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Abstract

Researchers apply sampling weights to take account of unequal sample se-
lection probabilities and to frame coverage errors and nonresponses. If re-
searchers do not weight when appropriate, they risk having biased estimates.
Alternatively, when they unnecessarily apply weights, they can create an in-
efficient estimator without reducing bias. Yet in practice researchers rarely
test the necessity of weighting and are sometimes guided more by the cur-
rent practice in their field than by scientific evidence. In addition, statistical
tests for weighting are not widely known or available. This article reviews
empirical tests to determine whether weighted analyses are justified. We fo-
cus on regression models, though the review’s implications extend beyond
regression. We find that nearly all weighting tests fall into two categories:
difference in coefficients tests and weight association tests. We describe the
distinguishing features of each category, present their properties, and explain
the close relationship between them. We review the simulation evidence on
their sampling properties in finite samples. Finally, we highlight the unan-
swered theoretical and practical questions that surround these tests and that
deserve further research.
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1. INTRODUCTION

Social, health, and federal statistics scientists analyze survey data. Survey data typically arise from
complex sample designs involving unequal probability sampling of population units, rather than
simple random sampling and other equal probability of selection method (EPSEM) designs. Survey
weights that are proportional to the inverse selection probabilities adjust for departures from
EPSEM sampling. Survey statisticians may further adjust these selection weights to account for
unit nonresponse, frame coverage errors, and other sources of sampling bias. Pfeffermann (1996),
Biemer & Christ (2008), and Valliant et al. (2013) provide overviews of the methodologies and
issues in survey weighting.

Survey weights are typically essential to avoid bias when estimating population means or pro-
portions for variables as part of a descriptive analysis. However, whether researchers should use
survey weights for modeling the relationships between explanatory and dependent variables has
been debated in the literature since the early 1950s (e.g., Klein & Morgan 1951, Horvitz &
Thompson 1952, Holt et al. 1980). A serious disadvantage of using survey weights unnecessarily
is that they can substantially inflate the variance of the model parameter estimates, even when
the unweighted analysis produces essentially the same estimates. In that case, efficiency of the
estimators and statistical power are improved by not using weights.

Another concern about using weights is anchored more to privacy concerns than to statisti-
cal considerations (e.g., Fienberg 2009). Some have argued that releasing weights might provide
sufficient information to permit deductive disclosure of respondents’ identities, or sensitive in-
formation about them. In this situation, in deciding whether to release weights, data producers
should consider whether weights are needed for unbiased inferences.

In our experience and in examining what is done in practice, we find that one group, mostly
from biostatistics, public health, and survey methods traditions, generally uses weights. Another
group, mostly from the social sciences (including econometrics), generally does not use weights.
A third, smaller group estimates both weighted and unweighted analyses and performs informal
ad hoc comparisons of the coefficients to reach a decision on weighting the analysis. The informal
comparison consists of a subjective assessment of whether the coefficients differ significantly be-
tween the weighted and unweighted analyses. All these practices seem rooted in tradition rather
than analytic results.

Although the question of whether to use weights applies more generally to the analysis of data
from complex surveys, our focus here is on methods for testing whether survey weights are needed
in a regression analysis, which is perhaps the most widely used statistical model in the social and
behavioral sciences. Regression models are a useful point for the discussion in that they provide
the arena in which most of the debate between weighted and unweighted analysis occurs. In the
conclusion, we mention several references that consider weighting in regression with categorical
dependent variables. Our article has four purposes: (a) to review the major diagnostic tests of the
necessity for weighting, (b) to examine the assumptions and properties of these tests as documented
in the literature, (c) to develop a framework to unite this seemingly diverse set of diagnostic tests
under many fewer categories, and (d ) to identify gaps in the literature where additional research
is required. The article also lays the foundation for the study of other types of models, especially
those that are closely related to regression models.

Interestingly, the literature on weighting tests often ignores possible effects of cluster sampling
on the estimates, opting to focus primarily on unclustered, unequal probability sampling. We have
done the same to simplify the exposition of the results and to remain consistent with the literature
we have reviewed. Introducing clustering does little to illuminate the issues of weighting that are
of primary interest in this article, but adds considerable complexity to the variance estimation
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formulas. Thus, the above four purposes of the article can be addressed more clearly and succinctly
by limiting the discussion to unclustered data. In addition, nearly all the material here applies
more generally to the question of which of two or more sets of weights to use rather than whether
to ignore the weights altogether. The latter question is just a special case in which one of the sets
contains equal weights. This generalization is important. For instance, Asparouhov & Muthén
(2007) compared two sets of weights: trimmed (or Winsorized) and untrimmed. Similarly,
adjusting weights for nonresponse may be important for national estimates but not important in
some modeling contexts. Comparing the two sets of weights addresses this question empirically.

Also, aspects of the “to weight or not to weight” decision may not be fully transparent to
analysts. This is particularly true for survey datasets in which design variables are not released by
agencies, which may be done for reasons such as protecting confidentiality (Fienberg 2009). In this
case, analysts may treat weights in the modeling as surrogates for the unreleased design variables.
For instance, in health data, if there is stratification by geography but geographic identifiers are
not in, or are coarsened in, the released data, the geographic information may still be reflected
in weights. The agency, with access to the full data, may determine that weights are not required
to model an outcome of interest, whereas an analyst may conclude that they are. This is not a
contradiction but simply a reflection of the fact that “the data” means different things to different
people. The same phenomenon can arise if the released data have been subjected to statistical
disclosure limitation, which, because it attenuates structure in the data, may reduce the role of
weights (Cox et al. 2011, Fienberg 2009).

Sections 2 and 3 briefly describe the components of survey weights and the model-based and
design-based perspectives on survey data that have shaped the views of weighting. Section 4 reviews
and classifies many of the major tests of whether to weight. It also discusses the special case of
testing when only a subset of coefficients is of interest. Section 5 provides a comparison of the tests
and reviews studies that have investigated the statistical properties of the tests. Finally, Section 6
concludes with research questions, the answers to which will increase the practical usefulness of
these diagnostic tests.

2. COMPONENTS OF SURVEY WEIGHTS

Before proceeding, we briefly consider the components of survey weights. A more complete
discussion can be found in Biemer & Christ (2008). The construction of the survey weight begins
with the selection weight, which is then adjusted to compensate for frame coverage errors and
nonresponse. To see how this works, let P denote the target population, F denote the units in
the target population that are on the sampling frame, S denote the units selected from the frame
for the sample, and R denote the units in S that respond to the survey. Note that, in general,
R ⊆ S ⊆ F ⊆ P . Suppose S constitutes a random sample of n persons selected with known
selection probabilities, πSi = Pr(i ∈ S), i = 1, . . . , n. In the case of full response (i.e., R = S)
and no frame coverage errors (i.e., F = P), the classic Horvitz-Thompson (HT) estimator of the
population total, Y, is given as Ŷ = ∑

i∈S
wSi yi , where wSi = π−1

Si (Horvitz & Thompson 1952).

Thus, the HT estimator gives rise to the survey weights not only for estimating totals and other
descriptive statistics, but also for modeling.

In the presence of nonresponse (R ⊂ S ) and undercoverage (F ⊂ P ), the HT estimator can be
generalized (see, for example, Kalsbeek & Agans 2007) by replacing wSi with wi = (πi )−1, where
πi = Pr(i ∈ F, i ∈ S, i ∈ R). Note that πi can be rewritten as

πi = Pr(i ∈ F ) × Pr(i ∈ S|i ∈ F ) × Pr(i ∈ R|i ∈ F, i ∈ S) = πFiπSiπRi ,
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where πFi = Pr(i ∈ F ), πSi = Pr(i ∈ S|i ∈ F ), and πRi = Pr(i ∈ R|i ∈ F, i ∈ S) with
inverses wFi , wSi , and wRi , respectively. Thus, the survey weight is the product of three weights:
wi = wFiwSiwRi . The component wSi is referred to as the base or selection weight because it is
the starting point for weight construction and derives from the survey design. The other weight
components are essentially regarded as adjustments to this weight. One complication is that only
wSi is known; however, both wFi and wRi can be estimated. How exactly to do this is beyond the
scope of this review, but numerous articles in survey statistics discuss their estimation (see, for
example, Lohr 2010 or Valliant et al. 2013).

3. PERSPECTIVES ON POPULATIONS

One source of confusion that surrounds weighting is that there are at least two different perspectives
on the nature of the population to which inferences are being made (e.g., see Sterba 2009). A
common way to draw the distinction is to refer to one as the infinite population (or model-based)
perspective and the other as the finite population (or design-based) perspective. In addition, within
the model-based perspective there are two approaches: one based on a superpopulation of values of
y from which the population of y-values is drawn and another based on Bayesian survey inference
(see, for example, Little 2009), which adds the specification of a prior distribution for the values
of y in the superpopulation. Although large-sample inferences for these two approaches are often
similar, the Bayesian approach has some advantages in small samples (Little 2009). Nevertheless,
in our review, we found no papers on weighting tests under the Bayesian survey inference approach
and thus it is not considered here. Hence, in this section we describe the assumptions made about
the regression equation when using the superpopulation (model-based) and finite population
perspectives, starting with the former approach.

3.1. Model-Based Inference

Consider the regression equation

Y = Xβ + ε, (1)

where Y is the n × 1 vector of values of a dependent variable, X is the n × k matrix of values of the
explanatory variables with the first column of ones for the regression constant, β is a k × 1 vector
of regression coefficients, and ε is the n × 1 vector of values of the disturbances or error variable.
ε is the collection of all variables other than those in X that influence Y.

In model-based inference, we make several assumptions about the error. We assume that it is
a random variable with certain properties:

A. E(ε) = 0;

B. E(ε′ε) = σ 2 I ;

C. ε⊥X.

Assumption A is that all the omitted influences have a mean of zero when combined. Assumption B
is that the variance of the error (σ 2) is the same for all cases and that the errors of different cases are
uncorrelated. In other words, Assumption B represents homoscedasticity and no autocorrelation
of the error variable. Assumption C is that the error variable (ε) is distributed independently (⊥)
of the explanatory variables (X).
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To these assumptions we add another,

D. rank(X ) = k,

which means that there are no linear dependencies (perfect collinearity) among the explanatory
variables. Under these assumptions, the ordinary least squares (OLS) estimator of β, say β̂, is
unbiased [E(β̂) = β] and is consistent [plim(β̂) = β], and the variance of the OLS estimator β̂ is
σ 2(X′ X)−1.

Several points bear emphasis. One is that ε is a random variable, and this is one feature of
the model that contributes to Y being a random variable. Note that, as presented above, the
explanatory variables X are also random variables, though we make few assumptions about them
other than that they are independent of the error and the matrix has full rank.

Variations on the above assumptions are sometimes used for model-based inferences; thus, the
above should not be considered the only assumptions that might occur with this perspective. For
instance, some researchers would replace Assumption C [ε ⊥ X] with the weaker assumption that
they are uncorrelated (C′), Cov(ε′, X) = 0.

The consistency of the OLS β̂ persists, but we can no longer establish that it is unbiased
[E(β̂) = β] in finite samples, though it would be asymptotically unbiased [AE(β̂) = β]. In addition,
we could relax the homoscedasticity assumptions, but we would need to make adjustments to our
estimator of the variance of β̂.1

With these qualifications and alternative assumptions in mind, a key idea about the multiple
regression equation from the model-based inference is that there is no assumption of a finite
population to which inferences are being made. An infinite population is the target of inference.
The sampling variability results from the use of a random error and, in many cases, the random
explanatory variables that make the dependent variable a random variable. One or more of the
preceding properties of OLS fail when one or more of the preceding assumptions fail.

3.2. Design-Based Inference

For design-based inference, we consider the finite population model defined for the population
U, where there are N cases in the finite population. The finite population regression is

Y N = XN B + EN, (2)

where Y N is an N ×1 vector, XN is a N ×k matrix of explanatory variables with the first column
of ones for the regression constants, B is the k × 1 corresponding vector of coefficients, and EN

is the N × 1 vector of errors.
The finite population formula for OLS regression coefficients is

B = (X′
N XN)−1 X′

NY N,

with residuals defined by

EN = Y N − XN B.

1Another way to frame this problem is to consider maximum likelihood estimation of the multiple regression, which assumes
a normal distribution of the disturbance term, and to consider the weights informative. Our estimation approach does not
require the assumption of normality. In addition, if the weights are informative, then the key assumption that the error is
independent of or uncorrelated with X is violated.
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By construction, EN has the following properties:

1′ EN = 0

and

X′
N EN = 0.

In other words, the population total of the regression residuals is zero and the population cross-
product of the explanatory variables and residuals is also zero.

For estimability, we require that

rank(XN) = k.

If it were rank deficient, we could not apply OLS because X′
N XN would not have an inverse.

Suppose a sample, S, of n units is drawn from U and let Pi denote the probability that the ith
population unit is selected, for i = 1, . . . , N. Further assume that Pr(i ∈ S, i ′ ∈ S | i, i ′ ∈ U ) =
Pr(i ∈ S | i ∈ U )Pr(i ′ ∈ S | i ′ ∈ U ) = Pi Pi ′ for i �= i′; that is, sampling proceeds independently at
each draw. A design-consistent estimator of B is

B̂W = (X′
nWXn)−1 X′

nWYn,

where Yn is an n × 1 vector of sample Y values, Xn is a n × k matrix of explanatory variables with
the first column of ones for the regression constants, and B̂W is the k × 1 vector of estimated
regression coefficients. W is the n × n diagonal matrix with w j on the jth diagonal and

w j = P−1
i for j = i, j ∈ S, i ∈ U .

Pfeffermann & Sverchkov (2009) show that B̂ = (X′
nXn)−1 X′

nYn will also be a consistent estimator
of B if and only if

CovS(w j , y j | x j ) = 0 (3)

for all j ∈ S or, equivalently, if

ES(w j | y j , x j ) = ES(w j | x j ),

where x j is the vector of explanatory variables for the jth sample unit and ES(•) is the expectation
over all possible samples of size n selected with probabilities Pi for i = 1, . . . , N.

3.3. Model-Based Inference and Weighting

We can combine the model-based and design-based perspectives if we regard the finite population
of the design-based perspective as a simple random sample of size N from the infinite population
described in the model-based perspective. Let EP(•) denote the joint expectation of this hypothet-
ical sampling mechanism as well as the distribution of the error term, ε in Equation 1, and let ES(•)
denote the expectation with respect to the sampling from the finite population. Pfeffermann &
Sverchkov (2009) show that the result in Equation 3 can be extended to include this perspective
in that B̂ = (X′

nXn)−1 X′
nYn is now a consistent estimator of β in Equation 1 if

Cov(w j , y j | x j ) = 0 (4)

or, equivalently, if

EP (y j | x j ) = ES(w j y j | x j ). (5)
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These results are key to showing the equivalence between the difference in coefficients (DC) tests
and the weight association (WA) tests described in the next section.

The remainder of this article focuses primarily on this combined model-based and design-based
perspective because most of the weighting tests in the literature either explicitly or tacitly assume
this perspective. In fact, much of the confusion in the literature stems from a lack of specificity
about which perspective is assumed for a test.2

4. TESTS OF WHETHER TO WEIGHT

Suppose that a researcher wishes to test whether weights are needed in a regression analysis.
A search of the literature reveals a variety of diagnostic tests. Using data from Pfeffermann &
Sverchkov (1999), this researcher might form the residuals from the OLS regression of the de-
pendent variable on the original covariates and then correlate these residuals and various moments
of the residuals with the weights. A significance test of whether the correlation is zero in the popu-
lation and hence whether weights are required could be conducted using Fisher’s Z transformation
of the correlation (Fisher 1915, 1921) or a bootstrap estimate of the variance of the correlation
(Efron 1979). Alternatively, still following Pfeffermann & Sverchkov, the analyst might decide to
regress the residuals on the weight variable (w j ) and to perform a t-test of whether the coefficient
of w j is statistically significant. Another researcher might turn to DuMouchel & Duncan (1983)
and regress the dependent variable on both the unweighted and weighted covariates. An F-test
of whether all coefficients of the weighted covariates are zero would indicate whether weights
are required. Finally, a different researcher might turn to a Hausman (1978) chi-square test as
modified by Pfeffermann (1993) to determine whether the differences in the coefficients of the
weighted and unweighted estimates are significant.

These are just a few of the diagnostic tests that the literature provides to decide the necessity of
weights. The number of tests and the scarcity of comparisons of their properties create confusion
about which, if any, to use. Do these and other diagnostics available in the literature test equivalent
hypotheses? What assumptions are required for each test? Should we expect similar or different
conclusions depending on the test employed? More generally, which test should be used and under
what conditions? Though our review cannot answer all such questions, we can simplify the matter
by demonstrating the relationships between most of these tests and clarifying the assumptions that
underlie them. To begin, we classify nearly all these tests into two groups: DC tests and WA tests.
Later in the article we also show that most of the tests in these two groups are closely related. But
first we give an overview of these two groups of tests.

4.1. Difference in Coefficients Tests

The DC tests compare the coefficients of the weighted and unweighted analyses and assess whether
these differences are statistically significantly different from zero. Start with the regression equation

Y = Xβ + ε, (6)

assuming

E(ε | X) = 0

2Bayesian statistics provides another perspective on weighting (e.g., Sugden & Smith 1984; Smith 1988; Smith & Sugden
1988; Fienberg 2009, 2011; Little 2009). However, we are unaware of any papers that propose tests for weights from a Bayesian
perspective despite its potential usefulness.
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and

V (ε | X) = σ2 I,

where Y is the vector of values for a dependent variable, X is the matrix of values of the covariates
(including a vector of ones in the first column) with β a vector of their corresponding coefficients,
and ε is the vector of disturbances or errors. As Hausman (1978, p. 1,251) notes, we can replace the
first assumption with plim 1

n X′ε = 0 in large samples. These tests originate from and are justified
by Hausman (1978). He describes a general model misspecification test to detect omitted variables,
incorrect functional form, and other model misspecifications. This test is based on the idea that
under correct model specification, two different consistent estimators of the same parameters
converge to the same parameter values as the sample size increases, but diverge when there is a
misspecification.

Call the vector of regression coefficient estimates from the first estimator β̂1 and the estimates
of the same vector of coefficients from the second estimator β̂2. In a correctly specified model
the asymptotic expected value of [β̂1 − β̂2] should be zero, whereas in a misspecified model the
asymptotic mean of [β̂1 − β̂2] need not be zero. The other assumptions underlying the Hausman
(1978) test are (a) β̂1 and β̂2 are consistent estimators of β, (b) β̂1 and β̂2 have asymptotic normal
distributions, and (c) β̂2 is asymptotically efficient in that it attains the asymptotic Cramer-Rao
bound. The null hypothesis is that of no misspecification.

We can test whether the asymptotic mean of [β̂1 − β̂2] is zero by having the asymptotic
covariance matrix (V) for the difference vector of [β̂1 − β̂2]. The general form of the Hausman
test statistic is T H = [β̂1 − β̂2]′V̂

−1
[β̂1 − β̂2], where V̂ is an estimator of the variance of [β̂1 − β̂2].

Hausman (1978) proves that under the null hypothesis of no misspecification and assumptions a–c
above, the estimator of the asymptotic covariance matrix of [β̂1 − β̂2] is V̂ H = [V̂(β̂1) − V̂(β̂2)].
The T H asymptotically follows a chi-square distribution with degrees of freedom equal to the
number of coefficients in β̂1 (or β̂2). The null hypothesis postulates that the model is correct and
hence that each estimator converges in expectation to β.

Hausman (1978) proposed this test for misspecifications in general. Pfeffermann (1993) pro-
posed using the Hausman test to compare the coefficients from the weighted and unweighted
regressions, so that β̂1 = β̂w, the estimates from the weighted analysis (with lower asymptotic
efficiency), and β̂2 = β̂u , the estimates from the unweighted analysis (with higher asymptotic
efficiency). Following Hausman’s (1978) results, V̂ is set to [V̂(β̂w) − V̂(β̂u)], where V̂(β̂w) is the
estimate of the asymptotic covariance matrix of β̂w and V̂(β̂u) is the analogous quantity for β̂u.

Asparouhov & Muthén (2007) use a Hausman test to compare weighted and unweighted esti-
mates and even two different types of weighted estimates (e.g., one for trimmed and another for
untrimmed weights). They also propose a modified estimate of V̂ that has superior finite sample
properties. To see how Asparouhov & Muthén’s (2007) application of the Hausman test differs
from Pfeffermann’s (1993), we consider the Hausman test statistic T H = [β̂w − β̂u]′V̂

−1
[β̂w − β̂u].

The middle term V̂ is an estimate of the asymptotic covariance matrix of the difference in the
coefficients across the weighted and unweighted data, which are estimable in more than one way.
The estimate used by Hausman (1978) is V̂ H = [V̂(β̂1) − V̂(β̂2)], where sample estimates of
the asymptotic covariance matrices replace their population counterparts. Hausman’s (1978) and
Pfeffermann’s (1993) use of this simple difference is justified by the asymptotic efficiency of the
unweighted OLS estimator β̂2 under the assumptions of their models. Indeed, Hausman’s (1978,
pp. 1253–54) proof that V = [V(β̂1) − V(β̂2)] depends on this assumption. If neither estimator is
asymptotically efficient, we cannot rely on this simplification.
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Table 1 Difference in coefficients tests for weighting

Model(s) Test Reference

Y = Xβ + ε

H0: no misspecification β̂1, β̂2
consistent β̂2 asymptotically
efficient

T H = (β̂1 − β̂2)′V̂−1
H (β̂1 − β̂2)

V̂ H = [V̂(β̂1) − V̂(β̂2)], k = dim(β̂1 − β̂2)

T H asymptotically follows χ2
k

Hausman (1978)

Hausman test with
β̂1 = β̂w , β̂2 = β̂u

Hausman test with β̂1 = β̂w , β̂2 = β̂u Pfeffermann (1993)

Hausman test with
β̂1 = β̂w1

, β̂2 = β̂w2

Hausman test with β̂1 = β̂w1
, β̂2 = β̂w2

and

V̂AM = [V̂(β̂w1
) − V̂(β̂w2

) − 2C], where

C =
(

∂2 L1(β̂w1 )

(∂β)2

)−1
M

(
∂2 L2(β̂w2 )

(∂β)2

)−1′

M = ∑
i

w1i w2i
∂li (β̂w1 )

∂β

[
∂li (β̂w2 )

∂β

]′

Asparouhov & Muthén (2007)

An alternative estimate for V̂ in the context of testing for weights comes from Asparouhov &
Muthén (2007). They still use the DC test proposed by Hausman (1978) and applied to weights
as in Pfeffermann (1993), but they suggest a different estimator of V̂ . Specifically, they suggest
V̂AM = [V̂(β̂w1

) − V̂(β̂w2
) − 2C], where C is the covariance matrix of the two estimators.3 Their

asymptotic covariance matrix allows for covariances between the two different estimators.
Table 1 summarizes the DC tests for weighting that we have reviewed. Because these tests of

weights are based on asymptotic theory, it would be useful to know their performance in finite
samples in the range of values that are typical in survey research. Unfortunately, there is scarce
evidence on these test statistics in the context of testing for weighting. We are not aware of any
analytic finite sample results. Asparouhov & Muthén (2007) conducted a small simulation study
and found that the Type I error rates for the classic Hausman test described above were too large
(i.e., rejected too frequently). Asparouhov & Muthén’s (2007) modification performed better but
still had some inaccuracies at small to moderate samples. Much more systematic study is required
before drawing conclusions on how to best proceed with these tests.

In addition, the tests are implemented by comparing OLS (the unweighted model) with prob-
ability weighted least squares (PWLS; the weighted model), with the exception of Asparouhov &
Muthén (2007), who use Skinner’s (1989) pseudomaximum likelihood estimator. Finally, several
authors (see, for example, Pfeffermann 1993) mention that one advantage of these tests is that they
can compare subsets of coefficients (for example, slope coefficients only omitting the intercept)
for differences. As we discuss below, targeted testing is helpful when one or two coefficients are
of central interest and it would be practical and valuable to know which tests work best for such
evaluations.

Researchers have suggested other less formal DC tests. For instance, Hahs-Vaughn & Lomax
(2006) propose fitting models with and without weights and assessing whether the associated
confidence intervals (CIs) overlap, concluding that the weights make a significant difference if the
CIs do not overlap.4 The authors base their argument on Schenker & Gentleman (2001), even

3Note that their derivation applies to structural equation models in general. We have adapted their formula to apply to
regression coefficients in a multiple regression.
4The CI for the weighted estimates should take account of the heteroscedasticity that might be introduced by weighting.
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Table 2 Weight association tests

Model(s) Test Reference(s)

Y = Xβ + XMβM + ε, where XM is a
transformed version of X

F-test of H 0: βM = 0 Hausman (1978)

Y = Xβ + X̃β̃ + ε̃, where X̃ = WX F-test of H 0: β̃ = 0 DuMouchel & Duncan (1983)
[Fuller (1984)]

Y = Xβ + X̃β̃ + ε̃, where

X̃ =

⎧⎪⎨
⎪⎩

WX
subset of WX

or W

F-test of H 0: β̃ = 0 Fuller (2009)

Y = Xβ + X̃β̃ + ε̃, where
X̃ = QX with
Q = diag(q1, q2, . . . , qn) and
qi = wi h(xi ) = wi ŵ

−1(xi ), with ŵ(xi ) from
regression of wi on f (xi )

F-test of H 0: β̃ = 0 Wu & Fuller (2005)

ε̂ = Y − Xβ̂

1. CORRs(ε̂k
i , Wi ) = 0, k = 1, 2, 3

2. W = αw + BW ε̂ ε̂
k + eW

1. a. Fisher’s Z transformation of
H 0: CORRs (εk

i , wi ) = 0
variance ≈ 1

(n−3)
b. Bootstrap standard deviation for
Z-test of H 0: CORRs (εk

i , wi ) = 0
2. t-test of B̂W ε̂ for H 0: BW ε̂ = 0

Pfeffermann & Sverchkov (1999)

W = Xγ 1 + γ2Y + δW F-test of H 0: γ2 = 0 normality of
disturbance

Note: test proposed for small area
estimation

Pfeffermann & Sverchkov (2007)

though the latter suggest CI comparison should not be used when a test is available. Conceptually,
comparing CIs in this way is an informal analog of the other DC tests in Table 1.

4.2. Weight Association Tests

Table 2 summarizes the WA tests in our review. Several of these tests take the form of a regression
of the dependent variable on the unweighted and weighted covariates, while other WA tests assess
the association of the weights W to Y conditional on the explanatory variables X. The direct
comparison of the coefficients from the weighted and unweighted regressions is not explicit in
WA tests. Later we describe how some WA tests are more closely related to the DC tests than
they first appear.

As with the tests in Table 1, we find a linkage between the Hausman (1978) test and several
of the WA tests. Hausman (1978) suggested that another form of his misspecification test is to
assess the statistical significance of βM in the equation Y = Xβ + XMβM + ε, where XM is a
suitably transformed version of X. An F-test of H 0 : βM = 0 is a test of misspecification. In
addition to the usual multiple regression assumptions, use of the F-test requires us to assume that
ε comes from a normal distribution.

Although Hausman suggested this form for a variety of misspecifications, he did not consider
it for tests of weighting. However, DuMouchel & Duncan (1983) and Fuller (1984) take this
Hausman (1978) regression approach and apply it to the decision of whether to weight. In this
context, consider the equation Y = Xβu + Xwβw + ε, where Y is the vector of values for the
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dependent variable, X is the matrix of unweighted values of the explanatory variables with βu

the corresponding coefficients, Xw is the matrix of the same explanatory variables but weighted
with βw their corresponding coefficients, and ε is the vector of errors. DuMouchel & Duncan
(1983) recommend estimating this regression model with OLS and then applying an F-test of
H 0 : βw = 0 to determine whether weights are needed. Rejection of this null hypothesis implies
that weights are required, while failure to reject supports an unweighted analysis. Fuller (1984)
makes a similar argument. We consider the F-test regression approaches of DuMouchel & Duncan
(1983) and Fuller (1984) as WA tests that follow Hausman’s (1978) alternative regression-based
misspecification test, even though neither makes the link to Hausman (1978). Fuller (2009) suggests
a variant on this approach in that he recommends the regression Y = Xβu + Wα + ε, where W
is the weight variable, and testing whether its coefficient α is significantly different from zero. He
also suggests testing just a subset of the variables in WX when interest lies in a few but not all of
the covariates.

Wu & Fuller (2005) take the same WA test approach with Y = Xβ + X̃β̃ + ε̃, where X̃ = QX
and Q = diag(q1, q2, . . . , qn). The q values are qi = wi ŵ

−1(xi ), where ŵ(xi ) are predicted values
from the regression of wi on f (xi ) and where f (xi ) is a function of the covariates determined by
the researcher. In a sense, the part of the original weights that is predictable by the covariates is
factored out of the original weight, and these unpredictable parts of weights transform X. As with
the previous regression models, an F-test of H 0 : β̃ = 0 determines the need for weights.

Clearly, the tests of DuMouchel & Duncan (1983), Fuller (1984, 2009), and Wu & Fuller
(2005) are special cases of the Hausman (1978) regression test formulated as Y = Xβ + X̃β̃ + ε.
When they differ, it is in their definition of X̃, where, for example, DuMouchel & Duncan (1983)
use X̃ = Xw and Fuller (2009) uses a subset of the variables in Xw for X̃. They make the usual
regression assumptions of

A. E(ε) = 0,

B. E(εε′) = σ 2 I,

C. Cov(ε, X) = Cov(ε, X̃) = 0,

D. [X X̃] is nonsingular.

To justify the application of the F-test of H 0 : β̃ = 0, they also assume

E. ε ∼ N (0, σ 2).

Fuller (2009) and others hold open the option of having the second set of covariates consist
solely of the weight (W) or a subset of WX rather than the full set. This strategy makes sense if
the analyst hypothesizes that the weight alone or a subset of the transformed WX is what matters
rather than the full set. If in reality these are the only variables that require weighting, then this
subset strategy could increase the statistical power of the F-test and be defended on these grounds.

Other WA tests approach this issue differently than the Hausman (1978) regression method.
Pfeffermann & Sverchkov (1999) derive relationships between sample residuals and weights.
They begin with a distinction between the population and sample distributions of the errors
in a regression. Their argument is that if the sample distribution of the residuals is the same as
the population distribution of the errors, then one can ignore the sampling scheme and apply
the unweighted regression (Pfeffermann & Sverchkov 1999, p. 171). Their test is grounded in the
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idea that by comparing the moments of the sample and population residuals, one can compare
whether their distributions are the same. They suggest that Ep (εk

i ) = Es (εk
i ), k = 1, 2, . . . , where

Ep and Es are the expectations under the population and the sample probability density functions,
respectively. Their paper also derives that Ep (εk

i ) = Es (εk
i wi )/Es (wi ) and that an equivalent set of

hypotheses is

CORRs (εk
i , wi ) = 0, k = 1, 2, . . . ,

where CORRs is the correlation under the sample distribution.
The first step in implementing this is the OLS regression of the dependent variable on

the unweighted covariates. Then the residuals are formed as ε̂ = Y − Xβ̂. These residuals
have the linear effect of the covariates removed and the question is whether the remaining
part is associated with the weights. On the basis of the preceding arguments, Pfeffermann &
Sverchkov (1999) suggest tests of the null hypotheses that the correlations between the weights
and the sample residuals, squared residuals, cubed residuals, etc., are zero. In other words,
CORRs (εk

i , wi ) = 0, for k = 1, 2, . . . . The null hypothesis is that all these correlations are zero,
and when the null hypothesis is rejected, sample weights are informative. The authors evaluated
the performance of these tests using OLS, PWLS, Skinner’s pseudomaximum likelihood, para-
metric (maximum likelihood), and semiparametric estimators. To test the correlations, they both
examined the Fisher’s Z transformation of the correlations and used bootstrap resampling to de-
velop estimates of the sampling variability of the correlations to use in the significance tests. They
found the bootstrap method to work better in their simulations than the Fisher’s Z transformation
approach.

As an alternative to correlations, Pfeffermann & Sverchkov (1999) also examined regressing the
weights on the residuals (see Table 2) and found that the two methods performed similarly. The
approach using the squared residuals correlations performed very poorly, whereas the approach
using the original residuals performed well. No explanation of these differences is provided, but
the scope of the simulations was very limited.

The last WA test that we discuss comes from Pfeffermann & Sverchkov (2007). They suggest
regressing the weight on the covariates and the dependent variable (W = Xγ 1 + γ2Y + δW). A
test of H 0 : γ2 = 0 determines whether weights make a difference. We note that Pfeffermann &
Sverchkov (2007) suggest this approach in the context of small area estimation and we present it
as a more general test for weights.

In our review, we uncovered a few papers that cannot be neatly categorized as presenting
DC or WA tests. Bertolet (2008) and Faiella (2010) cast the problem of weight ignorability as a
design-based versus model-based issue. In addition, a few authors go into theoretical detail on the
informativeness of the sampling weights but do not propose tests (e.g., Smith 1988, Sugden &
Smith 1984). We refer readers to these papers for more details.

4.3. Testing Subsets of Coefficients

Thus far, our discussion has focused primarily on tests of whether all coefficients are equal in
weighted versus unweighted analyses. Sometimes coefficients of particular variables in a regression
are of special interest, whereas the coefficients of the other explanatory variables are of less concern.
For instance, a study of discrimination would focus on the coefficient of the variable measuring
minority status and might be less interested in the coefficients of the other explanatory variables.
A global test of all coefficients might be statistically significant. This leads the researcher to a
weighted analysis and the reduced efficiency that often accompanies using weights. However, it
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is possible that the significant test statistic is due not to the coefficient for minority status, but
to some other explanatory variable(s). In this situation, the efficiency of all coefficient estimates
might be impacted when the coefficient estimates for minority status were essentially the same in
the weighted and unweighted analyses.

Similarly, many researchers are not interested in differences of the intercepts between weighted
and unweighted analyses and would like to test equality of all coefficients except the intercepts
(e.g., Scott 2006). Under these circumstances it would be helpful to have a test to determine
whether one coefficient or a subset of coefficients with and without weights is equal. If the key
coefficients are the same, unweighted analysis with attention directed to these key variables could
be performed more efficiently.5

Hausman’s (1978) and Pfeffermann’s (1993) DC tests would calculate (β̂w1 − β̂u1)[V̂(β̂w1) −
V̂(β̂u1)]−1(β̂w1 − β̂u1) and compare it to a chi-square distribution with one degree of freedom. A
significant test statistic suggests that weighting is required, whereas an insignificant one suggests
it is not. Among the WA tests, one could use the regression-based approaches that include the
weighted and unweighted variables and test only those coefficients of greatest interest for the
weighted variables (e.g., Winship & Radbill 1994). However, we have found little empirical or
analytic evidence on which tests would perform the best when testing subsets of coefficients.

5. COMPARING DIFFERENCE IN COEFFICIENTS
AND WEIGHT ASSOCIATION TESTS

5.1. Equivalence of the Tests

Beyond the diversity and different types of tests, there are other issues to consider. In this section
we discuss comparisons of these tests and what is known from the literature about their finite
sample properties.

An important question when determining the necessity of weights is whether a DC or WA test
should be chosen. Should both be tested or are both approaches equivalent? As noted in Section 2,
Pfeffermann & Sverchkov (2009) provide a key result here. They showed the equivalence of
Equation 4 and Equation 5, which proves that the DC and WA tests are equivalent in that they
essentially test the same thing; that is, testing the difference in weighted and unweighted regression
coefficients is equivalent to testing whether, conditional on X, y and w are correlated. That is not
to say that a particular DC test will provide the same conclusion as a WA test. Indeed, even within
the same category of test (i.e., DC or WA), results may differ; so the question of which test to use
is not resolved by simply noting the equivalency of WA and DC tests.

The properties of DC tests based on T H = [β̂w −β̂u]′V̂
−1

[β̂w −β̂u] versus WA tests formulated
as regressions (e.g., Y = Xβu + Xwβw + ε, with a test on β̂w) deserve attention. The DC tests,
as described above (see Asparouhov & Muthén 2007, Hausman 1978, Pfeffermann 1993), are
asymptotically distributed chi-square, whereas the regression misspecification form of the WA test
(see DuMouchel & Duncan 1983, Fuller 1984, Hausman 1978) recommends the usual regression
F-test for H 0 : βw = 0. Kott (1990) proposes a DC test for comparing OLS to PWLS regression
that is chi-square distributed, but shows an alternative derivation using an F-test when the degrees
of freedom are not large (echoing DuMouchel & Duncan 1983). Any power advantages of the DC

5Here, too, we need to consider the differences between statistical significance and practical significance and the manner in
which a large sample increases the probability of detecting even small differences.
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tests compared to the WA tests are unknown. Likewise, which forms of the tests have superior
finite sample properties are also unknown.

Closer examination of these tests reveals a fundamental similarity between them. First, consider
the DC test of T H = [β̂w − β̂u]′V̂

−1
[β̂w − β̂u]. If we write the asymptotic expectation as AE, the

null hypothesis of this test is

H 0 : AE[β̂w − β̂u] = 0,

or that the large sample mean of the difference (i.e., as both N and n approach infinity, holding
n/N constant) in coefficients is zero for all coefficients.

Now consider the WA (regression) tests of Table 2 [Y = Xβ + X̃β̃ + ε̃]. An F-test of
H 0 : β̃ = 0 appears to differ from the test that determines whether the coefficients of the weighted
and unweighted coefficients are equal. However, DuMouchel & Duncan (1983) prove that a test
of H 0 : β̃ = 0 is the same as a test of H 0 : AE[β̂w − β̂u] = 0 (see DuMouchel & Duncan 1983,
p. 539). In other words, the preceding DC tests and the WA regression tests are tests of the same
null hypothesis H 0 : AE[β̂w − β̂u] = 0 of whether the coefficients differ from each other. The
main difference is that the DC test statistic has a chi-square distribution and the WA test statistic
has an F-distribution.

The differences in the distributions of the test statistics mean that the results of the tests will
not always be the same. Furthermore, we do not know which of these test statistics has greater
power. Finally, we do not know the frequency of their Type I errors. These issues would be
valuable to pursue.

Pfeffermann & Sverchkov (1999, 2007) proposed WA tests different than those that we have
so far compared to the DC tests. For instance, they recommend tests that relate the residual from
an unweighted regression to the weights (W) or regress W on Y and X. The relationship of these
tests to the others is less direct than the comparisons we just drew, but there are connections.
Perhaps the closest relation comes from an examination of Fuller’s (2009) suggestion to use
the regression equation Y = Xβu + Wα + ε. If we subtract the explanatory variables and their
coefficients from the left-hand side, we get Y = Xβu +Wα+ε. This new left-hand side is similar to
Pfeffermann & Sverchkov’s (1999) residual, and if we regress it on W, we have a test similar to that in
Table 2. The main difference is that Pfeffermann & Sverchkov (1999) suggest the OLS regression
of Y on X to get β̂ and then form the residual and regress it on W. In Fuller (2009), Y is regressed
on X and W at the same time. Both approaches assume that most interest lies in the W variable and
not the other weighted covariates. In practice, researchers could be more concerned with whether
other variables differ in the weighted and unweighted samples, so that they might want to include
more weighted covariates for the test.

Returning to the contrast of the DC and WA tests, a practical difference between the DC
and the WA (regression) tests also arises. As noted above, Hausman recommended that V̂ H =
[V̂(β̂w)− V̂(β̂u)]. In a sample it is possible for this difference in estimates of asymptotic covariance
matrices to not be positive definite. This same computational issue is not present for the regression
forms of the tests.

Fuller (1984), Winship & Radbill (1994), and Wu & Fuller (2005) used and evaluated the
regression form of the WA test. Wu & Fuller (2005) used the DuMouchel & Duncan (1983)/Fuller
(1984) regression tests of weighting to decide whether weights were needed. In a simulation they
then compared multiple estimators, including the general least squares approach of Pfeffermann
& Sverchkov (1999), which was informed by the WA test the latter derived, concluding that when
the correlation between the weights and the error term was low, OLS performed better, but
when the correlation was high, the Pfeffermann & Sverchkov (1999) estimator performed better.
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However, Wu & Fuller (2005) did not evaluate the performance of their DC test in the simulation
or compare it with any of the WA tests.

5.2. Studies of the Statistical Properties of the Tests

The validity of the two major types of tests is mostly justified asymptotically. The classic Hausman
DC test statistic of differences in coefficients, for instance, follows a chi-square distribution in large
samples. Asparouhov & Muthén (2007) find that in their small simulation study, this test, which
they refer to as the Hausman-Pfeffermann test, rejects too frequently when the null hypothesis
of “no weights needed” is true. Tests based on regressing the sample residual on the weights
assume that the sample residuals and sample weights come from samples large enough to be good
approximations to their population counterparts. We have found only limited analytic material
on the finite sample properties of these tests that could guide empirical research.

Even the Monte Carlo simulation research on the finite sample properties of these tests is quite
limited and largely designed to illustrate a new test with a pilot simulation analysis to demonstrate
its potential. Among all the literature we reviewed, we found five simulation studies on tests of
weight informativeness. They typically appear as appendages to estimation-focused studies. Two
studies focused only on DC tests (Asparouhov & Muthén 2007, Pfeffermann & Sverchkov 2003),
two focused only on WA tests (Eideh & Nathan 2006, Pfeffermann & Sverchkov 1999), and one
compared the two types of tests to each other (Chambers et al. 2003).

Four of these five studies focused on bivariate regression models, though Asparouhov & Muthén
(2007) also explored tests of weights in the context of factor analysis. Eideh & Nathan (2006)
explored weights in the context of short time series (3 or 10 repeated observations). Asparouhov
& Muthén (2007) looked at sample sizes ranging from 200 to 10,000 taken from an infinite
population, while Pfeffermann & Sverchkov (1999) simulated finite populations of 1,000 and
3,000 and then drew samples of 100 and 300 from the simulated populations. Pfeffermann &
Sverchkov (2003) simulated a finite sample of 3,000 and drew from it samples of 300. Eideh &
Nathan (2006) used a sample size of 500. Chambers et al. (2003) simulated a finite sample of 1,000
and drew samples of 100 from it.

Methods of simulating informative sampling designs are diverse. Asparouhov & Muthén (2007)
sampled data as exponential functions of Y for bivariate regression and as exponential functions
of the latent variable for the factor model. Pfeffermann & Sverchkov (1999) sampled data as
exponential and polynomial functions of Y. Pfeffermann & Sverchkov (2003) sampled data as a
Poisson function of Y as well as stratified sampling. Eideh & Nathan (2006) sampled cases as
exponential and linear functions of Y. Chambers et al. (2003) sampled data proportional to Z
where Y was a function of the product of Y and Z.

Pfeffermann & Sverchkov (1999) proposed a correlation test based on moments of the corre-
lation between the predictor and residuals and reported near-nominal detection of informative
weights for first-order moments, though higher-order moments did not perform well. Asparouhov
& Muthén (2007) modified Pfeffermann’s (1993) Hausman test by changing the definition of the
variance to address small sample sizes. The modified and original tests performed as expected
for large sample sizes. For small sample sizes, both tests incorrectly rejected the null hypothesis
more frequently than the nominal 5% rate, though the modified test performed better. Eideh
& Nathan (2006) reported that their use of a t-statistic to implement a correlation test leads to
near-nominal expected performance for simulated time series data. Chambers et al. (2003) found
that the correlation test of Pfeffermann & Sverchkov (1999) performed well for both homogenous
and heterogeneous error conditions, whereas a version of the Hausman test underperformed when
weights were informative under heterogeneous data. Pfeffermann & Sverchkov (2003) developed
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a Hotelling test generalized to the Hausman test and report that when weights were informative,
the null hypothesis of noninformative weights was rejected at the 1% level, though the target alpha
was 0.05.

This state of affairs is unsatisfactory. Researchers do not have evidence of how well the tests
perform in small to moderate samples nor do they know how large a sample must be to safely rely
on the asymptotic properties. Ideally, analytic results that inform us of the test properties under
different conditions would be available, but they are not. Simulation studies under a variety of
design conditions would be helpful, but even simulation work on these different tests is sparse.

6. CONCLUSIONS

At a time when most surveys have unequal probabilities of selection either by design or by other
practical constraints, the question of whether to weight variables during the analysis takes on
added importance. If weighting data were a cost-free option, then always weighting would be
a reasonable strategy. But unnecessarily weighting means lower efficiency and lower statistical
power. Tests that determine whether weights are required do exist, but they are rarely applied
for several reasons. One is the lack of awareness among researchers. Another is the influence of
tradition in different fields—some always weight and others never do. An additional reason is that
some of these tests are not readily available in software packages. Furthermore, even when these
tests are easy to implement, there is little guidance on which of the many tests to choose.

Though our focus is on the most widely studied case of weighting for linear regression mod-
els, a few papers concentrate on using weights in generalized linear models (e.g., Binder 1983,
Chambless & Boyle 1985, Morel 1989, Roberts et al. 1987) and the software to implement (e.g.,
An 2008). However, these papers do not provide any new information on weighting tests for the
models. In addition, as previously noted, most unequal probability samples are also clustered, yet
for the most part the extant literature has not considered the implications of clustering on the
weighting decision. This is another area where more research is needed.

This review accomplishes our aim to classify tests into two major groups: DC tests and WA tests.
We also find that these two groups are more closely related than at first appearance. This makes the
problem more manageable and highlights the close relation among seemingly different tests, but
numerous questions remain. Which of these tests has the best finite sample properties? Although
they are theoretically equivalent, are DC and WA tests interchangeable in any given situation or
is one favored over the other in certain contexts? Further, what should a researcher do if one test
is passed and another is failed? When a researcher’s interest focuses on just one coefficient and
she wants to determine whether weighting makes a difference, which testing approach makes the
most sense? Finally, which of these tests requires custom programming and which can a researcher
obtain by tricking existing software into providing the necessary results? Many fields of research
would benefit from answers to these questions.
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