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Abstract

In this review, we summarize findings supporting the existence of multi-
ple behavioral strategies for controlling reward-related behavior, including
a dichotomy between the goal-directed or model-based system and the ha-
bitual or model-free system in the domain of instrumental conditioning and
a similar dichotomy in the realm of Pavlovian conditioning. We evaluate
evidence from neuroscience supporting the existence of at least partly dis-
tinct neuronal substrates contributing to the key computations necessary for
the function of these different control systems. We consider the nature of
the interactions between these systems and show how these interactions can
lead to either adaptive or maladaptive behavioral outcomes. We then review
evidence that an additional system guides inference concerning the hidden
states of other agents, such as their beliefs, preferences, and intentions, in a
social context. We also describe emerging evidence for an arbitration mech-
anism between model-based and model-free reinforcement learning, placing
such a mechanism within the broader context of the hierarchical control of
behavior.
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INTRODUCTION

All organisms, including humans, face the fundamental challenge of the need to interact effec-
tively with the environment in a manner that maximizes the prospects of obtaining the resources
needed to survive and procreate while minimizing the prospect of encountering situations leading
to harm. Organisms have evolved a variety of strategies to solve this problem. Accumulating evi-
dence suggests that these distinct strategies coexist in the human brain. In this review, we outline
evidence for the existence of these multiple systems of behavioral control and describe how they can
be either interdependent or mutually interfering depending on the situation. We establish the role
that predictions play in guiding these different behavioral systems and consider how these systems
differ in the ways in which they develop their predictions. Finally, we evaluate the possibility that
an additional system, used for performing learning and inference in social contexts, is present in
the human brain.

Multiple Strategies for Behavioral Control

Perhaps one of the most fruitful questions that may be answered by an understanding of the brain’s
varied control strategies is whether behavior is motivated by the onset of a stimulus or is directed
toward a goal outcome. Historically, habitual responses that are elicited by the perception of a
stimulus regardless of the action’s consequences (Thorndike 1898) have been contrasted with
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goal-directed actions that are deliberatively dispatched to achieve a goal (Tolman 1948). Theory
and evidence have resolved arguments as to whether human (and animal) behavior is ruled by one
strategy or the other by suggesting that both types of behavioral control coexist. In the following
sections, we outline some of the behavioral evidence in support of multiple strategies for behavioral
control.

Stimulus-Driven Control

Stimulus-driven control refers to a class of behaviors that are expressed in response to the onset of
an unanticipated external stimulus. Because these behaviors are instigated by a particular stimulus
or class of stimuli, they are cognitively efficient, automatic, and rapidly deployed. However, because
they are initiated without consideration of the organism’s goals or subsequent outcomes, stimulus-
driven behaviors can suffer from being overly rigid, especially in a volatile environment.

Reflexes are perhaps the most primitive form of adaptive response to environmental challenges.
Reflexes are stereotyped in that sensory stimuli have innate (unlearned) activating tendencies; thus,
reflexes do not depend on synaptic plasticity and are often implemented at the level of the spinal
cord and brainstem (Thibodeau & Patton 1992). Reflexes are thought to have a long evolutionary
history because they are present in organisms from the simplest, such as bacteria, to the most
complex, such as humans, and because analogous motor reflexes to the same stimulus are present
across species. Examples of reflexes include the withdrawal reflex that comes from touching a
hot surface, the startle response that is elicited in response to sudden stimuli, and the salivatory
response to the presentation of food. Reflexes are considered advantageous. For example, the
withdrawal reflex helps to avoid tissue damage, the startle response facilitates successful escape
responses, and the salivary response aids in the consumption and digestion of food.

Reflexes are fundamentally reactive in that an unanticipated triggering stimulus elicits a prepro-
grammed response. However, being able to issue responses in a prospective manner, in anticipation
of an event that requires a response, provides significant advantages. For example, digestion can
be aided by producing saliva prior to the arrival of food, and personal harm may be avoided by
steering clear of a hot surface without having to reflexively retreat from it. Pavlovian condition-
ing, also referred to as classical conditioning, is a means by which an organism can learn to make
predictions about the subsequent onset of behaviorally significant events and leverage these pre-
dictions to initiate appropriate anticipatory behaviors (Pavlov 1927). As is the case for reflexes,
Pavlovian learning is present in many invertebrates, including insects such as Drosophila (Tully &
Quinn 1985) and even sea slugs (Aplysia; Walters et al. 1981), but also in vertebrates, including
humans (Davey 1992).

The type of behavior emitted in response to the stimulus depends on the form of outcome the
stimulus is paired with ( Jenkins & Moore 1973). For instance, a cue paired with the subsequent
delivery of food will result in the acquisition of a salivary response, whereas a cue paired with
aversive thermal heat will elicit avoidance behavior. Different classes of Pavlovian conditioned
responses have been identified. Some are almost identical to the unconditioned responses elicited
by the stimuli that trigger them, but other conditioned Pavlovian responses are more distinct. For
example, in addition to salivating in response to a food predictive cue, animals also typically orient
toward the site of anticipated food delivery (Konorski & Miller 1937).

Although the adaptive advantages of anticipatory behavior are clear, Pavlovian learning is
limited to learning about events that occur independent of the organism’s behavior. In other
words, Pavlovian learning may help an organism prepare for the arrival of food, but it won’t help
that organism procure its next meal. To increase the possibility of being able to actively attain
rewards, many organisms are also equipped with instrumental conditioning, a mechanism that
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allows them to learn to perform specific yet arbitrary behavioral responses (such as a lever press)
in a specific context. In the simplest form of instrumental conditioning, specific stimulus–response
patterns are acquired by virtue of the extent to which a particular response gives rise to positive
(i.e., the receipt of a reward) or negative (i.e., avoidance of an aversive outcome) reinforcement.
This strategy provides significant benefits in terms of cognitive efficiency, speed, and accuracy;
however, these benefits come at a cost. Critically, the execution of this class of behavior does
not involve an anticipation of a particular outcome (Thorndike 1898); thus, behavior can become
habitual, making it difficult to flexibly adjust the behavior should outcome valuation suddenly
change. Thus, to the organism’s potential detriment, habits may persist even if their outcomes
are no longer beneficial. This persistence is suggested to give rise to various forms of addiction
(Everitt & Robbins 2016).

Goal-Directed Control

Goal-directed control refers to a class of instrumental behaviors that appear to be motivated
by and directed toward a specific outcome. Whereas stimulus-driven control can be thought of
as retrospective in that it depends on integrating past experience, goal-directed control may be
thought of as prospective in that it leverages a cognitive map of the decision problem to flexibly
revalue states and actions (Tolman 1948). Leveraging this map in conjunction with the organism’s
internal goals facilitates a highly flexible control system, allowing the organism to adapt to changes
in the environment without having to resample environmental contingencies directly. However,
the necessity of interrogating a cognitive map in order to generate a behavioral plan makes goal-
directed control cognitively demanding and slow.

Goal-directed control has been experimentally distinguished from habitual behavior in a study
involving training an animal to perform unique actions (e.g., pressing a lever or pulling a chain)
in order to obtain unique food outcomes, then devaluing one of the outcomes by pairing it with
illness (Balleine & Dickinson 1991). If the animal is behaving in a goal-directed manner, it should
be less likely to elicit the action that had been associated with the now-devalued outcome. Indeed,
some animals (Dickinson 1985) and humans (Valentin et al. 2007) have been shown to exhibit
goal-directed control.

Evidence for the Coexistence of Multiple Control Systems

Although Dickinson & Balleine (1994) demonstrated that rats are capable of performing in a goal-
directed manner, Dickinson et al. (1995) also showed that those same animals may also exhibit
habitual tendencies. For example, after animals were exposed to extensive training, they were found
to persistently elicit responses associated with devalued outcomes (Dickinson et al. 1983). These
findings led to the proposal that animals were no longer sensitive to the value of the outcome, but
that their behavior was instead driven by the stimulus that had been paired with response. Thus,
reward schedules and degree of experience guide, at least in part, the control strategy deployed
by the animal. Dickinson et al. (1983) concluded that both habitual and goal-directed systems of
control are present in rodents and that these two systems manifest themselves in behavior under
different circumstances. Using a similar overtraining manipulation to that performed in rodents,
Tricomi et al. (2009) showed that humans also exhibit reduced outcome sensitivity consistent with
the behavioral expression of habit.

Even though the distinction between habitual and goal-directed control is often conceptual-
ized and investigated within the context of instrumental behavior, there is tentative evidence that a
similar distinction can be made for Pavlovian behavior. Critically, the core criterion to distinguish
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habitual from goal-directed behavior in the instrumental domain is also present for conditioned
Pavlovian responses: Some Pavlovian responses are more sensitive (Dayan & Berridge 2014) than
others to outcome value (Nasser et al. 2015). Nevertheless, Pavlovian conditioned responses are
often considered to be habitual in a manner analogous to habits in the instrumental domain; this
conception of Pavlovian responses gives rise to the prevalent assumption that incremental synaptic
plasticity implements the acquisition of Pavlovian contingencies (Rescorla & Wagner 1972). How-
ever, this form of habitual Pavlovian conditioning cannot account for findings showing altered
patterns in the conditioned response immediately after devaluation and prior to any resampling
of the environment’s contingencies (Dayan & Berridge 2014). Despite the evidence for the exis-
tence of distinct habitual and goal-directed strategies within Pavlovian learning, the majority of
the research on multiple control systems has been performed using instrumental conditioning; we
also focus on instrumental conditioning in the remainder of this review, although we revisit the
Pavlovian case in the section Model-Free and Model-Based Pavlovian Learning.

Why Multiple Systems?

Given that all of the different strategies for controlling behavior that we have described, from
reflexes to goal-directed behavior, seem to be present in humans, a natural question follows: Why
have all of these systems continued to coexist simultaneously? In other words, why are humans still
endowed with the capacity for less flexible Pavlovian reflexes when they have machinery enabling
more flexible goal-directed actions instead? One explanation could be that these behavioral control
systems coexist because evolutionary adaptation occurred incrementally. The adaptations allow-
ing goal-directed actions may simply have occurred through the addition of new brain circuitry
without the refurbishment or repurposing of control systems already in place, similar to adding a
modern extension to an older building. However, this seems unlikely given the inefficiencies (both
biologically and functionally) associated with adopting a multicontroller strategy in the absence
of some additional benefit.

A second, more compelling possible explanation for the coexistence of multiple behavioral
control systems is that the brain’s control systems share mutually beneficial interdependencies.
Evolutionarily recent regions may depend on the computations performed by more primal regions.
Primal regions may also take advantage of the experience that comes with more complex control
strategies, as well as more evolutionarily recently developed brain regions, which afford powerful
domain-general computational functions to existing decision-making strategies. In other words,
primal control systems could offer the scaffolding required for more advanced control systems, and
the strategic guidance of advanced systems could help primal systems build adaptive associations
more efficiently. Indeed, theoretical work (Sutton 1990) has demonstrated that stimulus-driven
learning can be significantly improved when guided by a goal-directed system, and experimental
work suggests that these interactions take place in the human brain (Doll et al. 2011).

Yet another benefit of multiple behavioral control systems is rooted in the mutually exclusive
challenges faced by most organisms. Each system offers a different solution for the trade-off be-
tween accuracy, speed, experience, and (computational) efficiency. Goal-directed control typically
moves an organism toward goal satisfaction more reliably than other systems, but its flexibility
is cognitively demanding and deployment is relatively slow. A goal-directed strategy could offer
significant advantages to a predator stalking its prey but prove ruinous for the prey when a swift
retreat is required. Conversely, although stimulus-driven behaviors may not always meet an or-
ganism’s current needs, particularly in a volatile environment, they can be deployed quickly and
require less computational resources because they rely on simple stimulus–response associations
rather than a rich cognitive map.
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The environment presents complex challenges to survival, the range of which demand mutually
exclusive strategies to tackle them in an adaptive manner. Organisms stand to gain the best of
all worlds by preserving and adaptively deploying multiple control strategies that meet these
challenges. However, before we can begin to understand how the brain handles the coexistence
of these different forms of behavior, we first need to consider computational theories of value-
based decision making, learning, and action selection to fully grasp the nature of the computations
implemented in partially separable networks of brain areas.

ALGORITHMS FOR LEARNING AND DECISION MAKING

A central notion in most (e.g., Balleine et al. 2009, Camerer et al. 2005, Glimcher et al. 2013, Padoa-
Schioppa & Assad 2006, Platt & Glimcher 1999, Rangel et al. 2008) but not all (see Gigerenzer
& Gaissmaier 2011, Strait et al. 2014) theories of value-based decision making as applied to the
brain is that, to establish which option to take, an agent must first compute a representation of
the expected value or utility that will follow from selecting a particular option. This computation
facilitates a comparative process, allowing the agent to identify and pursue the option leading to
the greatest expected value. The idea that agents can compare options based on expected value has
motivated a search for neural representations of value predictions in the brain, an endeavor that has
been enormously fruitful (for some caveats, see O’Doherty 2014). Value signals have been found
in a range of brain regions, including the amygdala, orbitofrontal cortex (OFC), ventromedial
prefrontal cortex (vmPFC), and ventral and dorsal striata, as well as in a number of other brain
areas such as the parietal, premotor, and dorsal frontal areas.

Reinforcement Learning

Evidence for value signals in the brain raises the question of how such signals could be learned or
acquired in the first place. The seminal work of Schultz and colleagues (1997) has provided insight
into a potential mechanism; they found that the phasic activity of dopamine neurons encodes a
prediction error, which signals the difference between expected and actual rewards. Referred to
as a reward prediction error (RPE), phasic dopamine activity has been shown to resemble, both
in signature and function, a signal used by computational reinforcement learning (RL) algorithms
to support learning (Montague et al. 1996, Sutton 1988). This type of learning signal allows an
agent to improve its prediction of what to expect from the environment by continually adjusting
those predictions toward what actually occurred. The fact that dopamine neurons send dense
projections to the striatum and elsewhere has given rise to proposals that RPE signals carried by
phasic dopamine facilitate neural plasticity associated with the acquisition of value predictions in
these target areas.

Model-Free and Model-Based Reinforcement Learning

A flurry of interest followed the realization that abstract learning theories from computer science
could be applied to better understand the brain at a computational level within a RL framework
(Doya 1999). In particular, Daw and colleagues (2005) proposed that the distinction between
habitual and goal-directed control could be accounted for in terms of two distinct types of RL
mechanisms.

When learning is mediated via RPE signals, value is ascribed by integrating across past re-
inforcement. Predictive value acquired via this mechanism does not include the agent’s motiva-
tion at the time of reinforcement, nor does it track the identity of the reinforcer itself. Thus, a
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controller that learns via RPE signals would be expected to behave in a manner that is insensi-
tive to immediate changes in outcome values, similar to the devaluation insensitivity associated
with habits. In essence, this model-free learning strategy (so called because it does not depend
on a model of the environment) gives rise to value representation that resembles stimulus-based
association.

To account for goal-directed control, Daw and colleagues (2005) proposed that the agent
encodes an internal model of the decision problem consisting of the relevant states and actions
and, critically, the transition structure among them. This map of the decision process supports
flexible online value computation by considering the current expected value of outcomes and
integrating into these expected values the knowledge of how to procure them. Critically, value can
be flexibly constructed at each decision point as part of an online planning procedure, making the
agent immediately sensitive to changes in outcome values. This type of cognitive model–driven
RL process is known, perhaps somewhat confusingly (because the terms were originally coined in
the computer science literature), as model-based RL (Kuvayev & Sutton 1996).

NEUROCOMPUTATIONAL SUBSTRATES

Formal RL algorithms depend on well-defined learning signals and representations. Therefore,
by asking how these are implemented in the brain, we can move toward a better understanding
of the brain’s computational composition. In the following sections, we outline some of the key
representations and signals associated with various forms of RL and discuss their neural correlates.
Figure 1 illustrates the main brain regions and functions discussed in these sections.

The Cognitive Model: Multiple Maps, Multiple Regions

A model-based agent depends on a cognitive map of the task space encoding the environment’s
relevant features and the relationships among them (Tolman 1948). Electrophysiological record-
ings from place cells in the hippocampus have provided the most well-characterized evidence for
the encoding of a cognitive map, especially in the spatial domain (e.g., O’Keefe & Dostrovsky
1971). Activity in these cells can represent the animal’s trajectory during a spatial decision-making
task, consistent with the theory that place cell representations play a role in model-based planning
(Pfeiffer & Foster 2013) and that place cells are recruited in correspondence with future spatial
locations the animal is considering ( Johnson & Redish 2007). Others have suggested that the hip-
pocampus might play a more general role in encoding a cognitive map, possibly in the encoding
of relationships between stimuli and outcomes, identity and category membership information
about objects (Eichenbaum et al. 1999), or even maps of social hierarchy in humans (Tavares et al.
2015).

Although evidence suggests that the hippocampus encodes information relevant to a cognitive
map, the hippocampus does not always seem to be necessary for goal-directed choices in simple
action–outcome learning tasks (Corbit & Balleine 2000). Wilson et al. (2014) used computational
modeling to account for various behavioral effects of orbitofrontal lesions in the extant literature
and to suggest that the OFC is involved in signaling the current location of the animal in an abstract
task space, especially when that state is not immediately observable (i.e., when task states must
be inferred or maintained). Neuroimaging studies have revealed evidence that outcome identity
is represented in the OFC in response to stimuli predictive of those outcomes (Howard et al.
2015). This representation may be a mechanism through which the expected value of a particular
stimulus or state could be computed. Although this possibility is still a matter of debate, the bulk
of the evidence suggests that the OFC seems to be less involved in encoding information about
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Figure 1
Schematic mapping specific neuroanatomical loci to the implementation of different functions underlying
model-based and model-free control. Model-based control depends on a cognitive map of state space and
integration of different aspects of a decision, such as effort and estimation uncertainty, as well as the value
and the identity of goals or outcomes. Model-free control depends on learning about the value of responses
in the current state, based on the history of past reinforcement. The inner circle identifies regions involved
in model-based and model-free control, and the outer circle identifies specific subfunctions implemented by
particular brain regions, based on the evidence to date as discussed in this review. The objective of this figure
is to orient the reader to the location of the relevant brain regions rather than to provide a categorical
description of the functions of each region or an exhaustive list of the brain regions involved in reward-
related behavior. The neuronal substrates of prediction errors and the loci of arbitration mechanisms are
omitted from this figure for simplicity. Y coordinates of coronal brain slices represent their distance from the
commissures along the posterior (negative values) to anterior (positive values) axis.

actions than it is in encoding information about stimuli and outcomes (for a review, see Rangel &
Hare 2010). Ultimately, the OFC’s role in state encoding and in outcome associations may service
computations associated with the expected value based on stimulus–stimulus associations.

However, goal-directed action selection demands some form of action representation as well
as a representation of the state transitions afforded by performing actions. Evidence has indicated
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that regions of the posterior parietal cortex, such as the lateral intraparietal sulcus, play an im-
portant role in perceptual decision making, a critical aspect of state identification (e.g., Shadlen
& Newsome 2001). Notably, neurons in the posterior parietal cortex have been implicated in
the encoding of information about stimulus category membership, which could be important for
establishing current and future potential states (Freedman & Assad 2006). Indeed, work by Doll
et al. (2015) has shown that the category of a prospective stimulus appears to engage these regions
of the brain. Critically, neurons in the posterior parietal cortex are implicated in the encoding of
associations between arbitrary stimuli; these associations indicate the implementation of specific
actions (Dorris & Glimcher 2004). A region of the inferior parietal lobule has also been found to
play an important role in the encoding of information pertinent to the distribution of outcomes
associated with an action, as well as information about the relative probability of obtaining an
outcome contingent on performing a particular action compared to not performing that action
(Liljeholm et al. 2011, 2013). Together, these findings suggest a role for the posterior parietal
cortex in encoding a cognitive map or, more specifically, in encoding the transitions between states
contingent on specific actions.

The presence of cognitive maps in the brain raises the question of how such maps are acquired
in the first place. One possible mechanism is a state prediction error (SPE), which signals the
discrepancy between an expected state transition and the transition that actually did occur. This
SPE can then be used to adjust state transition expectations. In essence, SPEs are similar to
RPEs but are used not to learn about reward expectation but to learn state expectations. Gläscher
et al. (2010) used fMRI while participants learned a two-step Markov decision problem to find
evidence for SPEs in the posterior parietal cortex and dorsolateral prefrontal cortex. These SPE
signals were present in both a latent learning task phase, during which participants were guided
through the task in the absence of reward, and an active phase, during which reward, and therefore
RPEs, were also present. SPEs in the posterior parietal cortex and dorsolateral prefrontal cortex
are therefore candidates for the signal underpinning learning of a cognitive model involving
actions.

The presence of multiple candidate areas engaged in encoding some form of a cognitive map
raises the question of which representations are necessary or sufficient for model-based learning
and control. The nature of the cognitive map representation that is used may depend to a great
extent on the type of decision problem. Perhaps, a task that has an ostensibly spatial component
will necessarily recruit a spatial cognitive map in the hippocampus, whereas decision problems that
involve selection among possible motor actions will depend to a greater extent on action codes in
the posterior parietal cortex. However, precisely how these various maps might be leveraged by
the brain in support of model-based learning and control remains to be determined.

Outcome Valuation During Decision Making

To choose among actions in a model-based manner, an agent needs to determine the value of
different available outcomes. Electrophysiological studies in both rodents and monkeys have re-
vealed neuronal activity in the amygdala and OFC related to conditioned stimuli associated with
appetitive unconditioned stimuli, such as a sweet taste or juice reward (Schoenbaum et al. 1998),
and aversive unconditioned stimuli, such as an aversive flavor, air puff, or eyelid shock (Applegate
et al. 1982, Pascoe & Kapp 1985, Paton et al. 2006, Salzman & Fusi 2010, Salzman et al. 2007,
Schoenbaum et al. 1998). Furthermore, human imaging studies have revealed responses in the
amygdala, ventral striatum, and OFC in response to conditioned stimuli that are predictive of the
subsequent delivery of appetitive and aversive outcomes such as tastes and odors (Gottfried et al.
2002, 2003; O’Doherty et al. 2002; Tobler et al. 2006).
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During Pavlovian conditioning, many of these brain areas are involved in triggering Pavlovian
conditioned responses. The central nucleus of the amygdala projects to lateral hypothalamic and
brainstem nuclei involved in implementing conditioned autonomic reflexes (LeDoux et al. 1988).
The ventral striatum sends projections via the globus pallidus to motor nuclei in the brainstem,
such as the pedunculopontine nucleus (Groenewegen & Berendse 1994, Winn et al. 1997). This
projection pattern is compatible with a possible role for the ventral striatum in triggering condi-
tioned skeletomotor reflexes, such as approach and avoidance behavior, as well as consummatory
responses. As we discuss in the section Action Valuation and Planning, the output of this network
of brain areas is also taken into consideration by a separate network of brain areas when organisms
have to choose among different actions in order to gain a desired outcome. First, we explore in
greater detail the representations and signals carried by some of these areas.

Value signals have been found in both the OFC and the vmPFC. Electrophysiological record-
ings in area 13 of the central OFC of nonhuman primates revealed that neurons in this area encode
the value of differing amounts of juice on offer (Padoa-Schioppa & Assad 2006). The activity of
some of these neurons correlated with the subjective value of each of the two outcomes on offer,
whereas other neurons correlated with the subjective value of the outcome that was ultimately
chosen. Rodent studies have found similar results, with value signals associated with expected
delivery of an outcome being present in the rodent OFC (McDannald et al. 2011, Schoenbaum
et al. 1998). Other neurophysiological studies of monkeys have reported neuronal responses cor-
relating with the value of prospective outcomes throughout the OFC and in other brain regions,
including the lateral prefrontal and anterior cingulate cortices (Lee et al. 2007, Seo et al. 2007,
Smith et al. 2010, Wallis & Miller 2003). Interestingly, neurons in the lateral prefrontal cortex
have been found to respond in a manner consistent with the outcome value associated with novel
stimuli whose value must be inferred from the outcome of the previous trial, suggesting that these
value representations are sensitive to higher-order task structure (Pan et al. 2014). The human
vmPFC seems to encode similar representations. Activity in the vmPFC was found to corre-
late with trial-by-trial variations in the amount participants were willing to pay (WTP) for offered
goods (Plassmann et al. 2007). A follow-up experiment comparing value representations for foods,
which participants would pay to obtain or avoid, revealed vmPFC activity proportional to the value
of goods with positive values and decreasing activity scaling with negative values (Plassmann et al.
2010).

Organisms are forced to choose not only among rewards of varying probability and magnitude
but also among rewards that differ in type. Organisms may cope with this issue by representing and
comparing outcome values in a common currency. Indeed, activity in overlapping regions of the
vmPFC correlated with the subjective value of three distinct categories of goods in a WTP task:
food items, nonfood consumer items, and money (Chib et al. 2009). Levy & Glimcher (2012) found
evidence for a common currency in the vmPFC by giving participants explicit choices between
different types of goods, specifically money versus food, and by demonstrating that activation
levels scaled according to the common currency value for both types of good. Although these
findings are consistent with the notion of a common currency, they could also be the result of
averaging nonoverlapping value representations across individual subjects if there is sufficient
spatial variance in these representations among individuals. Using a paradigm similar to that of
Chib et al. (2009), McNamee et al. (2013) probed for distributed voxel patterns encoding outcome
value and category by training multivariate pattern classifiers on each type of good. A circumscribed
region of the vmPFC above the orbital surface was found to exhibit a general value code whereby a
classifier trained on the value of one class of goods (e.g., foods) could successfully decode the value
of goods from a different category (e.g., consumer goods). In addition to general value codes,
value codes specific to particular categories of good were also found along the medial orbital
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surface, a finding that is consistent with the idea that these regions represent value in a preliminary
category-specific form that is then converted into a common currency in more dorsal parts of the
vmPFC. Interestingly, no region was found to uniquely encode the distributed value of monetary
items, which were only found to be represented in the vmPFC, perhaps because money is a
generalized reinforcer that can be exchanged for many different types of goods.

Taken together, these findings support the existence of a common currency in the vmPFC in
which the value of various outcomes are proportionally scaled in accordance with subjective value
irrespective of the category from which they are drawn. In the following section, we consider how
other information relevant to model-based computations is encoded.

Outcome Valuation After a Decision Has Been Made

In addition to evaluating outcomes while forming a decision, an organism also has to evaluate an
outcome once it has been received. Extensive evidence implicates the vmPFC and adjacent parts
of the OFC in the response to experienced outcomes, including monetary rewards (Knutson et al.
2001, O’Doherty et al. 2001, Smith et al. 2010); taste, odor, and flavor (de Araujo et al. 2003a,b;
Rolls et al. 2003); attractive faces (O’Doherty et al. 2003a); and the aesthetic value of abstract
art (Kirk et al. 2009). These outcome representations are also strongly influenced by changes in
underlying motivational states. The vmPFC and OFC show decreasing responses to food, odor, or
even water outcomes as motivational states change from hungry or thirsty to satiated, paralleling
changes in the subjective pleasantness of the stimulus (de Araujo et al. 2003a,b; O’Doherty et al.
2000; Rolls et al. 2003; Small et al. 2001). Not only are such representations modulated as a
function of changes in internal motivational state, but value-related activity in this region is also
influenced by cognitive factors, such as the provision of price information or even the mere use
of semantic labels (de Araujo et al. 2005, Plassmann et al. 2008). Thus, the online computation of
outcome values in the vmPFC and OFC is highly flexible and influenced by a variety of internal
and external factors.

Action Valuation and Planning

Once an organism has determined the value of different outcomes, it must often determine the
value of available actions based on how likely they are to lead to a desired outcome. To calculate
these so-called model-based action values, a decision-making agent must be armed with a cognitive
map that will enable the retrieval of probability distributions over the future states or outcomes
that can be attained. The model-free computation of action value, i.e., computation without any
consideration of state transitions or of which outcome might be achieved, is discussed in the section
Neurobiological Substrates of Model-Free Action Selection.

One strategy for calculating model-based action values involves iteration over states, actions,
and state transitions. Given that model-based action values depend on arithmetic computations
accounting for quantity and probability, brain systems traditionally associated with working mem-
ory, such as the lateral prefrontal cortex (Miller & Cohen 2001), as well as parts of the parietal
cortex implicated in numerical cognition (Platt & Glimcher 1999), are likely to be involved. It
therefore seems reasonable to hypothesize that regions of the frontal and parietal cortices play
a fundamental role in the computation of model-based action values. In a result that is at least
partly consistent with this possibility, Simon & Daw (2011) reported increasing activity in the
dorsolateral prefrontal and anterior cingulate cortices as a function of the depth of model-based
planning during a spatial navigation task. In addition, areas of the posterior parietal cortex are also
important in action planning. Distinct neuronal populations seem to be specialized for planning
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particular actions (such as saccades versus reaching movements), and these neurons appear to be
specifically involved in encoding action trajectories and representing the target state of the action
trajectories in both monkeys (Andersen et al. 1997, Cohen & Andersen 2002, MacKay 1992) and
humans (Desmurget et al. 1999).

In rodents, several studies have produced evidence for a distinct network of brain areas support-
ing goal-directed behavior. Evidence from these studies indicates that the prelimbic cortex, as well
as the dorsomedial striatum in the basal ganglia, to which the prelimbic cortex projects, are involved
in the acquisition of goal-directed responses. Studies in rodents show that lesions to these areas
impair action–outcome learning, rendering the rodent’s behavior permanently stimulus-driven
(Baker & Ragozzino 2014, Balleine & Dickinson 1998, Ragozzino et al. 2002, Yin et al. 2005).
Although the prelimbic cortex is involved in the initial acquisition of goal-directed learning, this
region does not appear to be essential for the expression of goal-directed actions after acquisition
(Ostlund & Balleine 2005). In contrast, the dorsomedial striatum appears to be necessary for both
acquisition and expression of goal-directed behavior (Yin et al. 2005).

Some researchers have argued that the rodent prelimbic cortex and dorsomedial striatum cor-
respond to the primate vmPFC and caudate nucleus, respectively (Balleine & O’Doherty 2009).
Indeed, in addition to representing the value of the different outcomes on offer (as discussed in
the previous section), activity in the vmPFC also tracks instrumental contingencies, i.e., the causal
relationship between an action and an outcome, sensitivity to which has also been shown to be asso-
ciated with goal-directed control in rodent studies (Liljeholm et al. 2011, Matsumoto et al. 2003).
Contingency manipulations have also implicated the caudate nucleus in goal-directed behavior
in nonhuman primates (Hikosaka et al. 1989) and humans (Liljeholm et al. 2011). Furthermore,
activity in the vmPFC has been found to track the current incentive value of an instrumental
action such that, following devaluation, activity decreases for an action associated with a devalued
outcome relative to an action associated with a still-valued outcome (de Wit et al. 2009, Valentin
et al. 2007). Interestingly, the strength of the connection between the vmPFC and dorsomedial
striatum as measured with diffusion tensor imaging has been shown to correlate with the degree
of goal-directed behavioral expression across individuals (de Wit et al. 2012).

Once action values have been computed, they can be compared at decision points. Although
several studies have reported evidence for prechoice action values, few studies have determined
whether or not such action-value representations are computed in a model-based or model-free
manner. Studies in rodents and monkeys report action-value signals in the dorsal striatum, as well
as in areas of the dorsal cortex, including the parietal and supplementary motor cortices (Kolb
et al. 1994, Lau & Glimcher 2008, Platt & Glimcher 1999, Samejima et al. 2005, Sohn & Lee
2007, Whitlock et al. 2012, Wilber et al. 2014). Human fMRI studies report evidence that putative
action-value signals are present in areas of the dorsal cortex, including the supplementary motor,
lateral parietal, and dorsolateral cortices (Hare et al. 2011, Morris et al. 2014, Wunderlich et al.
2009).

Little is known about how organisms integrate the range of variables that appear to influence
action selection. One candidate region for the site of this integration is the dorsomedial prefrontal
cortex. In monkeys, Hosokawa and colleagues (2013) found that some neurons in the anterior
cingulate cortex are involved in encoding an integrated value signal that summed over expected
costs and benefits for an action. Hunt et al. (2014) also implicated a region of the dorsomedial pre-
frontal cortex in encoding integrated action values. Together, these preliminary findings support
the possibility that action valuation involves an interaction between multiple brain systems and
that goal-value representations in the vmPFC are ultimately integrated with action information
in dorsal cortical regions to compute an overall action value.
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Neurobiological Substrates of Model-Free Action Selection

The canonical learning signal implicated in model-free value learning is the RPE, which is thought
to be encoded by the phasic activity of midbrain dopamine neurons (Schultz et al. 1997). Evidence
indicates that reward-related prediction errors also play a role in learning in humans. Numerous
fMRI studies have reported correlations between RPE signals from RL models and activity in
the striatum and midbrain nuclei known to contain dopaminergic neurons during Pavlovian and
instrumental learning paradigms (D’Ardenne et al. 2008, O’Doherty 2004, O’Doherty et al. 2003b,
Pauli et al. 2015, Wittmann et al. 2005).

Other evidence suggests that the dorsal striatum is critical for learning the stimulus–response
associations underlying habitual behavior. In rodents, lesions of the posterior dorsolateral striatum
have been found to render behavior permanently goal-directed such that, after overtraining, these
animals fail to express habits (Yin et al. 2004, 2006). Tricomi et al. (2009) demonstrated a link
between increasing activity in the human posterior striatum as a function of training and the
emergence of habitual control as assessed with a reinforcer devaluation test. Wunderlich et al.
(2012) reported that activity in this area correlated with the value of overtrained actions (which
might be expected to favor habitual control) compared to actions whose values had been acquired
more recently. Others have reported putative model-free value signals in the posterior putamen
(Horga et al. 2015).

The phasic activity of dopamine neurons is causally related to learning of instrumental actions
via dopamine-modulated plasticity in target areas of these neurons, such as the dorsolateral stria-
tum (Faure et al. 2005, Schoenbaum et al. 2013, Steinberg & Janak 2013). Human fMRI studies
of motor sequence learning have reported an increase in activity in the posterior dorsolateral
striatum as sequences become overlearned. For instance, participants who successfully learn to
perform instrumental actions for reward show significantly stronger prediction error signals in the
dorsal striatum than those who fail to learn instrumental actions (Schönberg et al. 2007), and the
administration of drugs that modulate dopamine function, such as L-3,4-dihydroxyphenylalanine
(L-DOPA) or dopaminergic antagonists, influences the strength of learning of instrumental associ-
ations accordingly (Frank et al. 2004). Other studies focusing on both model-based and model-free
value signals have also found evidence for model-free signals in the posterior putamen (Doll et al.
2015, Lee et al. 2014). However, model-free signals have also been reported across a number of
cortical areas (Lee et al. 2014). Moreover, differences in the strength of the connectivity between
the right posterolateral striatum and the premotor cortex across individuals is associated with dif-
ferences in the degree to which individuals show evidence of habitual behavior in a task in which
goal-directed and habitual responses are placed in conflict (de Wit et al. 2012).

Other Decision Variables: Effort and Uncertainty

One variable that is likely to play an important role during decision making is the amount of effort,
whether cognitive or physical, involved in performing a particular action. Clearly, all else being
equal, it is better to exert as little effort as possible, but occasions may arise in which effortful actions
yield disproportionately greater rewards. Although effort studies are scarce, there is evidence that
the effort associated with performing an action is represented in parts of the dorsomedial prefrontal
cortex alongside other areas such as the insular cortex (Prévost et al. 2010). Additional studies in
rodents suggest that the anterior cingulate cortex plays a critical role in effortful behavior (Hillman
& Bilkey 2012, Walton et al. 2009).

Two forms of uncertainty, expected and estimation uncertainty, may also be relevant factors at
the time of decision. The most pertinent form of expected uncertainty for decision making is risk,
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or the inherent stochasticity of the environment that remains even when the contingencies are
fully known. Expected uncertainty regarding different options is useful information to access at the
point of decision making because risk preference might vary over time depending on motivational
and other contextual factors. Studies have revealed activity correlating with expected uncertainty
in a number of cortical and subcortical brain regions, including the insular cortex, inferior frontal
gyrus, and dorsal striatum (Critchley et al. 2001, Huettel et al. 2006, Paulus et al. 2003, Yanike &
Ferrera 2014).

In contrast to risk, estimation uncertainty corresponds to uncertainty in the estimate of the
reward distribution associated with a particular action or state. For example, the first time an action
is sampled in a particular context, estimation uncertainty is high; it will decrease as that action is
repeated and the precision of the reward distribution’s estimate increases. Estimation uncertainty
can also be leveraged to balance the trade-off between exploration and exploitation by allowing
the agent to target actions that are relatively undersampled. Neural representations of estimation
uncertainty have been reported in the anterior cingulate cortex (Payzan-LeNestour et al. 2013),
and uncertainty signals (which may or may not correspond to estimation uncertainty) associated
with exploration have also been reported in the frontopolar cortex (Badre et al. 2012, Daw et al.
2006, Yoshida & Ishii 2006).

Model-Free and Model-Based Pavlovian Learning

In this section, we turn our attention to the computations that underpin acquisition and expression
of Pavlovian conditioned responses. As described in the section Neurobiological Substrates of
Model-Free Action Selection, model-free RL has been proposed as a mechanism to underpin
learning in at least appetitive Pavlovian conditioning. However, similar to the predictions in the
instrumental domain, a model-free RL account of Pavlovian conditioning would be expected to
produce conditioned responses that are devaluation insensitive. Nevertheless, many conditioned
Pavlovian responses are strongly devaluation sensitive (Dayan & Berridge 2014). This discrepancy
has led to suggestions that model-based learning mechanisms might also apply in the case of
Pavlovian conditioning (Dayan & Berridge 2014, Prévost et al. 2013).

We might expect such a system to depend on a cognitive model that maps the relationship
between different stimuli, that is, a model that encodes stimulus–stimulus association likelihoods.
One might expect the mechanism for model-based Pavlovian conditioning to be similar to that
involved in model-based instrumental control, with the exception that there is no need for the
model to represent action contingencies. Sensory preconditioning represents one piece of be-
havioral evidence in favor of the existence of a model-based Pavlovian learning mechanism that
depends on the formation of stimulus–stimulus associations. In sensory preconditioning, two cues
are repeatedly paired together in the absence of reward. Following this, one of the cues is paired
with reward. Rescorla (1980) found that, under these conditions, the cue that had not been paired
with reward also spontaneously elicited appetitive conditioned responses (Rescorla 1980).

This result raises the question of which brain areas are involved in encoding stimulus–stimulus
associations. The hippocampus and the OFC, which we have examined in the context of their role
in encoding a cognitive map, are strong candidates. Representations in these two brain regions are
perhaps not action dependent but do encode relationships between stimuli, as would be needed by
a model-based Pavlovian mechanism. Indeed, consistent with this proposal, both the hippocampus
and OFC are implicated in sensory preconditioning ( Jones et al. 2012, Holland & Bouton 1999,
Wimmer & Shohamy 2012). Researchers have also found that the amygdala encodes informa-
tion about context, stimulus identity, and reward expectation (Salzman & Fusi 2010). Moreover,
Prévost et al. (2013) used a Pavlovian reversal learning paradigm to provide evidence for expected
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value signals in the human amygdala that were better captured by a model-based algorithm than
by a number of model-free learning alternatives.

Two distinct forms of Pavlovian appetitive conditioning, sign tracking and goal tracking, can
be distinguished in rodents (Boakes 1977, Hearst & Jenkins 1974, Jenkins & Moore 1973). Sign-
tracking animals orient to the cue that predicts the subsequent reward, whereas goal-tracking
animals orient to the location where the outcome is delivered. A recent behavioral study has
revealed a correlation between the extent to which animals manifest sign-tracking behavior and
the extent to which these animals show evidence of devaluation insensitivity in their behavior,
suggesting that sign tracking may be a model-free conditioned response (Nasser et al. 2015).
Consistent with dopamine’s involvement in model-free Pavlovian conditioning, RPE signals in
the nucleus accumbens core have been associated with sign tracking. Animals selectively bred to
be predominantly sign trackers show phasic dopamine release in the nucleus accumbens, whereas
animals bred to be predominantly goal trackers do not show clear phasic dopaminergic activity
during learning (Flagel et al. 2007). Furthermore, a recent study has found evidence to suggest
that phasic dopaminergic activity associated with a conditioned stimulus may in fact be devaluation
insensitive, as would be predicted by a model-free algorithm. Specifically, rats were conditioned
to associate a cue with an aversive salt outcome. Following induction of a salt appetite, dopamine
neurons showed increased phasic activity following the receipt of the (now-valued) salt outcome,
consistent with model-based control. However, consistent with a model-free RL mechanism,
phasic responses to the cue predicting salt did not show any such increase until after the animal
had a chance to be exposed to the outcome, suggesting that dopamine activity in response to the
cue was not immediately updated to reflect the current value of the associated outcome (Cone et al.
2016). These findings suggest that in Pavlovian conditioning, dopaminergic prediction errors may
be involved in model-free but not model-based learning.

INTERACTION AMONG BEHAVIORAL CONTROL SYSTEMS

Having considered evidence regarding the existence of multiple control systems in the brain
and reviewed ideas and emerging evidence about the possible neural computations underpinning
each of these systems, we briefly consider in the following sections how these systems interact.
There is evidence to suggest that stimulus-driven, goal-directed, and noninstrumental systems may
sometimes interact in an adaptive manner whereby each system exerts complementary influences
on behavior in a manner beneficial for the agent. Alternatively, in some instances these systems
can interact in a maladaptive manner, leading to pernicious behavioral outcomes.

Interactions Between Goals and Habits

Habitual and goal-directed control systems may interact to provide a strategy that is both flexible
and cognitively efficient by supporting hierarchical decomposition of the task at hand. Building on
theoretical work demonstrating the computational benefits of encapsulating behavioral invariance
in the form of a selectable option (Sutton et al. 1999), studies have begun to probe whether the brain
leverages its varied control systems to implement a similar hierarchical decomposition (Botvinick
2012, Botvinick et al. 2009). Evidence from human fMRI studies shows that higher levels of
abstraction progressively engage more anterior regions of frontal cortex, suggesting a hierarchical
organization of abstraction along a rostral–caudal axis (Badre & D’Esposito 2007, Donoso et al.
2014, Koechlin et al. 2003). Other studies have reported signals consistent with hierarchical event
structuring (Schapiro et al. 2013) and prediction errors (Diuk et al. 2013, Ribas-Fernandes et al.
2011). Although the most common depiction of hierarchical control positions the habitual system
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as subservient to the goal-directed system (Dezfouli & Balleine 2013), other work suggests that
the goal-directed system can also be deployed in the service of a habitually selected goal (Cushman
& Morris 2015).

The brain’s multiple control systems may also facilitate learning. Situations in which control is
assigned to the goal-directed system in the early stages of behavioral acquisition may be examples
of adaptive interactions between systems. Once the problem space has been sufficiently sampled,
behavioral control transitions to the habitual system, thereby freeing up cognitive resources that
would otherwise be allocated to the goal-directed system. The complementary nature of the
interactions between these systems is such that, even though the goal-directed system is in the
driving seat during early learning, the habitual system is given the opportunity to learn a model-free
policy because it is exposed to the relevant stimulus associations.

However, there is a downside to this training interaction. Once behavior is under the control
of the habitual system, it may guide the agent toward an unfavorable course of action under cir-
cumstances in which environmental contingencies have shifted or the agent’s goals have changed.
Alternatively, errors in goal-directed representations may inculcate inappropriate biases into the
stimulus-driven system’s learned values (Doll et al. 2011). Numerous examples of maladaptive
interactions exist in the realm of psychiatric disease. For instance, habits for abuse of a drug may
persist even if the goal of the individual is to stop taking the drug (Everitt & Robbins 2016).
Overeating or compulsive behaviors may also be examples of the habitual system exerting inap-
propriate and ultimately detrimental control over behavior (Voon et al. 2015). The capacity to
effectively manage conflicting policy suggestions by the goal-directed and habitual systems likely
varies across individuals and may even relate to underlying differences in the neural circuitry,
perhaps indicative of differing levels of vulnerability to the emergence of compulsive behavior
(de Wit et al. 2012).

Interactions with Pavlovian Predictions

The Pavlovian system can also interact with systems involved in instrumental behavior, a class of
interactions referred to as Pavlovian-to-instrumental transfer (PIT) (Lovibond 1983). PIT effects
are typically manifested as increased instrumental response vigor in the presence of a reward
predicting a Pavlovian conditioned stimulus (Estes 1943). One can make a distinction between
general and specific PIT. General PIT refers to circumstances in which a Pavlovian cue motivates
increased instrumental responding irrespective of the outcome associated with the Pavlovian cue.
Conversely, outcome-specific PIT effects modulate responding when both the Pavlovian cue and
instrumental action are associated with the same outcome (Corbit & Balleine 2005, Holland &
Gallagher 2003, Rescorla & Solomon 1967).

In a normative relationship between incentives and instrumental response, the provision of
higher incentives should result in increased effort and response accuracy, thereby enabling more
effective action implementation. However, Pavlovian effects on instrumental responding can also
promote maladaptive behavior in circumstances in which PIT effects continue to exert an ener-
gizing effect on instrumental actions associated with a devalued outcome (Holland 2004, Watson
et al. 2014; although see Allman et al. 2010). This suggests that PIT effects selectively involve the
habitual system. Thus, Pavlovian cues may intervene in the interplay between goals and habits by
actively biasing behavioral control toward the habitual system.

Furthermore, under certain circumstances, increased incentives can paradoxically result in
less-efficacious instrumental performance, an effect known as choking that has been linked to
dopaminergic regions of the midbrain (Chib et al. 2014, Mobbs et al. 2009, Zedelius et al. 2011).
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For example, Ariely et al. (2009) offered participants in rural India the prospect of winning large
monetary amounts relative to their average monthly salaries. Compared to a group offered smaller
incentive amounts, the performance of the high-incentive group was much impaired, suggesting
the counterintuitive effect of reduced performance in a situation in which the motivation to succeed
is high. Numerous theories have been proposed to account for choking effects, reflecting various
possible forms of interactions between different control systems. One theory is that choking effects
reflect a maladaptive return of behavioral control to the goal-directed system in the face of large
potential incentives in a situation in which the habitual system is better placed to reliably execute
a skilled behavior. Although some results support this hypothesis (Lee & Grafton 2015), others
support an alternative account whereby Pavlovian effects elicited by cues could engage Pavlovian
skeletomotor behaviors, such as appetitive approach or aversive withdrawal, that interfere with
the performance of the habitual skilled motor behavior (Chib et al. 2012, 2014). More than one
of these ideas could hold true, as behavioral choking effects may have multiple causes arising from
maladaptive interactions between these systems.

Arbitration Between Behavioral Control Mechanisms

The presence of distinct control systems burdens the brain with the problem of how to apportion
control among them. An influential hypothesis is that there exists an arbitrator that determines
the influence each system has over behavior based on a number of criteria (Daw et al. 2005). One
important factor in this hypothesis is the relative accuracy of the systems’ predictions concerning
which action should be selected; all else being equal, behavior should be controlled by the system
with the most accurate prediction (Daw et al. 2005). Using the computational distinction between
model-based and model-free RL, Lee et al. (2014) found evidence for the existence of an arbitration
processes in the ventrolateral prefrontal cortex and frontopolar cortex that assigns behavioral
control as a function of system reliability. Connectivity between the arbitration areas and the
regions of the brain encoding habitual but not goal-directed action values was also found to be
modulated as a function of the arbitration process. Consistent with a default model-free strategy,
it is better to delegate control to the more-efficient stimulus-driven system; however, when the
arbitration system detects that a goal-directed policy is warranted, then it may achieve this through
active inhibition of the habitual system, leaving the model-based system free to control behavior.
In addition to predictive accuracy, other relevant variables include the amount of cognitive effort
required (FitzGerald et al. 2014) and the potential benefits that can be accrued by implementing
a model-based strategy (Pezzulo et al. 2013, Shenhav et al. 2013).

Much less is known about how arbitration occurs between Pavlovian and instrumental systems.
Changes in cognitive strategies or appraisal implemented via the prefrontal cortex can influence
the likelihood of both aversive and appetitive Pavlovian conditioned responses, perhaps via down-
regulation of the amygdala and ventral striatum (Delgado et al. 2008a,b; Staudinger et al. 2009).
This type of top-down process could be viewed as a form of arbitration, in which Pavlovian control
policies are downweighted in situations in which goal-directed control is deemed to be more ben-
eficial. However, the nature of the computations mediating this putative arbitration process is not
well understood. Clearly, given that Pavlovian behaviors are often advantageous in time-critical
situations when the animal’s survival may be at stake, it would be reasonable for at least certain
types of Pavlovian predictions to have immediate access to behavior without having to wait for the
arbitration process to mediate. Therefore, it seems plausible to expect that, perhaps as with the
habitual system, arbitration operates only to inhibit Pavlovian behavior when it is deemed to be
inappropriate or irrelevant. One might also predict that any such arbitration process would happen
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at a slower timescale relative to the more rapid response time available to the Pavlovian system.
Therefore, traces of initial Pavlovian control might become manifest in behavior even in situations
in which the arbitration system subsequently implements an inhibition of the Pavlovian system.

Neural Systems for Learning and Inference in a Social Context

Thus far, we have considered the involvement of multiple systems in controlling reward-related
behavior but have given scant attention to the type of behavioral context in which these systems
are engaged. A particularly challenging problem faced by humans and many other animals is the
need to learn from and ultimately behave adaptively to conspecifics. Succinctly put, the problem
is working out how to conduct oneself in social situations. A full consideration of this issue is
beyond the scope of this review. However, we can briefly consider the question of whether value-
based action selection in social contexts depends on similar or distinct control systems and neural
circuitry as those involved in value-based action selection in nonsocial contexts.

One of the simplest ways to extend the framework we have discussed to the social domain is
to apply this framework to the mechanisms underlying observational learning, which allow an
agent to learn about the value of stimuli or actions not through direct experience but instead
through observing the behavior of another agent. Several studies have revealed the engagement
of brain regions including the ventral and dorsal striata and the vmPFC in observational learning
(Burke et al. 2010, Cooper et al. 2012). For example, Cooper et al. (2012) found evidence for
prediction error signals in the striatum when participants were learning about the value of actions
through observing another agent. These preliminary findings suggest that, at least for some forms
of observational learning, the brain relies on similar neural mechanisms and circuitry for learning
through observation as it does when learning through direct experience. There is also evidence to
suggest that, during a number of social situations in which it is necessary to learn from the actions
being taken by others, the brain may rely on similar circuitry and updating signals as those known
to be involved in model-based RL (Abe & Lee 2011, Liljeholm et al. 2012, Seo et al. 2009).

However, in some social situations, the brain may engage additional circuitry that has been
implicated in mentalizing or theory of mind (Frith & Frith 2003, 2006). For instance, Hampton
et al. (2008) found that when participants engage in a competitive game against a dynamic oppo-
nent, activity in the posterior superior temporal sulcus and dorsomedial prefrontal cortex is related
to the updating of a higher-order inference about the strategic intentions of that opponent. Re-
latedly, Behrens et al. (2008) examined a situation in which it was useful for participants to learn
about the reliability of a confederate’s recommendations about what actions to take because the
confederate’s interests sometimes lay in deceiving the subject. Neural activity corresponding to an
update signal for such an estimate was found in the anterior medial prefrontal cortex, as well as in
a region of the temporoparietal junction. Similarly, Boorman et al. (2013a,b) found evidence for
updating signals related to learning about another individual’s expertise on a financial investment
task in the temporoparietal junction and dorsomedial frontal cortex. Suzuki et al. (2015) found
evidence for the representation of beliefs about the likely future actions of a group of individuals
in the posterior superior temporal sulcus and, moreover, found that this activity was specifically
engaged when performing in a social as compared to a nonsocial context.

Taken together, these findings suggest that, although learning and making decisions in a social
context often depends on similar brain circuitry as that used when learning in nonsocial contexts,
additional distinct circuitry is deployed to facilitate socially relevant tasks, such as inferring the
internal mental states of others, when knowledge about relevant features of another agent is
necessary.
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CONCLUSIONS AND FUTURE DIRECTIONS

Although much remains to be explored, the past few decades have brought considerable advances
in our understanding of the neural and computational mechanisms underlying learning, reward,
and decision making. Merging formal work in computational intelligence and empirical research in
cognitive neuroscience has allowed considerable headway not only in understanding the algorithms
embodied by the brain but also in illuminating how the brain navigates the trade-offs between
different strategies for controlling reward-related behavior. Long-standing theoretical arguments
as to whether behavior is habitual or goal-directed have been assuaged by demonstrations that
the brain has maintained multiple strategies for behavioral control, each offering advantages and
disadvantages that may be leveraged across a range of potential circumstances.

As a result of these advances, new unresolved issues have emerged. In this article, we have
reviewed evidence from both animal and human studies indicating that a goal-directed (model-
based) system guides behavior in some circumstances but that other situations favor a habitual
(model-free) strategy. Factors such as task familiarity, task complexity, and reward contingencies
may influence the trade-off between these two systems; however, work remains to be done re-
garding other variables that might influence how various strategies are deployed. Factors such
as incentives (the benefits of favoring one strategy over another), cognitive capacities (the brain’s
awareness of its own limitations), and social context may play a role in system deployment. Whether
or not Pavlovian drives factor into the arbitration scheme used to determine behavioral control
also remains unknown.

Furthermore, we understand little regarding the mechanisms through which system arbitration
is instantiated. We have presented evidence suggesting that the brain adopts a computationally
efficient model-free strategy by default but that this can be interrupted by a more flexible goal-
directed strategy if needed. However, this evidence raises the question of what the model-based
system is doing when it is not favored for control: Is the model-based system passively working
in the background, waiting to be called back into activity, or has it moved offline to conserve
resources? If the latter, how is it brought back online in a sensible way? We must also ask what
the model-free system is doing when the model-based system takes control. There is evidence
to suggest that the model-based system can shape the model-free system’s value representations,
but we know very little about this relationship. Does the model-free system passively learn about
choices and experiences governed by the model-based system, or can the model-based system
tutor the model-free system more directly and, if so, how might this be operationalized?

The bulk of our discussion has focused on behavioral control with respect to what can be labeled
as exploitive action selection: identifying and moving toward the most rewarding options in the
environment. However, this is only one half of what is commonly referred to as the explore/exploit
trade-off. Almost nothing is known about the role played by the brain’s varied control systems with
respect to exploration. Given the exploitive advantages that come with having multiple control
strategies, some of which we have outlined in this review, at one’s disposal, are similar benefits
offered to the domain of exploration? Does the brain take advantage of the computational efficien-
cies offered by the model-free system to direct exploration, or does the novelty and complexity
inherent to exploration demand a model-based strategy? Perhaps multiple strategies are deployed
in a collaborative fashion to tackle the many facets of exploration in an efficient way. Issues per-
tinent to the brain’s engagement with exploratory decision making are ripe for both theoretical
and experimental research.

Finally, we briefly touched upon the role played by the brain’s control systems in a social
context. However, the nature of these additional learning and inference signals and how they
interact with other control systems is not yet fully understood. Value signals in the vmPFC
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and anterior cingulate cortex do reflect knowledge of strategic information, and the information
needed to modify the value signals to reflect this knowledge appears to arrive via inputs from the
mentalizing network (Hampton et al. 2008, Suzuki et al. 2015). Whether these mentalizing-related
computations can be considered a fourth system for guiding behavior or, instead, a module that
provides input into the model-based system is an open question. Moreover, how the brain decides
when or whether the mentalizing system should be engaged in a particular situation is currently
unknown, although it is tempting to speculate that an arbitration process may play a role.

This, of course, is only a small sample of many questions the field of decision neuroscience
is poised to tackle. Although pursuit of these issues will deepen our basic understanding of the
brain’s functional architecture, of equal importance will be our ability to apply these concepts
toward our understanding of cognitive impairments and mental illness (Huys et al. 2016, Maia
& Frank 2011, Montague et al. 2012). Despite many advances and huge incentives, and perhaps
in testament to the complexity of the problem, reliable and effective treatments are scarce. By
building on a functional understanding of the brain’s learning and control strategies, their points
of interaction, and the mechanisms by which they manifest, novel treatments (whether behavioral,
chemical, or mechanistic) may be able to help millions of people lead more fulfilling lives.
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Faure A, Haberland U, Condé F, Massioui NE. 2005. Lesion to the nigrostriatal dopamine system disrupts

stimulus-response habit formation. J. Neurosci. 25(11):2771–80
FitzGerald THB, Dolan RJ, Friston KJ. 2014. Model averaging, optimal inference, and habit formation. Front.

Hum. Neurosci. 8:457
Flagel SB, Watson SJ, Robinson TE, Akil H. 2007. Individual differences in the propensity to approach

signals versus goals promote different adaptations in the dopamine system of rats. Psychopharmacol. Berl.
191(3):599–607

Frank MJ, Seeberger LC, O’Reilly RC. 2004. By carrot or by stick: cognitive RL in parkinsonism. Science
306(5703):1940–43

Freedman DJ, Assad JA. 2006. Experience-dependent representation of visual categories in parietal cortex.
Nature 443(7107):85–88

94 O’Doherty · Cockburn · Pauli



PS68CH04-ODoherty ARI 4 November 2016 10:27

Frith CD, Frith U. 2006. The neural basis of mentalizing. Neuron 50(4):531–34
Frith U, Frith CD. 2003. Development and neurophysiology of mentalizing. Philos. Trans. R. Soc. Lond. B Biol.

Sci. 358(1431):459–73
Gigerenzer G, Gaissmaier W. 2011. Heuristic decision making. Annu. Rev. Psychol. 62(1):451–82
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