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Abstract

In this review, we attempt to integrate two crucial aspects of numerical
development: learning the magnitudes of individual numbers and learning
arithmetic. Numerical magnitude development involves gaining increasingly
precise knowledge of increasing ranges and types of numbers: from nonsym-
bolic to small symbolic numbers, from smaller to larger whole numbers, and
from whole to rational numbers. One reason why this development is impor-
tant is that precision of numerical magnitude knowledge is correlated with,
predictive of, and causally related to both whole and rational number arith-
metic. Rational number arithmetic, however, also poses challenges beyond
understanding the magnitudes of the individual numbers. Some of these
challenges are inherent; they are present for all learners. Other challenges
are culturally contingent; they vary from country to country and classroom
to classroom. Generating theories and data that help children surmount the
challenges of rational number arithmetic is a promising and important goal
for future numerical development research.
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INTRODUCTION

Numerical knowledge is of great and increasing importance for success in modern society.
Reflecting this pervasive importance, numerical knowledge at age 7 predicts socioeconomic status
at age 42, even after controlling for the rearing family’s socioeconomic status and the child’s
IQ, working memory, reading skill, years of education, academic motivation, and other variables
(Ritchie & Bates 2013).

Consequential individual differences in numerical knowledge are present even before chil-
dren reach first grade. The numerical knowledge of kindergartners from low-income back-
grounds already lags, on average, at least a year behind that of peers from middle-income families
( Jordan et al. 2006). These early differences have long-term consequences: A meta-analysis of
six large longitudinal studies in the United States, United Kingdom, and Canada revealed that
in all six, numerical knowledge in kindergarten predicted numerical knowledge in fifth grade,
even after statistically controlling for a wide range of relevant variables (Duncan et al. 2007).
Even more striking, numerical knowledge at age 4 predicts mathematics achievement at age
15 (Watts et al. 2014), again after controlling for numerous relevant variables. Many aspects
of cognitive development are fairly stable over time, but the relations between early and later
mathematical knowledge are stronger than for other important competencies measured in the
same studies, including reading, control of attention, and regulation of emotions (Duncan et al.
2007).
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Numerical knowledge is also central to theories of cognitive development. Kant [2003 (1781)]
argued that number is an a priori concept, an idea that must be present from birth for people and
other animals to function in the world. Evidence collected more than 200 years later supports this
insight. Animals as varied as guppies, lions, rats, newborn chickens, and human infants mentally
represent the approximate number of objects and events they encounter (Dehaene 2011, Piffer
et al. 2013, Rugani et al. 2015).

Piaget (e.g., 1952) also assigned numerical development a prominent place in his theory, devot-
ing his classic book The Child’s Concept of Number, as well as parts of many other books, to it. Con-
temporary theories, such as neo-Piagetian (Case & Okamoto 1996), core knowledge (Feigenson
et al. 2004), information processing (e.g., Siegler 2006), sociocultural (Goncu & Gauvain 2012),
evolutionary (Geary et al. 2015), and dynamic systems (Cantrell & Smith 2013), also emphasize
the growth of numerical understanding as central to cognitive development.

Consistent with this theoretical emphasis, numerical development is a thriving research area,
one with at least 15 active subareas (Siegler 2016). The focus of the present review is on four
especially notable themes that have emerged in recent years and that transcend the boundaries of
these subareas:

(a) Acquisition of increasingly precise knowledge of the magnitudes of increasing ranges and
types of numbers provides a unifying theme for numerical development from infancy to
adulthood.

(b) Understanding numerical development requires understanding acquisition of knowledge
about rational numbers (i.e., fractions, decimals, percentages, and negatives) as well as whole
numbers (i.e., 0, 1, 2, 3, etc.).

(c) Knowledge of the magnitudes of individual numbers is essential to learning arithmetic.
(d ) Major goals for future research should include clarifying why understanding rational number

arithmetic is so hard for so many people and generating effective instruction in it.

The integrated theory of numerical development provides a structure within which to discuss
these themes.

THE INTEGRATED THEORY OF NUMERICAL DEVELOPMENT

Underlying the integrated theory of numerical development is the assumption that increasing
understanding of numerical magnitudes is the common core of numerical development, one that
affects arithmetic and more advanced mathematics as well (Siegler et al. 2011). The theory can be
summarized as follows:

(a) People, like many other animals, represent the magnitudes of numbers on a mental num-
ber line, a dynamic structure that is first used to represent small whole numbers and then
is progressively extended rightward to include larger whole numbers, leftward to include
negative numbers, and interstitially to include fractions and decimals. The approximate age
ranges during which these changes occur are shown in Figure 1.

(b) Whole number magnitude representations progress from a compressive, approximately log-
arithmic distribution to an approximately linear one. Transitions occur earlier for smaller
than for larger ranges of whole numbers, corresponding both to the complexity of the num-
bers and to the ages when children gain experience with them.

(c) Development of numerical understanding also involves learning that many properties of
whole numbers do not characterize other types of numbers, but that all real numbers have
magnitudes that can be represented and ordered on number lines.

(d ) Knowledge of the magnitudes of both whole and rational numbers is correlated with, and
predictive of, learning of arithmetic and more advanced aspects of mathematics.
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Figure 1
Approximate age ranges of major changes to the sizes and types of symbolic numbers whose magnitudes
individuals can represent.

(e) Knowledge of numerical magnitudes is also causally related to learning of arithmetic; in-
terventions that improve knowledge of numerical magnitudes often have positive effects on
learning arithmetic.

The integrated theory, like many other approaches, assumes that numerical magnitudes are
represented along a mental number line (for a review of evidence for this assumption, see Hubbard
et al. 2005). At least in Western and Far Eastern cultures, the mental number line is usually
horizontally oriented, with smaller numbers on the left and larger ones on the right. People
are only one of many species that use this organization. For example, after newborn chicks are
repeatedly presented a constant number of dots (e.g., 4), they spontaneously associate smaller sets
of dots (e.g., 2) with the left side of space and larger sets of dots (e.g., 8) with the right (Rugani
et al. 2015).

One type of evidence for the mental number line is the distance effect: Identification of the
larger of two numbers is faster the farther apart the numbers are (Moyer & Landauer 1967). The
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effect known as SNARC (spatial-numerical association of response codes) provides another type
of evidence. When asked which of two numbers is larger, people are faster to indicate “smaller”
by pressing a button on their left and to indicate “larger” by pressing a button on their right
than with the opposite pairings of side of the body and relative magnitude (e.g., Dehaene et al.
1990). SNARC effects emerge between 5 and 9 years of age: at the lower end of the range when
magnitudes are relevant to achieving the goal of the task, and at the higher end when they are
irrelevant to the goal (Berch et al. 1999, Hoffmann et al. 2013).

The hypothesis that the mental number line is a dynamic structure that is gradually extended
to represent all numerical magnitudes expands the range of ages and types of numbers that can be
integrated within a single theory of numerical development. In particular, the integrated theory
allows analyses of development to extend from infants’ knowledge of nonsymbolic numerical
magnitudes (i.e., numbers represented as sets of dots, sequences of tones, etc.) to young children’s
knowledge of small symbolic whole number magnitudes (i.e., numbers represented by number
words or numerals) to older children’s knowledge of increasingly large symbolic whole number
magnitudes to yet older children’s and adults’ representations of the magnitudes of symbolic
fractions, decimals, and negatives.

One consequence of the focus of the integrated theory on rational as well as whole numbers is to
reveal a basic challenge that numerical development poses to children: learning which properties of
whole numbers apply to all numbers and which do not. Many properties that are true for all whole
numbers do not hold for other types of numbers. Each whole number is represented by a unique
symbol within a given symbol system (e.g., 4), but each fraction can be expressed in infinitely many
ways (e.g., 1/4, 2/8, 3/12. . .). All natural numbers (whole numbers other than zero) have unique
whole number predecessors and successors, but no decimal does. Multiplying natural numbers
never generates a product smaller than either multiplicand, but multiplying rational numbers
between 0 and 1 always does. Adding whole numbers never yields an answer smaller than either
addend, but adding negatives always does. However, all real numbers share the property that they
can be located and ordered on number lines.

A great deal of evidence indicates that numerical magnitude knowledge is related to important
mathematical outcomes. For example, such magnitude knowledge correlates positively, and often
quite strongly, with children’s mathematics achievement in both cross-sectional studies (Ashcraft
& Moore 2012, Booth & Siegler 2006, Siegler & Booth 2004) and longitudinal ones (de Smedt
et al. 2009, Östergren & Träff 2013). This relation remains present even after controlling for
other variables related to mathematics achievement, including IQ, language, nonverbal reasoning,
attention, working memory, calculation skill, and reading fluency (Bailey et al. 2012, Jordan et al.
2013).

A basic prediction of the integrated theory is that precision of numerical magnitude knowledge
should be correlated with, and predictive of, arithmetic proficiency. This relation is not logically
necessary. Children could memorize arithmetic facts and procedures without understanding the
magnitudes of the operands (the numbers in problems) and answers. Indeed, many mathematics
educators have lamented that rote memorization of arithmetic procedures is exactly what most
students do (Cramer et al. 2002, Mack 1995).

In contrast, we hypothesize that many children do use numerical magnitudes to understand
arithmetic and that knowledge of numerical magnitudes is much of what makes arithmetic, as
well as algebra and other aspects of mathematics, meaningful. For example, when the task is to
remember answers to specific arithmetic problems (e.g., 6 × 4 = 24), more precise representations
of the operands and answer may facilitate recall of the answer, in part by making alternatives
implausible (e.g., a child with good magnitude understanding might think of 36 when asked to
answer 6 × 4, because 36 is a multiple of both operands, but might not state it because it seems too
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big). When the task is to learn arithmetic procedures, accurate magnitude representations make
it possible for students to reject procedures that produce implausible answers, leading them to
generate and test alternative procedures. For example, when 1/2 + 1/3 is presented, a child with
good knowledge of the magnitudes of individual fractions might initially add the numerators and
denominators separately but reject the procedure after seeing that it resulted in an answer (2/5)
that is smaller than one of the addends.

Thus, the integrated theory predicts that arithmetic facts and procedures will be learned more
quickly and completely by children with greater knowledge of the magnitudes of the numbers
used in the computations. It also predicts that instruction and other manipulations that improve
magnitude understanding will improve arithmetic learning. Due to the pervasiveness of both
whole and rational number arithmetic in algebra, trigonometry, and other more advanced areas of
mathematics, the theory predicts similar relations between numerical magnitude knowledge and
overall math achievement.

DEVELOPMENT OF NUMERICAL MAGNITUDE KNOWLEDGE

The development of numerical magnitude knowledge includes four main changes: generating
increasingly precise representations of nonsymbolic magnitudes, connecting symbolic to non-
symbolic magnitudes for small whole numbers, accurately representing increasingly large whole
numbers, and accurately representing the magnitudes of rational numbers. Siegler (2016) provides
an in-depth review of the development of numerical magnitude knowledge; here, we summarize
major findings about it.

Development of Whole Number Magnitude Knowledge

Nonsymbolic magnitudes. Infants and many nonhuman animals can discriminate sets of dots or
tones that differ in their number but not in dimensions correlated with number, such as summed
surface area of dots or duration of tones. With number as well as with many other dimensions, the
larger the ratio of number of entities in the sets being compared, the easier is the discrimination.
This property of numerical discrimination is known as ratio dependence. Six-month-olds can dis-
criminate 2:1 but not 1.5:1 ratios, and nine-month-olds can discriminate 1.5:1 but not 1.3:1 ratios
(Cordes & Brannon 2008). Discrimination between nonsymbolic numerical magnitudes continues
to become more precise well beyond infancy, with many adults able to reliably discriminate 1.14:1
ratios (Halberda & Feigenson 2008).

One exception to the ratio dependence of nonsymbolic number discrimination is that discrim-
ination of sets of one to four objects is more accurate, faster, and less variable than would be
expected from the ratios alone (Piazza 2011). Interestingly, guppies show the same superiority in
discriminating between sets of one to four objects, relative to their usual ratio dependence (Agrillo
et al. 2012). This superiority may reflect subitizing, a process that produces quick and automatic
perception of small sets of objects or events.

Although precision of discrimination increases with age, the brain areas that most actively
process nonsymbolic numerical magnitudes are similar over the course of development. Parts of
the intraparietal sulcus (IPS) and dorsolateral prefrontal cortex play major roles in processing
nonsymbolic numerical magnitudes from infancy to adulthood (Dehaene 2011).

Small symbolic whole number magnitudes. Nonsymbolic numerical magnitude knowledge
provides useful referents for learning the magnitudes represented by symbolic numbers. For ex-
ample, the spoken word “three” and the Arabic numeral “3” can be mapped onto three dots or
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fingers. A number of investigators have hypothesized that individual differences in symbolic repre-
sentations of numerical magnitudes grow out of individual differences in nonsymbolic numerical
discrimination (e.g., Halberda et al. 2008, Izard et al. 2008).

Several types of evidence have been cited to support this hypothesis. Ratio dependence like
that observed with discrimination of nonsymbolic numerical magnitudes is also evident with
discrimination of symbolic numbers (e.g., “Which is bigger, 6 or 8?”) (Dehaene 2011). Individual
differences in the precision of nonsymbolic magnitude discrimination are predictive of concurrent
and future individual differences in discrimination between symbolic magnitudes and are also
predictive of symbolic arithmetic and math achievement test scores (e.g., Libertus et al. 2011).
Habituation to nonsymbolic numbers generates habituation to equivalent symbolic numbers, as
measured by functional magnetic resonance imaging (fMRI) activations (Piazza et al. 2007). Brain
areas used to process nonsymbolic and symbolic numbers overlap considerably (Nieder & Dehaene
2009).

Other data, however, have called into question the strength and specificity of the relation be-
tween nonsymbolic and symbolic numerical magnitude knowledge. Ratio and distance effects are
present not just with nonsymbolic and symbolic numerical stimuli but also with totally nonnu-
merical tasks, including odor discrimination (Parnas et al. 2013). Relations between the precision
of nonsymbolic and symbolic number representations, and between nonsymbolic representations
and overall math achievement, have proved far weaker than suggested by early studies (Halberda
et al. 2008). Two meta-analyses (Chen & Li 2014, Fazio et al. 2014) found that the average
weighted correlation between nonsymbolic magnitude discrimination and overall math achieve-
ment was r = 0.20 and r = 0.22, respectively. An Internet study with more than 10,000 adult
participants yielded a relation of r = 0.21 (Halberda et al. 2012), and a carefully controlled study
with 200 children in each year from first through sixth grade yielded a relation of r = 0.21 (Lyons
et al. 2014). All of these relations were significant, but all also were weak.

Neural data also have proved more complex than they originally appeared. Symbolic and
nonsymbolic numbers are processed in the same general areas of the brain, but processing activities
within those areas elicited by corresponding nonsymbolic and symbolic numbers are weakly related
(Bulthé et al. 2014, Lyons et al. 2014).

More generally, it is unclear how approximate nonsymbolic representations could contribute to
creating precise symbolic understanding of large numbers. No one can consistently discriminate
158 from 159 dots, but everyone who understands the decimal system knows with absolute certainty
that 159 is larger than 158.

These data do not imply that knowledge of nonsymbolic numerical magnitudes plays no role
in learning the magnitudes of symbolic numbers. It seems likely that toddlers and preschoolers
acquire the meaning of small symbolic single-digit numbers by associating them with nonsymbolic
representations of the corresponding sets. Consistent with this view, Le Corre & Carey (2007)
found that 2- and 3-year-olds learn the magnitudes denoted by the symbolic number words 1 to
4 through a slow process in which they associate first the word “1,” then “2,” then “3,” and then
“4” with the corresponding nonsymbolic quantities produced by subitizing.

The process might well extend beyond the subitizing range. Young children frequently put
up fingers and count them. The auditory, visual, kinesthetic, and temporal cues that accompany
counting of fingers and other objects provide data for associating nonsymbolic quantities with the
symbolic numbers that children most often use in counting and adding, that is, the numbers 1
through 10. Consistent with this hypothesis, behavioral data from 4- to 6-year-olds indicate that
putting up fingers activates symbolic numbers and answers to addition problems with sums of 10
or less (Siegler & Shrager 1984). Neuroimaging studies provide converging evidence; fMRI data
indicate a common neural substrate for finger representations and mental addition and subtraction

www.annualreviews.org • Numerical Development 193



PS68CH08-Siegler ARI 11 November 2016 10:0

Kindergartners
100

80

60

40

20

0

M
ed

ia
n 

es
ti

m
at

e

Log R2 = 0.76

Second graders
Lin R2 = 0.95

Actual value
0 20 40 60 80 100

Second graders
1,000

800

600

400

200

0
M

ed
ia

n 
es

ti
m

at
e

Log R2 = 0.95

Fourth graders
Lin R2 = 0.99

Actual value
0 200 400 600 800 1,000

Third graders
100,000

80,000

60,000

40,000

20,000

0

M
ed

ia
n 

es
ti

m
at

e

Log R2 = 0.68

Adults
Lin R2 = 0.99

Actual value
0 20,000 40,000 60,000 80,000 10,000

a b c

Figure 2
Relations between presented and estimated whole number magnitudes for different ranges of numbers and ages of participants.
(a) When estimating numbers in the 0 to 100 range, kindergartners generate a logarithmic relation, whereas second graders generate a
linear one [adapted from Siegler & Booth (2004) with permission from John Wiley & Sons]. (b) With numbers in the 0 to 1,000 range,
second graders generate a logarithmic relation and fourth graders a linear one [adapted from Opfer & Siegler (2007) with permission
from Elsevier]. (c) With numbers in the 0 to 100,000 range, third graders generate a logarithmic relation and adults a linear one
[adapted from Thompson & Opfer (2008) with permission from John Wiley & Sons].

with the numbers 1 through 10 for both children and adults (Andres et al. 2012, Berteletti &
Booth 2015). Thus, nonsymbolic numerical representations seem to help symbolic numerical
magnitude knowledge get off the ground through providing concrete referents for small symbolic
whole numbers. Whether individual differences in these representations contribute to individual
differences in understanding larger symbolic numerical magnitudes remains an open question.

Large symbolic whole number magnitudes. Children learn about the magnitudes of symbolic
whole numbers surprisingly slowly. After children count flawlessly from 1 to 10, they still take a
year or more to understand the relative magnitudes of the numbers they are counting (Le Corre
& Carey 2007).

Beyond the ages when children have mastered ordinal relations among the symbolic num-
bers 1 through 10, they represent their magnitudes as increasing in a nonlinear, approximately
logarithmic, pattern (Figure 2). Illustratively, when 3- and 4-year-olds are asked to perform the
number-line estimation task by placing numbers on a line with 0 at the left end, 10 at the right end,
and nothing in between, they locate small numbers, such as 2 and 3, much farther apart than larger
numbers, such as 8 and 9. In contrast, 5- and 6-year-olds space the two pairs of numbers equally
(Berteletti et al. 2010). Thus, between ages 3 and 6 years, children progress from an approximately
logarithmic relation to an approximately linear relation between the numbers 1 through 10 and
estimates of their magnitudes.

The same developmental sequence recurs at older ages with larger numbers. In the 0 to 100
range, 5- and 6-year-olds generate logarithmically increasing estimates, whereas 7- and 8-year-
olds generate linearly increasing ones (Geary et al. 2007, Siegler & Booth 2004). In the 0 to 1,000
range, 7- and 8-year-olds generate logarithmically increasing estimates, but 9- and 10-year-olds
generate linearly increasing ones (Booth & Siegler 2006, Thompson & Opfer 2010). Chinese
children generate the same developmental progression for each numerical range at younger ages
(Siegler & Mu 2008, Xu et al. 2013); children with math learning difficulties generate the same
progression at older ages (Reeve et al. 2015). Even in adulthood, the logarithmic representation
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continues to be seen in transitory processes during number-line estimation, though the final
estimates increase linearly (Dotan & Dehaene 2013).

Analogies between smaller and larger orders of magnitude seem to contribute to broadening the
range of whole numbers whose magnitudes children represent linearly. Encountering problems
presented in ways that highlighted the analogy between smaller and larger numerical ranges—
for example, the analogy between the location of 15 on a 0–100 number line and 1,500 on a
0–10,000 number line—led second graders to extend the linear estimation pattern from the 0–100
to the 0–10,000 and the 0–100,000 number lines (Thompson & Opfer 2010). Analogies involving
smaller numbers, such as the analogy from 0–100 to 0–1,000 number lines, also have been found
to promote generalization of accurate magnitude representations (Opfer & Siegler 2007, Sullivan
& Barner 2014).

Development of Rational Number Magnitude Knowledge

Nonsymbolic rational numbers. Development of understanding of nonsymbolic rational num-
ber magnitudes, like that of whole number magnitudes, begins in infancy. Six-month-olds can
accurately discriminate between two ratios that differ by at least a factor of two. For example,
they dishabituate (i.e., look longer) when, after repeated presentations of 2:1 ratios of yellow to
blue dots, the ratio of yellow to blue dots switches to 4:1 (McCrink & Wynn 2007). This level of
precision matches age peers’ discrimination abilities with nonsymbolic whole number displays.

Neuroscience research also points to similarities in whole and rational number processing.
Both nonsymbolic and symbolic rational number magnitudes are processed by a fronto-parietal
network closely resembling that used to process whole number magnitudes (e.g., Jacob et al.
2012). Neural activations show similar distance effects with fractions as with whole numbers on
nonsymbolic numerical magnitude comparison tasks (Ischebeck et al. 2009).

Symbolic rational numbers. The process of acquiring understanding of the magnitudes of sym-
bolic rational numbers starts later, proceeds more slowly, and asymptotes at a lower level than
the corresponding process with symbolic whole numbers. Although written fraction notation is
usually introduced in early elementary school, connecting written fractions with the magnitudes
that they represent remains challenging even for many adults. In several studies, adult community
college students correctly answered only 70% to 80% of magnitude comparison problems for
fractions with unequal numerators and denominators, where chance was 50% (e.g., Givvin et al.
2011, Schneider & Siegler 2010). This weak performance does not appear to be due to forget-
ting after years of not studying fractions; middle school students’ fraction magnitude comparison
accuracy is in the same range (Bailey et al. 2014, Siegler & Pyke 2013).

Acquisition of magnitude knowledge is faster and reaches a higher asymptotic level with frac-
tions from 0 to 1 than for larger fractions, such as fractions from 0 to 5. For example, sixth graders
in Belgium had a mean percent absolute error of 9% for fractions between 0 and 1 but 20% for
fractions between 0 and 5; the corresponding numbers for peers in the United States were 17%
and 26%, and in China 10% and 14% (Torbeyns et al. 2015). Strikingly, second graders’ whole
number estimates on 0–100 number lines are often more accurate than eighth graders’ estimates
of fractions on 0–5 number lines (Siegler & Booth 2004, Siegler et al. 2011).

Understanding the magnitudes of symbolically expressed decimals also poses problems for
learners. Many fourth to eighth graders predict that, as with whole numbers, longer se-
quences of digits imply larger numbers (e.g., they think that 0.123 > 0.45) (Lortie-Forgues
& Siegler in press, Resnick et al. 1989). Nonetheless, accuracy and speed of numerical
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magnitude comparison and number-line estimation tend to be greater for decimals than for com-
mon fractions (Iuculano & Butterworth 2011).

Alongside the striking differences between development of knowledge of whole and rational
numbers are notable similarities. In comparisons of the magnitudes of pairs of fractions or decimals,
distance effects are present among both children (Fazio et al. 2014, Iuculano & Butterworth 2011)
and adults (Meert et al. 2009, Schneider & Siegler 2010). Moreover, for both symbolic rational and
whole numbers, relations are present between precision of magnitude knowledge and arithmetic,
as well as between magnitude knowledge and overall mathematics achievement (e.g., Bailey et al.
2015, Torbeyns et al. 2015).

Early individual differences in whole number magnitude knowledge are also predictive of
later individual differences in rational number magnitude knowledge. For example, in Bailey
and colleagues’ (2014) study, 6-year-olds’ number-line estimation accuracy with whole numbers
predicted their accuracy with fractions at age 13, even after statistically controlling for many
relevant variables. Number-line estimation accuracy at age 6 did not predict reading achievement
at age 13, which lends discriminant validity to the findings. Similar predictive relations have
emerged in other age ranges (Hecht & Vagi 2010, Jordan et al. 2013, Resnick et al. 2016). Causal
relations between earlier symbolic whole number magnitude knowledge and later rational number
magnitude knowledge remain to be established but may well be present.

DEVELOPMENT OF ARITHMETIC

Nonsymbolic Whole Number Arithmetic

In addition to representing nonsymbolic numerical magnitudes, infants also can perform approx-
imate arithmetic on these representations. Four- to five-month-olds dishabituate when it appears
(through trickery) that adding one or two objects to an initial one or two has produced more
or fewer objects than the correct number; infants of the same age also dishabituate when shown
unexpected subtractive outcomes with similarly small sets (Wynn 1992). Somewhat older infants
dishabituate to surprising addition and subtraction outcomes on sets of 5 to 10 objects (McCrink
& Wynn 2004).

The neural substrates subserving nonsymbolic arithmetic overlap considerably with those in-
volved in nonsymbolic numerical representations of single sets of objects. In particular, nonsym-
bolic addition elicits activation in the IPS (Venkatraman et al. 2005), and nonsymbolic addition
and subtraction are associated with increased coordinated activity in functionally connected left
and right parietal areas, including the IPS (Park et al. 2013).

Symbolic Whole Number Arithmetic

Impressive agreement exists on descriptive features of the development of symbolic whole number
arithmetic procedures and concepts (Geary et al. 2017, Verschaffel et al. 2007). The process
typically begins at approximately age 3 with counting-based procedures, such as first putting up
fingers to represent each addend and then counting from one (the sum strategy), and retrieving
from memory the answers to a few small addend problems. Individual preschoolers typically
use several distinct counting-based strategies as well as retrieval rather than relying on a single
approach. This variable strategy use continues into childhood and adulthood and is present on all
four arithmetic operations. Even students attending high-quality universities use strategies other
than retrieval to generate answers on 15% to 30% of single-digit problems on all four arithmetic
operations (Campbell & Xue 2001, LeFevre et al. 2003).

196 Siegler · Braithwaite



PS68CH08-Siegler ARI 11 November 2016 10:0

From early in development, choices among arithmetic strategies are highly adaptive, in the
sense of promoting desirable combinations of accuracy and speed (Siegler 1996). In choosing
whether to state a retrieved answer or to use a strategy other than retrieval, preschoolers, older
children, and adults predominantly use retrieval, the fastest strategy, when they can execute it
accurately. They predominantly use slower strategies, such as counting from one or counting-on
from the larger addend, when they cannot retrieve accurately. In choosing among strategies other
than retrieval, children most often use each backup strategy on the problems where it yields the
fastest and most accurate performance relative to available alternatives. For example, 8- to 10-
year-olds often subtract by counting up or down, depending on which can be done with fewer
counts. They usually count down on 13 − 2 (“12 is 1, 11 is 2, answer is 11”) but usually count up
on 13 − 11 (“12 is 1, 13 is 2, answer is 2”) (Siegler 1989).

Along with these commonalities over age of variable strategy use and adaptive strategy choice
are large developmental changes. At a general level, arithmetic becomes faster and more accurate.
Four sources of this greater speed and accuracy are discovery of new, more effective, strategies;
increasing use of the more effective strategies that are already known; faster and more accurate
execution of strategies; and increasingly adaptive choices among strategies (Siegler 1996). For
example, between ages 5 and 8, children (a) discover the addition strategies of counting-on from
the larger addend and decomposition (e.g., adding 3 + 9 by thinking, “10 + 3 = 13, 13 − 1 =
12”); (b) increasingly use those relatively efficient strategies and decreasingly use the less efficient
strategies of counting from one and guessing; (c) execute all strategies more quickly and accurately;
and (d ) generate increasingly adaptive strategy choices.

Beyond these changes in whole number arithmetic procedures, young children also gain con-
siderable conceptual understanding of whole number arithmetic. Five-year-olds discriminate be-
tween the validity of strategies that they do not themselves use but that are legitimate (counting-on)
and the validity of illegitimate strategies that they also do not use (counting the first addend twice)
(Siegler & Crowley 1994). They also gain understanding of the commutative and associative prin-
ciples (Baroody & Tiilikainen 2003). Moreover, observations of strategy discoveries indicate that
children rarely generate conceptually flawed addition strategies under conditions in which they
do discover novel correct strategies (Siegler & Jenkins 1989).

One reason for whole number arithmetic strategies being conceptually grounded is that knowl-
edge of earlier learned operations is used to build knowledge of later ones. Knowledge of counting
provides a base for learning and understanding addition, and knowledge of addition provides a
base for learning and understanding subtraction (as in the previous example of solving 13−11).
Addition and subtraction provide a base for understanding multiplication (as when solving 4 × 3
by adding three fours or four threes) and division (as when solving 12 ÷ 4 by adding or subtracting
fours while keeping track of the number of fours). Learning of division also benefits from knowl-
edge of multiplication (as when solving 12 ÷ 4 by reasoning that if 3 × 4 = 12, then 12 ÷ 4 =
3).

Another likely reason for children’s whole number arithmetic strategies being conceptually
grounded is that magnitude knowledge provides a way to check whether answers, and the strategies
that yielded them, are reasonable. When asked to verify whether a given answer to a single-digit
arithmetic problem is correct, both children and adults are faster to reply “no” when the incorrect
answer is far from the correct magnitude (e.g., 5 + 7 = 18) than when it is close (e.g., 5 +
7 = 14) (Ashcraft 1995, Campbell & Fugelsang 2001). Similarly, errors generated while solving
single-digit arithmetic problems are usually close in magnitude to the correct answer (Siegler
1988).

Understanding does take longer to develop for some arithmetic principles, such as mathematical
equality (e.g., 3 + 4 + 5 = ____ + 5) (Alibali & Goldin-Meadow 1993, McNeil 2014) and
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inversion relations between multiplication and division (e.g., 9 × 17÷ 17 = ____) (Robinson
2016). Moreover, understanding of single-digit procedures is often better than understanding of
multidigit arithmetic, as indicated by the existence of buggy subtraction approaches (Brown &
Van Lehn 1982) among elementary school students (e.g., answering 308 − 145 by writing 243,
on the logic that the smaller digit in a given column should be subtracted from the larger one,
regardless of which number includes the smaller digit in the column). Nonetheless, most children
develop substantial understanding of whole number arithmetic.

The cognitive processes that generate both procedural and conceptual development of whole
number arithmetic have been modeled in computer simulations (e.g., Shrager & Siegler 1998,
Siegler & Araya 2005). These simulations produce changes in thinking that closely resemble those
of children along many dimensions. Within the models, development is produced by associating
problems with answers and with strategies that produce fast and accurate performance on the
problems, freeing of working memory capacity with more efficient strategy execution, and use of
goal sketches, a cognitive structure used to evaluate the plausibility of potential new strategies by
determining whether they meet the goals viewed as essential for a reasonable strategy for a given
task. Together, these processes lead to increasing frequency of retrieval of correct answers, greater
use of the more advanced strategies from among existing approaches, increasing knowledge of the
types of problems for which each strategy is most effective, and discovery of useful new arithmetic
strategies without attempting flawed ones.

Fraction Arithmetic

Knowledge of fraction arithmetic is indispensable for many purposes; students learning physics,
chemistry, biology, psychology, economics, statistics, engineering, and many other subjects de-
pend on it. Reflecting this importance, fraction arithmetic was part of more than half of the
equations on the reference sheets for the most recent US advanced placement exams in physics
and chemistry (College Board 2015). Knowledge of fraction arithmetic also is essential not only
in STEM (science, technology, engineering, and mathematics) areas but also in such positions as
nurse and pharmacist (e.g., for calculating and evaluating prescribed drug doses), automotive tech-
nician, stone mason, carpenter, and tool and die maker (e.g., for adjusting the angles of precision
cutting tools) (Davidson 2012, McCloskey 2007, Sformo 2008).

Unfortunately, learning fraction arithmetic is often difficult, and many students do not master
it even after the prolonged instruction they typically receive from fourth through eighth grade.
Averaging across three recent studies that examined knowledge of all four arithmetic operations,
US sixth and eighth graders solved only 59% of fraction arithmetic items (Siegler & Lortie-Forgues
2015, Siegler & Pyke 2013, Siegler et al. 2011). Fraction arithmetic accuracy has been found to
improve with age and experience in these and other studies (e.g., Byrnes & Wasik 1991), but adult
community college students still err on roughly 20% of problems (e.g., Siegler & Lortie-Forgues
2015, Stigler et al. 2010).

The problem is widely recognized by educators. A nationwide sample of 1,000 US algebra
1 teachers who were asked to rate 15 types of knowledge limitations that interfered with their
students’ algebra learning rated lack of knowledge of fractions and fraction arithmetic as the second
greatest problem (Hoffer et al. 2007). The only knowledge limitation rated as more serious was
of the amorphous category “word problems.”

Also reflecting widespread recognition of this difficulty were the recommendations of the Com-
mon Core State Standards Initiative (CCSSI 2010). These standards, which have been adopted
as instructional policy in more than 80% of US states, influence the teaching, textbooks, and
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standardized achievement tests presented to students (Davis et al. 2013). The CCSSI recommends
that rational number arithmetic, and the closely related topics of ratios, rates, and proportions,
be emphasized from fourth through eighth grades. However, even after implementation of the
CCSSI, children in the United States continue to struggle with rational number arithmetic.

Most fraction arithmetic errors are one of two types. Independent whole number errors (Ni &
Zhou 2005) involve performing the arithmetic operation independently on numerators and de-
nominators (e.g., 1/2 + 1/3 = 2/5). Wrong fraction operation errors involve using subprocedures
that are correct within another fraction arithmetic operation but incorrect within the operation
in the problem. For example, people often maintain common denominators on fraction multipli-
cation problems (e.g., 3/5 × 3/5 = 9/5), an approach that parallels correct fraction addition and
subtraction (3/5 + 3/5 = 6/5) but is incorrect for multiplication. Both types of errors are common
among community college students as well as children (Stigler et al. 2010).

These errors reflect lack of understanding of, or attention to, the magnitudes produced by
fraction arithmetic operations. Claiming that 1/2 + 1/3 = 2/5 implies that adding positive num-
bers can produce answers that are less than one of the addends. Claiming that 3/5 × 3/5 = 9/5
indicates a belief that multiplying two numbers that are less than 1 can result in an answer larger
than 1.

This lack of understanding also is apparent in the variability of fraction arithmetic strategies.
Within a single session, children often use both correct and incorrect procedures on virtually
identical fraction arithmetic problems, for example, 3/5 + 1/4 and 3/5 + 2/3 (Siegler & Pyke
2013, Siegler et al. 2011). Children who used both correct and incorrect procedures were more
confident when they used the correct procedures, but not overwhelmingly so (mean confidence
ratings on a 1 to 5 scale of 4.2 for correct procedures and 3.5 for incorrect procedures).

These findings indicate that many children’s fraction arithmetic knowledge includes a mix of
correct procedures, incorrect procedures based on incorrect application of whole number knowl-
edge, and incorrect procedures involving subprocedures detached from the fraction arithmetic
operation on which they are appropriate. The incorrect procedures often yield answers that vio-
late basic principles, such as when adding two positive numbers yields an answer that is less than
one of them. The fraction arithmetic of these children seems to be unconstrained by magnitude
knowledge that could be used to eschew procedures that yield implausible answers.

Decimal Arithmetic

Development of decimal arithmetic follows a path similar to that of fraction arithmetic. The most
comprehensive data on this development come from Hiebert & Wearne (1985, 1986). Between
the first semester of fifth grade and the second semester of ninth grade, accuracy of the 670
children in this study increased from 20% to 80% for addition, 21% to 82% for subtraction,
and 30% to 75% for multiplication. Although a great deal of effort has been devoted in the
past 30 years to improving rational number arithmetic instruction, students’ performance has not
changed much. Stigler et al. (2010) reported that community college students correctly answered
only approximately 80% of decimal arithmetic problems, and Lortie-Forgues & Siegler (in press)
found similar levels of accuracy with sixth and eighth graders.

The largest source of errors in decimal arithmetic is misplacement of the decimal point. This
error is often seen on decimal addition and subtraction problems when the operands have unequal
numbers of digits to the right of the decimal point. For example, the ninth graders in a study by
Hiebert & Wearne (1985) erred on 36% of trials when the problem was 0.86 − 0.3 but on only
10% of trials when the problem was 0.60 − 0.36.
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Students’ difficulty in placing the decimal point in answers also is seen in multiplication and
division. For example, Lortie-Forgues & Siegler (in press) reported that 73% of errors, and 34%
of answers, to decimal multiplication problems of sixth and eighth graders involved misplacing
the decimal point. The most common type of error was of the form 1.23 × 2.34 = 287.82, an
answer akin to claiming that multiplying two numbers below three yields an answer above 200.
Like the correct addition procedure 1.23 + 2.34 = 3.57, the answer 287.82 leaves the decimal
point in the answer two digits to the left of the rightmost digit. As with fraction arithmetic errors,
use of such procedures suggests that many students ignore the plausibility of the magnitudes of
the answers to decimal arithmetic problems.

RELATIONS BETWEEN KNOWLEDGE OF MAGNITUDES
AND ARITHMETIC

Whole Numbers

Individual differences in children’s whole number arithmetic competence correlate with indi-
vidual differences in the precision of their symbolic whole number magnitude knowledge, even
after controlling for differences in IQ, working memory, executive function, language, and spa-
tial ability (Booth & Siegler 2008, Fuchs et al. 2010, Linsen et al. 2015). These correlations
remain significant into adulthood (Castronovo & Göbel 2012) and are robust compared to cor-
relations between arithmetic and accuracy of nonsymbolic magnitude knowledge (Holloway &
Ansari 2009, Skagerlund & Träff 2016). For example, in a study of approximately 1,400 first to
sixth graders, symbolic magnitude knowledge predicted unique variance in arithmetic proficiency,
but nonsymbolic comparison acuity did not (Lyons et al. 2014). Consistent with the possibility
that numerical magnitude knowledge could facilitate arithmetic performance by allowing accurate
estimation of correct answers, accuracy of children’s symbolic magnitude knowledge predicts their
computational estimation (approximate symbolic mental arithmetic) performance (Dowker 1997,
Gunderson et al. 2012).

The relation between symbolic arithmetic competence and magnitude knowledge also is ev-
ident in neural data. Sensitivity of IPS activation during symbolic magnitude comparison to the
ratio of the numbers being compared correlates with children’s arithmetic fluency, after control-
ling for general intelligence (Bugden et al. 2012). Similarly, children who represent numerical
magnitudes more precisely show greater sensitivity of parietal response to the sizes of operands
and answers in arithmetic problems (Berteletti et al. 2015).

Rational Numbers

As with whole numbers, individual differences in children’s knowledge of fraction magnitudes
correlate with individual differences in children’s fraction arithmetic competence (Byrnes & Wasik
1991, Siegler et al. 2011). These correlations persist across national differences in educational
practices (Torbeyns et al. 2015) and after statistically controlling for whole number arithmetic
ability, language ability, executive function, working memory, and attentive behavior (Hecht et al.
2003, Siegler & Pyke 2013).

If, as the integrated theory of numerical development asserts, there is developmental continu-
ity in understanding of whole and rational number magnitudes, then whole number magnitude
knowledge should also correlate with fraction arithmetic ability. It does (Bailey et al. 2014, Jordan
et al. 2013). Strikingly, accuracy of number-line estimation with whole numbers in first grade
predicts fraction arithmetic proficiency in seventh grade—a relation fully mediated by fraction
magnitude understanding in middle school (Bailey et al. 2014).
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EFFECTS OF INTERVENTIONS EMPHASIZING MAGNITUDES
ON ARITHMETIC LEARNING

In addition to these individual-difference correlations, experimental evidence indicates that nu-
merical magnitude knowledge is causally related to arithmetic competence.

Whole Number Interventions

If numerical magnitude knowledge is causally related to arithmetic learning, then interventions
that produce improvements in numerical magnitude knowledge should also improve arithmetic
learning. Ramani and Siegler (e.g., Ramani & Siegler 2008, Siegler & Ramani 2009) produced
evidence consistent with this prediction. Their studies examined the effects of playing a numerical
board game named “The Great Race” on the numerical knowledge of preschoolers from low-
income families. The board in this game has 10 squares labeled with the numbers 1 through 10.
Players take turns spinning a spinner that can land on 1 or 2, moving their token forward by the
number of spaces indicated on the spinner and saying the numbers in the squares aloud as they
proceed. For example, children whose token is on the square labeled 4 and who spin a 2 need
to say “5, 6” as they move their token forward. Other children from the same classrooms were
randomly assigned to a control group that played the same game, except the children needed to say
the colors on the board rather than the numbers. Children who either said a wrong number/color
or did not know what number/color to say were helped by the experimenter to state the correct
number(s)/color(s). The player whose token first reaches 10 wins.

Playing this game improved children’s numerical magnitude knowledge as well as their count-
ing and identification of printed numbers (Ramani & Siegler 2008). Siegler & Ramani (2009)
replicated those findings and found that although the game involves no explicit arithmetic prob-
lems, children who had played it earlier subsequently learned more from feedback on simple
addition problems than did peers who had earlier engaged in other numerical activities, such as
counting objects and identifying printed numbers, or children in the previously described con-
trol group. The improvements in arithmetic performance included both a higher percent correct
answers and answers closer in magnitude to the correct answer.

Other interventions based on the same ideas have yielded similar effects. A 0-to-100 version of
“The Great Race” improved kindergartners’ magnitude knowledge as well as their understanding
of the base-10 system (Laski & Siegler 2014). An eight-week intervention focusing on building
number sense and including “The Great Race” as a component improved arithmetic accuracy
among kindergartners from low-income communities ( Jordan et al. 2012). Similar but distinct
games, such as “The Number Race” (Wilson et al. 2006) and “Rescue Calcularis” (Kucian et al.
2011), also have shown positive effects on arithmetic performance in typically developing children
and children with developmental dyscalculia, a condition characterized by unusual difficulty with
numbers and arithmetic.

Manipulations that activate magnitude knowledge in the context of arithmetic also improve
arithmetic learning. In one such study, first graders studied single- and multidigit addition facts
either alone or accompanied by analog number-line representations of the magnitudes of addends
and sums (Booth & Siegler 2008). On a subsequent posttest, children who had earlier seen the ana-
log magnitude representations recalled the arithmetic answers more accurately. In another study,
first graders who practiced an approximate addition task using nonsymbolic numerical magnitudes
(dot arrays) subsequently showed superior accuracy and speed at exact symbolic arithmetic, rela-
tive to children who practiced nonnumerical tasks (Hyde et al. 2014). Thus, activating knowledge
of numerical magnitudes increases addition performance and learning.

www.annualreviews.org • Numerical Development 201



PS68CH08-Siegler ARI 11 November 2016 10:0

Rational Number Interventions

Causal evidence linking rational number magnitude knowledge and rational number arithmetic
skill comes from several studies comparing the effects of instruction emphasizing fraction mag-
nitudes to the effects of instruction emphasizing the part-whole interpretation of fractions. This
latter interpretation, which is heavily emphasized in US schools, construes fractions as parts of
objects or subsets of sets (Kieren 1976). Instruction emphasizing the part-whole interpretation
provides children practice with tasks that can be solved by counting a part and the whole, such
as choosing whether 3/4, 4/3, 3/7, or 4/7 best represents the fraction of red segments in a circle
with three red and four blue segments. Instruction emphasizing magnitudes provides practice with
such tasks as fraction number-line estimation and magnitude comparison.

Interventions that focus on fraction magnitudes have yielded greater improvement not only
in fraction magnitude knowledge but also in fraction arithmetic (Fuchs et al. 2013, 2014, 2016;
Moss & Case 1999). For example, after 12 weeks of participation in Fraction Face-Off!, an inter-
vention emphasizing fraction magnitude knowledge, fourth graders’ accuracy at fraction addition
and subtraction exceeded that of control students who received, over the same period, a curricu-
lum emphasizing the part-whole interpretation. This finding was especially striking because the
curriculum that emphasized magnitudes devoted less explicit instruction in fraction arithmetic
procedures (Fuchs et al. 2013, 2014, 2016).

Although improved understanding of fraction magnitudes often facilitates learning of frac-
tion arithmetic, increasing children’s magnitude knowledge is sometimes insufficient to produce
such learning. In one such case, an intervention that included instruction in fraction magnitudes
and approximate arithmetic showed no advantage over a traditional curriculum with respect to
learning arithmetic procedures (Gabriel et al. 2012). Moreover, even after the quite successful
Fraction Face-Off! intervention, students scored on average only 18 of 41 points on a posttest
assessment of fraction arithmetic (Fuchs et al. 2014). This was considerably higher than they
had scored on the pretest and considerably higher than scores of a control group, but below
50% in absolute terms. The question is why learning this material is so challenging for so many
students.

WHY IS RATIONAL NUMBER ARITHMETIC SO DIFFICULT?

At a general level, the cause of the problems that many children and adults experience in learn-
ing fraction and decimal arithmetic is well known: They do not understand the rational number
arithmetic operations that they are asked to learn. This lack of understanding of rational number
arithmetic is evident in many ways. When asked to estimate the closest whole number to the
sum of 12/13 + 7/8, only 24% of the more than 20,000 eighth graders who took a standardized
test of math achievement (the National Assessment of Educational Progress, or NAEP) chose 2
(Carpenter et al. 1980). (The response alternatives were 1, 2, 19, 21, and I don’t know.) Present-
ing the same problem in 2014 to eighth graders taking an Algebra 1 course in a fairly affluent
suburban school district showed that little had changed in the subsequent 30 years; 27% of the
eighth graders in the recent sample correctly answered the problem (Siegler & Lortie-Forgues
2015).

The problem is not unique to fractions. When the NAEP presented the decimal multiplication
problem 3.04 × 5.3, and asked whether 1.6, 16, 160, or 1,600 was closest to the answer, only 21%
of eighth graders chose the correct answer, 16; their most common answer was 1,600 (Carpenter
et al. 1983). Many high school and college students, preservice teachers, and practicing teachers
also lack basic conceptual understanding of rational number arithmetic (Fischbein et al. 1985,
Hanson & Hogan 2000, Ma 1999, Siegler & Lortie-Forgues 2015).
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Difficulty in learning rational number arithmetic might be thought of as a problem that falls
within the field of education more than psychology. We believe, however, that psychological
theories, concepts, and analytic techniques are essential for addressing children’s difficulties with
acquiring this foundational body of knowledge. We also believe that applying knowledge from
psychology to challenging real-world problems, including ones in education, provides a valuable
test of the utility of our theories and analytic techniques.

As a first step toward the goal of applying psychological theories, concepts, and analytic tech-
niques to the goal of improving children’s understanding of rational number arithmetic, we at-
tempt in the remainder of this review to specify sources of difficulty in learning fraction and
decimal arithmetic. These sources of difficulty are divided into two categories: inherent and
culturally contingent. Inherent sources of difficulty are ones that make understanding rational
number arithmetic difficult regardless of the particulars of the society and educational system.
Examples include the complex relations among different fraction arithmetic operations and be-
tween whole number and fraction arithmetic operations. Culturally contingent sources of difficulty
are ones that vary among societies and educational systems. They include teachers’ understand-
ing of the material they are teaching, the accuracy and clarity of textbooks in presenting the
material, and students’ prior knowledge of prerequisites. A more extensive discussion of these
issues can be found in Lortie-Forgues et al. (2015); here, we summarize the main points in the
analysis.

Inherent Sources of Difficulty of Rational Number Arithmetic

Inaccessibility of rational number magnitudes. For both whole and rational numbers, arith-
metic learning is correlated with, and causally related to, knowledge of numerical magnitudes.
However, fraction and decimal notations make accessing fraction and decimal magnitudes more
difficult than accessing whole number magnitudes. Whole number magnitudes are expressed by a
single number, and after age 8 or 9, children access them automatically (Berch et al. 1999, White
et al. 2012). In contrast, fraction magnitudes have to be derived from the ratio of two numbers,
and even in adulthood, they are usually not accessed automatically (DeWolf et al. 2014).

Accessing most decimal magnitudes is similar to accessing whole number magnitudes (DeWolf
et al. 2014). However, this is not the case for decimals with one or more zeros immediately to the
right of the decimal point (e.g., 0.012). Indicative of this difficulty, Putt (1995) found that only
approximately 50% of US and Australian preservice teachers correctly ordered the magnitudes of
five decimals, four of which included one or more zeroes immediately to the right of the decimal
point. Hiebert & Wearne (1985) reported similar results regarding decimal magnitude knowledge
among US ninth graders. The difficulty of accessing these decimal magnitudes poses an inherent
challenge in learning decimal arithmetic.

Opacity of rational number arithmetic procedures. The conceptual basis of standard fraction
arithmetic procedures is often far from obvious. Why are equal denominators needed for adding
and subtracting but not for multiplying and dividing? Why is the second operand inverted and
multiplied by the first when dividing fractions? The most straightforward explanations require
knowledge of algebra, a subject that usually is taught after fractions, so that even strong students
usually lack such knowledge when they are learning fractions.

Superficially, the conceptual basis of decimal arithmetic is more transparent than that of frac-
tion arithmetic, because the decimal computations resemble those with the corresponding whole
number operations. However, considering issues related to placement of the decimal point re-
veals that understanding decimal arithmetic procedures is more challenging than it first appears.
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To understand the complexity, try to explain to someone who does not already understand why
0.123 × 0.45 yields an answer with five digits to the right of the decimal point. The challenge
of providing a clear explanation without recourse to concepts that students lack when they learn
about decimal arithmetic, such as negative exponents, seems likely to contribute to difficulty un-
derstanding decimal arithmetic.

Complex relations between whole and rational number arithmetic operations. Whole num-
ber arithmetic knowledge is often incorrectly generalized to rational number arithmetic. This
problem was mentioned above in the context of independent whole number errors with fractions
(e.g., 2/3 + 2/3 = 4/6).

Similarly tempting generalizations from whole number arithmetic lead to incorrect judgments
about the direction of effects of multiplying and dividing fractions. Multiplying two natural num-
bers (whole numbers other than 0) never results in an answer less than either multiplicand, but
multiplying two fractions between 0 and 1 always does. Similarly, dividing by a natural number
never results in an answer greater than the number being divided, but dividing by a fraction be-
tween 0 and 1 always does. However, even after years of experience with fraction multiplication
and division, both eighth graders and adults predict that all four fraction arithmetic operations will
produce the same direction of effects as with whole numbers, regardless of whether the operands
are more than or less than 1 (Siegler & Lortie-Forgues 2015).

Similar overgeneralizations from whole number experience affect decimal arithmetic. With
whole number addition and subtraction, aligning the rightmost digits of the numbers in the
problem preserves the correspondence of their place values. In contrast, with decimal addition
and subtraction, such alignment yields incorrect answers when the numbers of digits to the right
of the decimal point differ for the operands. The locations of the decimal point in the operands,
rather than the rightmost digits, need to be aligned to correctly add and subtract decimals (i.e.,
with 0.82 − 0.6, the “6” needs to be aligned with the “8” rather than with the “2”). Correct
mapping is probably made more difficult by the fact that the strategy of aligning the rightmost
digit does work when the decimals being added or subtracted have the same number of digits (e.g.,
0.82 − 0.64).

Variable relations among rational number operations. Partial overlaps in subprocedures
within different rational number arithmetic operations add to the difficulty of learning rational
number arithmetic. For example, when adding or subtracting fractions with the same denomina-
tor, the operation is applied only to the numerator, but when multiplying or dividing fractions
with the same denominator, the operation must be applied to both numerator and denominator.
Perhaps because children generally learn fraction addition and subtraction before fraction multi-
plication and division, errors of the form 4/5 × 4/5 = 16/5 are very common. In one recent study
of sixth and eighth graders’ fraction arithmetic, 46% of fraction multiplication answers and 55%
of fraction division answers involved such errors (Siegler & Pyke 2013). These errors again are
easy to understand; if a child does not understand that 4/5 × 4/5 means 4/5 of 4/5, and that the
answer must therefore be less than 4/5, why not proceed as in fraction addition?

Overgeneralization of decimal addition and subtraction procedures to decimal multiplication
and division occurs for similar reasons. On addition and subtraction problems with equal numbers
of digits to the right of the decimal point (e.g., 0.5 + 0.7 = 1.2), the placement of the decimal
point relative to the rightmost digit of the addends is maintained. However, with decimal mul-
tiplication, the location of the decimal point is determined by the sum of the number of digits
in the multiplicands to the right of the decimal point (e.g., 0.5 × 0.7 = 0.35 rather than 3.5).
Hiebert & Wearne (1985) found that overgeneralization of the rule from addition for placing
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the decimal point accounted for 76% of sixth graders’ multiplication answers. Again, the error is
understandable; if a child does not know that 0.5 × 0.7 means half of 0.7, why shouldn’t the answer
be 3.5?

Culturally Contingent Sources of Difficulty

Inherent sources of difficulty make learning rational number arithmetic challenging for learners in
all cultures. However, the degree to which learners surmount these inherent difficulties depends
on several culturally contingent factors.

Teachers’ understanding. Understanding a topic is no guarantee of ability to teach it well,
but without such understanding, high-quality instruction is unlikely. Consistent with this view,
teachers’ understanding of rational number arithmetic is strongly related to their knowledge of
how to teach it effectively (Depaepe et al. 2015).

Unfortunately, many teachers in Western countries have limited understanding of rational
number arithmetic. When asked to illustrate the meaning of a fraction division problem, such
as 1 3/4 ÷ 1/2, only a minority of US and Belgian teachers provided an explanation other than
stating the invert-and-multiply algorithm (Depaepe et al. 2015). In contrast, roughly 90% of East
Asian teachers provided coherent explanations for the same type of problem (Luo et al. 2011, Ma
1999). Similar national differences were found in those studies in teachers’ ability to judge whether
multiplication or division was the way to solve a rational number story problem.

Teachers’ emphasis on rote memorization. For many years, researchers, associations of math
teachers, and national commissions have argued that typical mathematics instruction overem-
phasizes rote memorization of procedures (e.g., Brownell 1947, Natl. Math. Advis. Panel 2008).
Lack of understanding of procedures limits children’s initial learning, and the deleterious effects
become larger with the passage of time following initial learning (e.g., Reyna & Brainerd 1991).
The degree to which teachers emphasize rote memorization of rational number arithmetic pro-
cedures may be related to the quality of their understanding of the procedures. Emphasizing rote
memorization is one way to avoid the embarrassment of being unable to answer questions about
mathematics that some students in the class can answer.

Textbook explanations of limited generality. US textbooks typically explain whole number
multiplication as repeated addition (CCSSI 2010). The problem 3 × 2, for example, could be
explained as adding two three times (2 + 2 + 2). This approach has the advantage of grounding
understanding of multiplication in understanding of addition, but it also has two limitations. One
is that the repeated addition interpretation cannot be straightforwardly applied to multiplication
of fractions and decimals. For instance, how to interpret 1/3 × 3/4 in terms of repeated addition
is not straightforward.

The other limitation is that the repeated addition explanation often leads students to infer that
because adding positive numbers always yields an answer larger than either addend, multiply-
ing positive numbers has the same effect. However, this inference is mistaken: Multiplying two
numbers between 0 and 1 never yields a product greater than either multiplicand.

The present theoretical emphasis on numerical magnitudes, together with empirical findings
about the effectiveness of interventions that emphasize number lines in teaching fractions, suggests
alternative instructional approaches that might be more effective. For example, multiplication
could be presented as “N of the M’s” with whole numbers (e.g., 4 of the 3’s) and “N of the M”
with fractions (1/3 of the 3/4). Using a number line to represent the 3/4, and then demonstrating
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that 1/3 of the 3/4 means dividing the segment from 0 to 3/4 into three smaller, equal-sized
segments, with the answer being one of them, could help students understand why multiplying
fractions less than one yields an answer less than either operand.

A similar point can be made about division. In US textbooks, division is usually introduced as
fair sharing (dividing objects equally among people). For example, a teacher or textbook might
explain 12÷ 4 as 12 cookies shared equally among 4 friends. This interpretation is straightforward
with natural numbers but not with rational numbers, at least when the divisor is not a whole
number (e.g., what does it mean to share 3/4 of a cookie among 3/8 of a friend?).

Again, the standard explanation is not the only possible one. At least when a larger number
is divided by a smaller one, both whole number division and fraction division can be explained
straightforwardly as indicating how many times the divisor can go into the dividend (e.g., how
many times 8 can go into 32, how many times 3/8 can go into 3/4). Moreover, number lines
can be used to illustrate the process in both whole and rational number contexts, which can
promote understanding of the shared meaning of multiplication and division with the two types of
numbers.

Students’ limited prerequisite knowledge. Rational number arithmetic requires mastery of
whole number arithmetic. Even adding 1/3 + 2/5 requires five correct single-digit multiplications
and additions; fraction arithmetic problems involving multidigit numerators and denominators
require far more.

Although much better than their knowledge of rational number arithmetic procedures, many
US students’ knowledge of whole number arithmetic procedures falls short of the ideal of con-
sistent fast and accurate performance. This leads to a fair number of rational number arithmetic
errors. For example, Siegler & Pyke (2013) found that sixth and eighth graders made whole
number arithmetic errors on 21% of fraction arithmetic problems. Such computational errors
seem likely to interfere with learning of correct rational number procedures because they obscure
whether implausible answers are attributable to flawed procedures or to flawed execution of correct
procedures.

SUMMARY AND CONCLUSIONS

Prior to the past decade, the field of numerical development focused almost exclusively on infants’
and young children’s understanding of whole numbers. In recent years, however, the field has
expanded greatly to include rational as well as whole numbers and the entire developmental
period from infancy to adulthood. Development of numerical magnitude knowledge has provided
a unifying theme for this broader field. With age and experience, children gain knowledge of
the magnitudes of nonsymbolic numbers; small symbolic whole numbers; larger symbolic whole
numbers; and fractions, decimals, and other rational numbers.

A major goal of the present review was to integrate the literature on development of knowledge
of numerical magnitudes with the literature on development of arithmetic knowledge. We found
that magnitude knowledge was correlated with, predictive of, and causally related to arithmetic
competence for both whole and rational numbers. Most individuals eventually achieve relatively
good understanding of both whole number magnitudes and whole number arithmetic, but even
adults with excellent knowledge of the magnitudes of individual fractions and decimals often have
limited understanding of rational number arithmetic. Poor understanding of rational number
arithmetic is common not only among students but also among teachers. This problem is especially
serious because knowledge of rational number arithmetic is foundational for further mathematics
and science learning as well as for a wide range of occupations.
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The reasons for many children’s and adults’ poor understanding of rational number arith-
metic include both inherent and culturally contingent sources. One inherent source is the greater
difficulty of accessing magnitudes of the operands and answers in fraction and decimal arith-
metic problems relative to accessing their magnitudes in whole number arithmetic problems.
This greater difficulty reflects the magnitudes of fractions and decimals depending on relations
between components (explicitly with fractions, implicitly with decimals) rather than on any single
number. Weak knowledge of the magnitudes of rational number operands and answers limits the
ability of many children and adults to evaluate the plausibility of answers and the procedures that
produce them.

However, the difficulty of learning rational number arithmetic cannot be reduced to poor
understanding of rational number magnitudes. Other inherent features of arithmetic with decimals
and fractions add to the difficulty of learning. One is that rational number arithmetic procedures
are often opaque. For example, it is far from immediately apparent why the invert-and-multiply
procedure yields correct answers for fraction division, or why multiplying two decimals that each
have two digits to the right of the decimal point must lead to an answer with the decimal point
four digits to the left of the rightmost digit. Understanding why these procedures yield correct
answers is unlikely without knowledge of algebra, which students rarely have when they are
learning fraction and decimal arithmetic. The complex relations between corresponding whole
number and rational number arithmetic operations, and of different rational number arithmetic
operations to each other (e.g., the relation of fraction addition and subtraction, where common
denominators are maintained in the answer, to fraction multiplication and division, where common
denominators are not maintained in the answer), add to the inherent difficulty of learning rational
number arithmetic. These complex relations lead to tempting but incorrect analogies and obscure
correct connections between the same operation with whole and rational numbers.

In the United States and many other Western countries, culturally contingent variables further
increase the difficulty of learning rational number arithmetic. Teachers’ understanding of rational
number arithmetic is often limited, and their instruction often emphasizes rote memorization
rather than understanding. Textbook explanations often fail to convey to students the shared
meaning of corresponding arithmetic operations with whole and rational numbers. Some students
have not fully mastered whole number arithmetic, leading to errors in rational number arithmetic
even when the students have chosen the correct procedure.

In sum, investigators have gained considerable knowledge of what develops and how devel-
opment occurs in numerical development. These gains include increased understanding of the
development of both numerical magnitudes and how those magnitudes combine in arithmetic
operations for both whole and rational numbers. An important current challenge is to apply this
knowledge to facilitate understanding of rational number arithmetic. Attaining this goal will re-
quire not only methods for improving learners’ knowledge of rational number magnitudes but
also effective means for increasing their understanding of the logic underlying rational number
arithmetic procedures. Examining the effects of theoretically based interventions designed to im-
prove understanding of rational number arithmetic procedures will provide tests of theories of
numerical development as well as useful data for expanding and refining the theories. It will also
help surmount the artificial distinction between developmental and educational psychology, to
the likely benefit of both fields.
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