
Powles et al. 2005). CNR1 has also been implicated in the regulation of striatal dopamine (Pazos
et al. 2005).

The G × E studies involving these gene variants have focused on their moderating effect
on cannabis use and brain structure differences in individuals with and without schizophrenia.
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Specifically, CNR1 and MAPK14 genetic variants have been found to predict greater deficits in
white matter volume and cognitive impairment in a subset of patients with schizophrenia and
marijuana abuse or dependence compared to individuals with schizophrenia without co-occurring
marijuana abuse or dependence (Ho et al. 2011, Onwuameze et al. 2013). Interestingly, one study
observed a significant gene–gene (i.e., CNR1–MAPK14) interaction influencing brain volume ab-
normalities in patients with both schizophrenia and a history of cannabis use during adolescence
(Onwuameze et al. 2013). This interaction was additive: Patients with co-occurring schizophrenia
and marijuana misuse who were carriers of both CNR1 and MAPK14 risk-alleles had the great-
est deficit in white matter compared to the alternative genotypes. Although these findings are
promising, this interaction remains to be expanded to and validated on other biological levels.

Polygenic Approaches

In accordance with Rutter and colleagues’ (2006) recommendations, most G × E studies have been
conducted using hypothesis-driven candidate genes. However, multiple gene variants likely work
together to shape the risk for a psychiatric disorder (Kraft & Aschard 2015). As such, polygenic risk
score (PRS) analyses provide an exciting framework for G × E studies. In contrast to hypothesis-
driven candidate-gene approaches, polygenic approaches incorporate the contributions of many
common genetic variants of small magnitude across the genome. A PRS for an individual is
typically calculated by summing the number of alleles for each SNP; this sum is then weighted
by the effect size derived from a GWAS. A GWAS involves a systematic examination of whether
genotype frequencies for variants across the genome differ between individuals affected with a
specific disorder and those who are unaffected. Thus, the PRS represents the additive effect of
multiple SNPs, with a higher PRS typically suggesting a greater genetic predisposition toward the
psychiatric disorder. Such scores give a much better representation of the genetic risk profile than
a single candidate gene. Polygenic analyses have already demonstrated much larger cumulative
effect sizes and greater predictive power than single-variant predictors (Bulik-Sullivan et al. 2015,
Maier et al. 2015). Additionally, PRSs are not limited to examining disease risk: They also have
the potential to investigate behavioral phenotypes, brain activity, and physiological and molecular
measures relevant to environmental responses. This will allow a much more detailed exploration of
the ways in which the environment interacts with genetic predisposition on different molecular and
behavioral levels. This field is rapidly expanding, and new computational advances are emerging
to construct PRSs with improved predictive and statistical abilities (e.g., Bulik-Sullivan et al. 2015,
Maier et al. 2015). By design, polygenic studies do not point directly to specific genes associated
with disease. However, complementary methods, such as gene-set analyses or subsetting using
functionally relevant variants that alter gene transcription or DNA methylation or are located in
relevant enhancer regions, can be employed to further dissect the potential biological mechanisms
underlying such G × Es.

Three studies have examined the interaction between PRSs [based on data from the inter-
national Psychiatric Genomics Consortium (PGC) for major depressive disorder (MDD)] and
childhood trauma in predicting MDD in independent adult samples (Mullins et al. 2016, Musliner
et al. 2015, Peyrot et al. 2014). All three studies reported that the PRS had a significant main effect
and examined its interaction with stressful life events. To briefly summarize their findings, Peyrot
et al. (2014) and Mullins et al. (2016) reported a significant interaction between the PRS for MDD
and childhood trauma in predicting depression. Peyrot and colleagues (2014) found that indi-
viduals with a high PRS and a history of childhood trauma were more likely to develop MDD
than those with a low PRS and no exposure to trauma. Conversely, Mullins and colleagues
(2016) found that individuals with a history of moderate-to-severe childhood trauma had lower
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PRSs for MDD than other cases or controls. In explaining their findings, Mullins and colleagues
(2016) suggested that childhood trauma is such a strong risk factor that it may override to
some extent genetic liability for the disorder. In addition to childhood trauma, Mullins et al.
(2016) also examined the interaction between the PRS and stressful life events in adulthood in
predicting MDD, which was nonsignificant. In the third study, Musliner et al. (2015) examined
the interaction between the PRS for MDD and the occurrence of stressful life events during
the previous 2 years in older adults. As in Mullins et al.’s (2016) study, the interaction between
stressful life events in adulthood and the PRS was not significant (Musliner et al. 2015). These
somewhat discrepant findings highlight the need to further examine both the type and timing of
stressful life events in combination with genetic risk for psychopathology.

The studies above investigated PRSs derived from case/control associations but without
functional annotation. Investigating PRSs that lead to functional differences in the response to
environmental risk factors may, as pointed out by Rutter et al. (2006), be even more likely to lead to
promising G × Es. As described in the section FK506 Binding Protein-5 Polymorphism, the
GR plays an important role in regulating gene expression. When an individual is confronted
with a stressor, activation of the GR initiates adaptive physiological changes in the body
through genome-wide transcriptional changes. As such, genetically determined differences in the
transcriptional response to GR activation may contribute to individual differences in response to
stressors and thus in susceptibility to psychiatric disorders (Lee & Sawa 2014, Shirazi et al. 2015).
Using a stimulated expression quantitative trait locus approach, Arloth et al. (2015) constructed
a genetic risk profile score based on genetic variants moderating the immediate transcriptional
response to GR activation. The authors identified over 3,000 genetic variants that significantly
altered the glucocorticoid-induced transcriptional changes of close to 300 transcripts. The
genetic variants that altered the cellular response to stress were significantly enriched among
variants associated with MDD and schizophrenia in the large meta-analyses published by the
PGC (Ripke et al. 2013, 2014). In an independent sample, the cumulative score of genetic variants
associated with both functional changes in the GR response of the transcriptome and risk for
MDD predicted abnormal amygdala reactivity during a threat-related task. The findings suggest
that genetic variants moderating the immediate cellular response to stress may also be associated
with differences in the stress-processing neural circuit and an increased risk for stress-related
psychiatric disorders (Arloth et al. 2015).

In addition to polygenic scores in G × E studies, genome-wide gene by environment interaction
studies (GWEISs) are another possible unbiased analytical approach and elegant way to preserve
power. Dunn and colleagues (2016) recently conducted a GWEIS analysis using social support
and stressful life events as environmental determinants of depressive symptoms in over 10,000
women belonging to ethnic minorities. The findings pointed to interesting possible differences
between minority groups. Specifically, increased depressive symptoms were observed to co-occur
with both higher levels of reported stressful life events and more copies of the major allele of the
gene CEP350 in African American women. However, the same result was not found in a smaller
independent replication sample, underscoring the need for large samples in GWEISs. In addition
to requiring large sample sizes, GWEISs are based on GWASs in conjunction with environmental
determinants and are thus fraught with a number of statistical complexities (e.g., Almli et al. 2014,
Aschard et al. 2012). For instance, studies composed of large cohorts incorporating measures of
environmental exposure carry the risk of overt and hidden differences in these measures.

IMPLICATIONS FOR TREATMENT

In this section, we discuss how G × E findings may be incorporated into clinical practice. We first
define personalized treatment and then describe the current status of treatments for psychiatric
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disorders and the need to establish neurobiological profiles to advance personalized medicine. We
outline G × Es that significantly predict treatment outcomes and discuss how they can be utilized
to improve outcomes.

The goals of personalized treatment are to predict an individual’s risk of developing a psy-
chiatric disorder, obtain an accurate diagnosis, and determine the most effective and favorable
treatment option (Ozomaro et al. 2013). Personalized medicine builds on the assumption that
unique characteristics, including clinical presentation, history of environmental influences, and
genetic alterations, influence how (and whether) an individual will respond to a certain treat-
ment. This concept has gained considerable attention, likely due to the limitations of our current
treatment options and recent advances in genomics. Despite the identification of a number of
evidence-based treatments, treatment efficacy for most disorders remains unsatisfactory. As an il-
lustration, approximately 60% of treatment-seeking individuals with depression achieve remission
after an initial trial of psychotherapy, pharmacotherapy, or a combination of the two (Gaynes et al.
2009, Holtzheimer & Mayberg 2011, Trivedi et al. 2006). That leaves a staggering 40% of patients
who continue to have clinically significant symptoms following the intervention. These relatively
low remission rates cause serious individual and public health concerns due to the individual’s
continued distress, loss of productivity, and heightened risk of suicide.

In an effort to improve treatment outcomes, researchers have sought predictors and moderators
to determine what treatment works best for whom. Several studies have examined genetic markers
as predictors of response to antidepressants (Garriock et al. 2010, Ising et al. 2009, Keers &
Aitchison 2011, Licinio et al. 2004, Porcelli et al. 2012, Uher et al. 2010, Zou et al. 2010) and
psychotherapy (Eley et al. 2012, Knuts et al. 2014, Lester et al. 2012, Lonsdorf et al. 2010).
However, these findings have been inconsistent (Garriock et al. 2010, GENDEP Investig. et al.
2013, Ising et al. 2009, Uher et al. 2010). Additionally, when a genetic variant has been found to
predict treatment outcomes, the effect size of the finding tends to be small and thus not suitable
for clinical prediction (Keers & Aitchison 2011). Demographic and clinical characteristics have
also proved relatively weak predictors of treatment response ( Johnstone et al. 2009, Nanni et al.
2012, Nemeroff et al. 2003). There is, however, evidence suggesting that exposure to stressful
life events may differentially predict treatment outcomes (Agnew-Blais & Danese 2016, Nemeroff
et al. 2003). For instance, depressed individuals with a history of childhood trauma have been
found to respond more favorably to psychotherapy compared to pharmacotherapy (Nemeroff et al.
2003). The collective findings suggest differences in the etiology and pathogenesis of depressed
individuals based on their developmental history. These findings also indicate that treatment
response may be determined by a combination of factors, such as G × Es.

Several pharmacogenetic G × E studies have been conducted to predict treatment response
to antidepressants. Relevant to the genetic variants discussed above, two studies (Keers et al.
2011, Mandelli et al. 2009) found that 5-HTTLPR moderated the relationship between recent life
stress and treatment with SSRIs but not tricyclic antidepressants for depression. In fact, recent
life stress predicted poorer treatment outcomes in S-allele carriers compared to L-allele carriers.
Conversely, no genotype differences were noted in individuals not exposed to recent life stress.
G × Es that are significant for treatment response have also been reported for the FKBP5 and
CRHR1 polymorphisms (Keers & Uher 2012). However, these findings differ from the 5-HTTLPR
results in that individuals with the risk genotype for depression showed better treatment outcomes
than alternative genotypes when exposed to stressors. Homo- or heterozygote minor allele carriers
of FKBP5 or CRHR1 who had recently been exposed to stressful life events were more likely to
respond to antidepressant treatment than individuals with this genotype who had not been exposed
to recent life stressors. On the contrary, stressful life events had little effect on treatment response
in the respective alternative genotypes. The authors speculated that serotonin signaling and HPA
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axis dysfunction are two distinct etiological pathways to depression. This might explain why the
G × E studies involving the 5-HTTLPR, FKBP5, and CRHR1 polymorphisms yielded opposite
findings in terms of treatment response (Keers & Uher 2012). This hypothesis remains to be
tested in future studies.

Interestingly, different genotypes may predict treatment response to psychotherapy than to
pharmacotherapy. For instance, Eley and colleagues (2012) found that the S allele of 5-HTTLPR
predicted good cognitive behavioral therapy outcomes in depressed patients, whereas this genotype
has been found to negatively predict response to antidepressants (Niitsu et al. 2013, Porcelli
et al. 2012). These findings may be in line with the differential-susceptibility model (Belsky &
Pluess 2009) mentioned in the Introduction. Individuals with the S allele may be more susceptible
to environmental influences and could therefore respond better to changes in the environment
brought about by psychotherapy. Indeed, experimental evidence indicates that S-allele carriers
benefit more from a supportive environment than do individuals with other genotypes (Brody
et al. 2009). Specifically, Brody et al. (2009) examined the differential response of youth to a
community-based intervention aimed at increasing nurturing parenting practices and children’s
compliance and goal-setting. They found that youths carrying the S allele (both homozygote and
heterozygote carriers) benefitted more from a family-based intervention designed to reduce risk
behaviors in rural African American youths than did L-allele carriers.

Another interesting and potentially clinically relevant study may have identified differential
usage of coping strategies as a mechanism for increased internalizing symptoms in children carrying
the 5-HTTLPR S allele (Cline et al. 2015). Specifically, homozygote S-allele carriers exhibited
higher levels of internalizing symptoms compared to L-allele carriers. S-allele carriers were also
less likely to use distraction coping strategies, particularly after exposure to stressful life events, such
as traumatic events and hostile relationships with caregivers. This tendency may, in part, explain the
elevated internalizing symptoms in S-allele carriers. In the absence of these distraction strategies,
the authors hypothesized that the homozygous S-allele carriers perseverated on negative thoughts
about their problems instead of engaging in problem-solving techniques or enlisting social support,
thus increasing their risk of developing depressive or anxiety symptoms. Findings such as these
can help personalize psychotherapeutic treatment approaches. In particular, identifying skills that
individuals are lacking on the basis of genetic and environmental determinants may have important
clinical implications for developing effective prevention strategies and interventions.

The current G × E findings highlight the potential clinical utility of environmentally focused
preventions and interventions in overcoming genetic predisposition toward developing a psychi-
atric disorder. These interventions could target specific behavioral domains, as suggested by Cline
et al. (2015), but could also target specific neural circuits whose activation is altered in a G × E
context. This targeting may be achieved by a combination of diagnostic neuroimaging, genetics,
and neurofeedback (Hamilton et al. 2016, Linden et al. 2012, Young et al. 2014). Research sug-
gests that neurofeedback using functional magnetic resonance imaging may be a useful therapeutic
option for psychiatric disorders in the future.

CONCLUSIONS

G × Es can shed light on the pathophysiology of psychiatric disorders. These studies describe
differing subpopulations within psychiatric disorders on the basis of genotypes and environmental
influences, with possibly different molecular pathways and neural circuits mediating risk. This
deeper understanding of the underlying pathobiology may allow more targeted prevention and
treatment strategies. However, to be successful, several limitations must be overcome and studies
in larger cohorts or consortia will be necessary. Importantly, G × E analyses need to be carried
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out more systematically in longitudinal cohorts with careful mapping of environmental factors
so that complex G × Es with multiple environmental factors can be performed. In such studies,
deep phenotyping, including endophenotypes at several levels of investigation, and biosampling
over several points in time should be performed. We also lack sufficient tools for more mech-
anistic investigations. Although humanized animal models may allow investigation of specific
human variants, models for polygenic risk interactions are needed. For modeling effects on the
molecular and cellular level, neurons and brain organoids derived from induced pluripotent stem
cells may represent attractive tools. These may allow investigation of the impact of genetic risk
factors and environmental mediators (glucocorticoids, monoamines, etc.) in the context of neu-
ronal differentiation and connectivity. In the end, such in-depth G × E analyses may reveal more
homogeneous neurobiological diagnostic categories than are provided by our current diagnostic
framework, which, in turn, may improve an individual’s prognosis through personalized medicine
and targeted therapeutic interventions.
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