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Abstract

The rapid growth of astronomical data sets, coupled with the complexity of
the questions scientists seek to answer with these data, creates an increasing
need for the utilization of advanced statistical inference methods in astro-
physics. Here, focus is placed on situations in which the underlying objective
is the estimation of cosmological parameters, the key physical constants that
characterize the Universe. Owing to the complex relationship between these
parameters and the observable data, this broad inference goal is best divided
into three stages. The primary objective of this article is to describe these
stages and thus place into a coherent framework the class of inference prob-
lems commonly encountered by those working in this field. Examples of
such inference challenges are presented.
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1. INTRODUCTION

Statistical inference plays a significant role in modern astrophysics research. Current astronom-
ical surveys take rich, multidimensional measurements of millions of stars, galaxies, and other
celestial objects, and future surveys will push measurement counts into the billions. Concurrent
with (and because of ) this flood of information, the scientific questions that one seeks to answer
with these data are growing in complexity. This combination of massive, complex data sets and
challenging inference problems creates an opportunity for statisticians to make deep contributions
of significant scientific interest.

The growth in the number of observed quasars—the luminous, active centers of some massive,
distant galaxies—provides an illustrative example. Early discoveries (Matthews & Sandage 1963)
led to careful study of individual objects in order to understand the nature of these phenomena.
As methods for quasar detection improved, and as the sample size grew, focus shifted from under-
standing individual objects to inferring properties of the population of quasars, most importantly
estimation of the distribution of quasar magnitude (intrinsic brightness), the quasar luminosity
function (QLF). Throughout the 1980s and 1990s, researchers used progressively larger quasar
catalogs to constrain the QLF: Marshall et al. (1984) used 35 quasars, Boyle et al. (1988) used 420,
and Pei (1995) used 1,200. The Sloan Digital Sky Survey (SDSS) (Eisenstein et al. 2011) marked
a key moment in the study of quasars. The first SDSS quasar catalog (Schneider et al. 2002) con-
tained 3,814 quasars, but this number quickly grew to over 46,000, the number Richards et al.
(2006) used to estimate the QLF. The most recent SDSS quasar catalog contains over 166,000
objects with high-quality spectroscopic measurements (Pâris et al. 2014), and the Million Quasars
(MILLIQUAS) Catalog (http://heasarc.gsfc.nasa.gov/W3Browse/all/milliquas.html) com-
bines these with lower-quality SDSS quasars and those from other surveys to create a catalog
of over a million objects. Larger samples enable more precise estimation of the QLF, but such es-
timation requires novel, sophisticated statistical methods that account for sample selection effects
and measurement error.

The above example is typical of the evolution seen in many areas of study in astrophysics. A
drive to improve our understanding of the Universe and its evolution has motivated a shift from
the study of individual objects to that of population-targeted inference. Different theories predict
different forms for the QLF, so comparing the best estimate of it with these predictions is crucial.
Fortunately, owing to the deep understanding of the Universe developed by theoretical astro-
physicists, many key questions have been largely reduced to the estimation of physical constants
often referred to as cosmological parameters.

The broad statistical inference goal is thus often the estimation of these cosmological
parameters using observations of astronomical objects. This article presents a three-step
framework that supports typical inference problems of this form. In the first stage, one must
estimate the properties of individual objects from the raw observed data. In the second stage,
this catalog of measurements is used to estimate a relevant, population-level summary of these
objects. (The estimation of the QLF occurs at this second stage.) Finally, in the third stage,
the cosmological parameters are inferred using one or more of these summaries. Thus, as with
most statistical inference problems, estimation in astrophysics is built upon parameters, data,
and the probability models that relate them. Although a wide range of statistical methods are
employed at these three steps, there are recurrent challenges in observation-based estimation
of cosmological parameters, including dealing with the multidimensional, structured nature
of the observed data; the biases that result from our limited, noisy view of the Universe; and
the complexity of the relationships between the cosmological parameters and the probability
distributions that model the summary statistics. Instead of attempting an exhaustive exploration
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Figure 1
(a) Galaxy spectrum as measured by the Sloan Digital Sky Survey (SDSS). The large Hα line results from the abundance of hydrogen
in galaxies, and the significant OII line is a signature of active star formation within a galaxy (Gilbank 2010). (b) Same spectrum as in
panel a, with the filter response functions from the SDSS ugriz filter system superimposed. u, g, r, i, and z are standard names attached
to the filters.

of the topic, this review focuses on these broad challenges in the context of some important
examples.

2. RAW OBSERVABLES

In their raw state, most modern astronomical data take the form of intensity measurements at
different wavelengths on the electromagnetic spectrum or possibly through different filters that
accumulate these intensities over a range of wavelengths. For example, Figure 1a shows the
emission spectrum of a galaxy as measured by the SDSS. By its tenth data release in 2013, this
unprecedented astronomical survey had measured the spectra of roughly 3.3 million astronomical
objects, including 1.8 million galaxies (Ahn et al. 2013). An individual spectrum is characterized
by a smooth continuum with prominent emission and absorption lines. Figure 1 highlights two
prominent emission lines: The large Hα line results from the abundance of hydrogen in galax-
ies, and the significant OII line is a signature of active star formation within a galaxy (Gilbank
et al. 2010). These are just two examples of how spectrum features encode valuable information
regarding an object.

Measuring a spectrum requires targeting with a spectrograph. As this operation is relatively
time consuming, spectra are measured for only some of the astronomical objects detected during
an initial imaging survey. An imaging survey consists of taking photographs of the sky using
charge-coupled devices (CCDs) through a small number of filters, often called the bands. For
example, the SDSS uses 5 bands and an imaging camera with a 5 × 6 arrangement of 30 CCDs in
which each row employs the same filter (Gunn et al. 1998). The light intensity (called the flux) of
the object as measured through this filter system can be thought of as measuring a coarse version
of the full spectrum. (The flux measurements are typically transformed into either an apparent
or absolute magnitude; see the sidebar titled Intensity Units.) In particular, instead of measuring
the full spectrum, one observes this spectrum convolved with a collection of response functions.
Figure 1b displays the filter response functions for the SDSS; this camera uses a standard ugriz
filter system.
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INTENSITY UNITS

The intensity of an astronomical object in a particular band is often expressed as its apparent magnitude, usually
denoted m. Apparent magnitude is calculated relative to a standard, so the difference in apparent magnitudes between
any two objects is

m1 − m2 = −2.5 log10(F1/F2),

where F denotes the flux. The absolute magnitude, denoted M, is the apparent magnitude of an object as viewed
at a distance of 10 parsecs, and is calculated as

M = m − 5 log10(d/10),

where d is the distance to the object measured in parsecs. Absolute magnitudes have the advantage of placing
magnitudes on a standard scale that is not tied to the position of Earth. This comes at the cost, however, of needing
to estimate the distance d . A related quantity is the luminosity (L), which represents the amount of energy the
object emits per second and is given by L = (4πd 2)F . The bolometric luminosity is the luminosity measured over
all wavelengths. The difference between the apparent and absolute magnitudes, called the distance modulus, is a
commonly used distance metric in cosmology (Sparke & Gallagher 2007).

The above example establishes two standard types of data available for astronomical objects:
spectroscopic and photometric. Spectroscopic data (those consisting of spectra) are rich in scientific
information but less abundant. In contrast, photometric data (magnitude measurements) are of
much lower resolution, but they are measured easily and in greater quantity. Future surveys will
focus more heavily on photometric measurements, owing to both improved CCD technology and
advances in statistical methods that can utilize these lower-resolution data. For example, the Large
Synoptic Survey Telescope (LSST) currently under construction in Chile will gather photometric
data in six bands, and the quantity of data gathered will dwarf that of SDSS. This instrument will
generate a catalog of photometric data on approximately 10 billion galaxies and an additional
10 billion stars (Zhang et al. 2013).

The LSST will capture 15 terabytes (TB) of images of the Universe on a nightly basis, including
repeated visits to the same regions, thereby enabling exploration of the time variability of astro-
nomical phenomena to an extent that has not previously been possible. For example, supernovae,
stars in the fiery final stage of their lives, can be studied only with repeated viewing of the same area
of the sky over a period of at least 30 days. Changes in the magnitude of an object over time are
summarized in a light curve; Figure 2a shows an example of the light curves measured from a sin-
gle supernova ( Jha et al. 2006). Currently, roughly 1,000 such supernovae are available for study,
but the LSST will push this count into the millions (LSST Science Collaboration et al. 2009).

The cameras used in these imaging surveys are of sufficiently high resolution that they also
create catalogs of images of individual objects, thereby generating an additional source of scientific
information. For example, the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey
(CANDELS) (Grogin et al. 2011, Koekemoer et al. 2011) utilized the Hubble Space Telescope
to build a catalog of over 250,000 galaxy images, one of which is shown in Figure 2b. This image
depicts the intensity of the galaxy as measured through a single filter. As is the case with spectra
and light curves, this high-dimensional image contains significant low-dimensional structure that
is related to properties of the depicted object. Thus, an initial step in utilizing these raw data is to
exploit this structure to estimate object-specific parameters.
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Figure 2
Temporal and spatial variation in flux measurements. (a) The light curves showing a supernova measured in
five bands (UBVRI). U, B, V, R, and I are standard names attached to the filters. Note that the absolute
magnitudes are shifted to improve readability (shifts are indicated by the numbers ±1 or ±2 in the legend).
Because intensity increases as absolute magnitude decreases, it is customary to create these plots with the
vertical axis reversed. Data are from Jha et al. (2006). (b) The spatial variation in intensity in a single band ( J)
for a galaxy as measured by the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey
(CANDELS).

3. THE STAGES OF STATISTICAL INFERENCE

This section presents the three stages of inference introduced above: from the raw observables
to the object-specific parameters, from the object-specific parameters to the canonical param-
eters, and from the canonical parameters to the cosmological parameters. Although I present this
framework within the context of a few examples, a wide range of estimation problems fit into it.
The examples included here have been chosen to provide some breadth and background in this
area.

3.1. From Raw Data to Object-Specific Parameters

As described in Section 2, the raw data from astronomical surveys consist of flux measurements at
different wavelengths or, more commonly, at different bands along the spectrum. These data are
observed at a fixed point in time, over a period of time (creating light curves), or at different spatial
locations (creating images). The next step in any of these cases is to transform these measurements
into estimates of parameters that specify properties of the object under study. A fundamental
parameter to estimate is the type of the object. The SDSS, for example, classifies spectra into
quasars, galaxies, and stars, and each of these broad classes has a number of subclasses. The
classification is performed by comparing the observed spectrum with a family of template spectra,
minimizing the weighted sum of the squared deviations between a smoothed version of the raw
spectrum and the templates (Bolton et al. 2012). This weighting accounts for differences in the
errors in the measurements. Even relatively basic functions of the observables (for example, ratios
of or differences in the fluxes of different bands, called hardness ratios and colors, respectively)
present challenging statistical issues because of such errors (Park et al. 2006). In the following
subsections, I consider two additional inference problems of this type: redshift estimation and
classification based on light curves.

www.annualreviews.org • Statistical Inference in Astrophysics 145
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THE EXPANDING UNIVERSE

Edwin Hubble’s (1929) discovery that galaxies at a greater distance had greater redshift was the crucial initial
observation that lent support to the Big Bang cosmological model. This observation implied both the expansion of
the Universe and the existence of a time when objects were at a much smaller distance. In astrophysics, the scale factor
a(t) is generally defined as the ratio of the distance between two objects (on cosmological scales) at time t relative to
the distance between them today. The current rate of change in a(t) is called the Hubble parameter and is denoted
H 0. The second derivative of a(t) is also estimated to be positive; this acceleration is attributed to dark energy.

3.1.1. Redshift estimation. The comparison of template and observed spectra must account
for the Doppler shift in the wavelengths of light resulting from the fact that on large scales, all
astronomical objects are moving away from the observer (see the sidebar titled The Expanding
Universe). Hence, the ratio of the wavelength of the observed light (λobserved) to its wavelength
when it was emitted (λemitted) is greater than one. This ratio is quantified by the redshift, denoted z:

z = λobserved

λemitted
− 1.

The search for the best-fitting template spectrum involves minimizing over candidate values
for z with the observed spectrum shifted appropriately. (A spectrum that has been transformed
to adjust for the Doppler shift is said to be in the rest frame.) By the standards of astrophysical
problems, the estimation of redshift using spectra is relatively easy: Most SDSS galaxy redshift
estimates have quoted standard errors of less than 0.03%, and the accuracy of the stated errors
has been well established (Bolton et al. 2012).

Redshifts are a crucial ingredient in many inference problems in astrophysics, as the redshift is
a proxy for the distance of an object from us, which in turn is a proxy for how far into the past our
view of the object is being taken. Therefore, redshifts need to be estimated for all objects, not only
those with spectra. The estimation of redshifts using only photometric observations is referred to
as the photometric redshift estimation problem, and this problem is among the most widely ex-
plored inference challenges in astrophysics. Recall that photometry implies the availability of only
approximately five magnitude measurements for each object, each corresponding to a particular
band of wavelengths. Given the relationship between these measurements and the spectrum, it is
not surprising that these magnitudes could be used to estimate redshift. However, it should also
not come as a surprise that the errors in photometric estimates will greatly exceed those made when
using the full spectrum. The absorption and emission lines that are so useful for aligning observed
and template spectra are largely smoothed over by the filter response functions (see Figure 1).

The earliest proposed approaches to this problem were based on comparing the observed fluxes
with those that would be derived from template spectra; this is the so-called template-fitting
approach (Butchins 1981, Koo 1985). The general recipe is as follows: A family of templates
is built using rest frame spectra of galaxies with known types and varying amounts of redshift
applied. These templates are then subjected to the filter response functions to construct the
expected magnitudes1: anticipated measurements under each known combination of object type
and redshift. The observed colors are then compared with the training sample to obtain an estimate.

1Technically, they used colors instead of magnitudes. Colors are the differences between magnitudes in adjacent bands.
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Butchins (1981) simply used the nearest neighbor in color space, but recent methods have used
least squares measures. For example, Barro et al. (2011) used the following:

χ2( j, z, A ) =
B∑

i=1

[
Fobs,i − A · Ftemp j,i (z)

σi

]2

,

where Fobs,i is the observed flux in band i , Ftemp j,i (z) is the flux in band i using the template j
shifted to redshift z, σi is the estimated standard error in Fobs,i , A is a normalizing constant, and
B is the number of bands. This quantity is minimized over j , z, and A to find the best redshift
estimate. Dahlen et al. (2013) provide a listing and comparison of many template-fitting methods
applied to CANDELS data.

Regression and supervised learning methods are also widely used for estimating redshifts on the
basis of photometric data; such methods build on a training sample of objects with known (spec-
troscopic) redshifts. Connolly et al. (1995) fit a succession of linear models, from a simple linear
model up to a fourth-order model, using the magnitudes four bands as the predictors. Since then,
a wide range of estimation methods have been attempted, including neural networks (Collister &
Lahav 2004, Firth et al. 2003, Laurino et al. 2011), random forests (Carliles et al. 2010, Carrasco
Kind & Brunner 2013), k-nearest neighbors (Ball et al. 2008, Zhang et al. 2013), spectral con-
nectivity analysis (Freeman et al. 2009), and boosted decision trees (Gerdes et al. 2010), among
others. As spectroscopic sample sizes have grown, the feasibility and success of these approaches
have increased, but they still suffer from the assumption that the training sample is representative
of the photometric sample for which redshift estimates are required. This assumption is of partic-
ular concern given that spectroscopy is typically more readily available for closer, higher-quality
objects; active learning may be useful for dealing with this challenge (Richards et al. 2012).

The SDSS utilizes the algorithm of Csabai et al. (2007) to estimate redshifts using photometry.
This algorithm simply fits a local polynomial in a neighborhood surrounding the targeted predic-
tors and uses that polynomial to make an estimate and to approximate the error in that estimate.
The search for training objects that are in the neighborhood is facilitated by a k-dimensional (k-d)
tree (Bentley 1975). Figure 3a shows the performance of this algorithm on the 6,514 galaxies in a
particular region for which spectroscopic redshifts are available. The left plot shows that there is,
in general, strong agreement between the estimate and the spectroscopic redshift. The root mean
squared error for this sample is 0.0495.

Adequate quantification of the uncertainty in photometric redshift estimates is also critical.
Figure 3b compares the nominal errors in the photometric redshift quoted by SDSS, along with
the observed absolute error in the estimate; the observed errors seem to be in line with what
is expected by the model. As there has been a shift toward Bayesian methods in astrophysics,
calculation and reporting of a posterior distribution for each unknown redshift are becoming a
standard practice [see, for instance, Budavári (2009)]. The primary advantage of this practice is
that it creates a natural way to propagate this uncertainty forward into the donwstream analyses.
Some of the estimators that yield posteriors are built around a classic Bayesian approach to the
problem (Benı́tez 2000, Xia et al. 2009), but specification of the likelihood can be challenging. The
technique utilized by SDSS is to simply utilize the distribution of training sample redshifts for
the nearest neighbors in magnitude space. [The reader is referred to Sheldon et al. (2012) for
the application to SDSS; the method is originally described and tested in Lima et al. (2008) and
Cunha et al. (2009).]

3.1.2. Classification of variable sources. The LSST will make repeated observations of the same
fields of view and hence will have the additional capacity to identify and measure variable objects,
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Figure 3
Sloan Digital Sky Survey (SDSS) photometric redshift estimation algorithm performance for 6,514 galaxies.
Data are from SDSS Data Release 10. Panel a compares the redshift as estimated using only photometry
with the more reliable spectroscopic estimates. There is strong agreement between the two estimates, but
there are also several large errors. More importantly, the size and distribution of errors are a function of
redshift. To illustrate this, panel b compares the actual error (the difference between the photometric and
spectroscopic redshifts) with the quoted standard errors attached to each photometric estimate. Note that
the use of log axes creates a false impression of a skewed distribution around the line of agreement.

i.e., phenomena that are changing in time. Identification will happen by taking the difference of
images of the same part of the sky; the LSST is expected to report on over 10,000 such objects per
evening, and a stated goal of the project is to be able to identify at least 1,000 of them in real time
from a single field of view (LSST Science Collaboration et al. 2009). Simply identifying interesting
phenomena in the massive collection of light curves requires sophisticated analyses (Blocker &
Protopapas 2013), and classification into different object types (supernovae, blazars, or cataclysmic
variables, to name a few) can proceed on the basis of measured light curves and any additional
available local information. The capacity to do this classification in real time is important because,
as stated by Bloom et al. (2012, p. 1176), “the vast majority of science conducted with time-variable
objects . . . comes when more data are accumulated about the objects of interest.”

One challenging and important problem in this domain is the classifcation of supernovae into
one of several types. Of particular interest is the separation of Type Ia supernovae from others, as
these supernovae are valuable sources of information about the nature of dark energy. Figure 2a
shows an example of the light curves of a Type Ia supernova. The light curves of supernovae of other
types will show subtle differences, mostly in the rate at which the magnitude drops off following
the peak. Construction of a suitable training sample is a challenging problem in itself. Although
some theoretical modeling of Type Ia supernova light curves has been done (Chatzopoulos et al.
2012), most of the modeling is based on simulations of the physical process (Blinnikov et al.
2006, Woosley et al. 2007), as is becoming increasingly common in astrophysics. Observational
limitations (partially observed light curves, irregular spacing of observations, measurement errors)
must also be incorporated into a training sample. The software package SNANA (Supernova
Analysis Software) (Kessler et al. 2009) is a valuable tool for simulating realistic light curves and
was used to generate a training sample for the Supernova Photometric Classification Challenge (Kessler
et al. 2010b), which allowed the performances of a wide range of classification techniques to be
compared (Kessler et al. 2010a).

A supernova is a transient object: It can be observed over only a limited window of time.
Other variable objects show periodic behavior in their light curves, owing to either their internal
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physics (e.g., Cepheids and RR Lyrae) or their interactions with their surroundings (e.g., eclipsing
binaries). It is natural to estimate the periodogram to study the period structure in light curves,
but the irregular time spacing must be taken into account. Long gaps are often present owing to
periods when objects are hidden or not within the field of view of the telescope. A popular tool for
estimating the periodogram in the case of irregularly spaced observations, the Lomb–Scargle peri-
odogram, was developed by researchers in astrophysics (Lomb 1976, Scargle 1982). This estimator
uses least squares to determine the best-fitting family of sine waves to the observed series; this
family is then transformed into the power at different periods. Although this estimator continues
to be widely used, there has been a significant growth in the use of machine learning approaches
for classification based on any available information on the object, including the periodogram.
There is growing recognition of the need to incorporate contextual information, i.e., properties
of the neighborhood surrounding the variable object (Mahabal et al. 2011).

3.2. From Object-Specific Parameters to Canonical Parameters

Although the physical constants that parameterize the models for the Universe and its evolu-
tion remain the ultimate inferential target, the estimation of intermediate parameters in a step
between the estimation of object-specific parameters and that of the cosmological parameters is
almost always required and/or advantageous. These intermediate parameters are referred to here
as canonical parameters, as these quantities naturally retain the important information in the ob-
jects under study while providing a significant compression of the often massive catalogs. In the
ideal case, the estimator for the canonical parameter will be a minimally sufficient statistic for the
cosmological parameters under study, although it is only realistic to claim there is approximate
sufficiency. This step places significant demands on adequately accounting for observational lim-
itations. For example, Akritas & Bershady (1996) developed a technique for performing linear
regression in the case where there are dependent errors on both the predictor and explanatory
variables, with a main application being the estimation of the Tully–Fisher relation (Tully & Fisher
1977). Below is described the estimation of two other canonical parameters, the aforementioned
luminosity functions and angular correlation functions.

3.2.1. Luminosity functions. Perhaps the most fundamental example of a canonical parameter
is the luminosity function. A standard definition used in astrophysics is that a luminosity function
is the “number of objects per unit volume, per unit luminosity” (Sarjeant 2010, p. 135), but from
a statistical standpoint, the estimation of the luminosity function is effectively a rescaled density
estimation problem. Luminosity functions are calculated for all classes of objects, for example,
quasars, galaxies, stars, and white dwarfs. Note that although they are called luminosity functions,
the distributions are often expressed in terms of a related quantity, the absolute magnitude (M ).
The characteristic shape of a luminosity function is shown in Figure 4: At brighter magnitudes
(smaller M ), there is a drop in the number of objects. This is an estimate of the galaxy luminosity
function based on SDSS Data Release 6 (Montero-Dorta & Prada 2009). The estimate here is
based on a simple parametric form for the luminosity function put forth by Schechter (1976):

φS(M ) = n∗10−0.4(α+1)(M −M ∗) exp
(−10−0.4(M −M ∗)) .

However, as stated by Binney & Merrifield (1998, p. 163), “[t]his formula was initially motivated
by a simple model of galaxy formation (Press & Schechter 1974), but it has proved to have a wider
range of application than originally envisaged . . . With larger, deeper surveys, the limitations of
the simple Schechter function start to become apparent.”

Although parametric forms more complex than the Schechter model have been proposed [e.g.,
by Boyle et al. (2000)], nonparametric estimators for luminosity functions appear to be more
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Figure 4
The Schechter form for the luminosity function of galaxies, estimated from r band measurements from Sloan
Digital Sky Survey (SDSS) Data Release 6 (Montero-Dorta & Prada 2009).

promising. In fact, the earliest estimators were scaled histograms; the 1/V max method proposed
by Schmidt (1968) took its name from the fact that observations were weighted by the inverse of
the maximum volume at which that object could have been observed. This is a simple adjustment
for Malmquist bias: Inherently dim objects at a great distance are more difficult to detect, and
hence an observer would get the incorrect impression that objects at that distance are almost all
bright. With this method, a dim object will have a small value for V max, and its contribution to
the histogram will therefore be scaled up.

One way to address Malmquist bias is to treat the data as being subjected to truncation in
apparent magnitude: Only objects brighter than a cutoff are assumed to be observed, creating a
magnitude-limited sample. The cutoff is chosen such that one can believe that almost all objects
that satisfy the bound will be observed. It is, however, a standard practice to further adjust
estimates by considering the selection function of the survey, which simply reflects the varying
probability of observing a given object as a function of brightness and distance. The challenge
is that truncation in apparent magnitude creates an irregular truncation boundary in absolute
magnitude. Figure 5 shows a sample of 13,391 quasars from SDSS Data Release 3 (Richards
et al. 2006) with apparent magnitudes between 15.0 and 19.1.2 Distant quasars (those at large
redshift) that are intrinsically dim are unobservable, whereas nearby quasars that are bright are
difficult to distinguish from other objects.

Lynden-Bell (1971) introduced into the astronomy literature the nonparametric maximum
likelihood estimator (NPMLE) for the case of one-sided truncation of absolute magnitude, and
Woodroofe (1985) derived some of the asymptotic properties of this estimator. Efron & Petrosian
(1999) extended the NPMLE to the case of double truncation of absolute magnitude. Each of
these papers assumes that absolute magnitude and redshift are independent (and, hence, that the
luminosity function does not evolve with redshift). The density estimate (or distribution function
estimate) that results from a NPMLE procedure places all of the probability on observed data
values, but with the current volume of data this does not seem to be a limiting factor. Efron
& Petrosian (1999) also developed a permutation test for independence of the two variables.
Independence of absolute magnitude and redshift is a strong assumption, and evidence suggests
that it is not justified (see Boyle et al. 2000).

2The slight nonsmoothness in the boundary is caused by K-corrections.
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Figure 5
Measurements of 13,391 quasars from Sloan Digital Sky Survey (SDSS) Data Release 3. Quasars outside of
the dashed boundary are truncated to create a sample for which there is a greater degree of confidence in the
completeness within the retained region.

Recent methods have moved beyond the independence assumption and allowed for modeling
of the evolution of the luminosity function with redshift. Schafer (2007) used a semiparametric
approach in which the bivariate luminosity function h(z, M ) was decomposed into

log h (z, M ) = f (z) + g (M ) + h (z, M , θ ) ,

where h(z, M , θ ) takes an assumed parametric form intended to model the dependence between
the two random variables. For example, a physical parametric model for the evolution of the
luminosity function that could be incorporated into h(z, M , θ ) may exist; alternatively, a simple
first-order approximation has proven useful. The functions f (·) and g(·) are estimated nonparamet-
rically, and bandwidth parameters are used to control the amount of smoothness in the estimate.
Kelly et al. (2008) adopted a Bayesian approach, constructing the posterior for the parameters
of the bivariate luminosity function modeled as a mixture of Gaussian densities. A major chal-
lenge moving forward is estimation of luminosity functions in the case in which only photometric
estimates of the redshifts are available, introducing significant heteroskedastic measurement error.

3.2.2. Angular correlation functions. Homogeneity and isotropy are important assumptions
underlying inferences regarding the Universe because they imply that the Earth receives a repre-
sentative view of current and past structure, that we can take our observations as being a random
draw from the larger population of interest. It follows naturally that the processes that generated
observable structure are invariant to the direction of view. As a result, in a variety of situations, the
properties of observed fields can be summarized via an angular correlation function that relates
the covariance in that field to only the angle of separation between two directions of observation.
The correlation is often naturally expressed via its Fourier transform, the power spectrum.

A leading example arises from the model for the cosmic microwave background radiation
(CMB). The CMB is composed of photons that began to travel approximately 380,000 years after
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Figure 6
Results from measurements of the cosmic microwave background radiation (CMB) from the Planck satellite (Planck Collab. 2014a).
Panel a depicts the measured CMB anisotropy field. The red areas represent regions where the photon temperature exceeds the mean,
and the blue areas represent areas where the temperature is below the mean. (b) The estimate of the power spectrum of the field shown
in panel a. The shaded region shows the uncertainty inherent in estimating the power spectrum owing to the fact that we can only
observe a single realization of the CMB. Note that this is high at low 	 but quickly diminishes. Images courtesy of ESA and the Planck
Collaboration.

the Big Bang; prior to this, temperatures in the Universe were so high that photons could not
travel freely. The small (on the order of 200 μK) but measurable fluctuations in the temperature
of the CMB were seeded by the same processes that led to the wide range of structure visible in the
present Universe. Theory relates the stochastic properties of this field to important cosmological
parameters, and the discovery and measurement of the CMB have revolutionized the understand-
ing of the Universe. Figure 6a depicts the CMB anisotropy field based on measurements taken by
the Planck satellite (Planck Collab. 2013). Planck is the most recent in a sequence of increasingly
precise instruments to measure the CMB; important predecessors include the Cosmic Background
Explorer (COBE) (Bennett et al. 1996), for which George Smoot and John Mather were awarded
the Nobel Prize, and the Wilkinson Microwave Anisotropy Probe (WMAP) (Bennett et al. 2013).

There are significant challenges in the processing and analysis of the observations of the CMB
[see Cabella & Marinucci (2009) for a discussion]. Here, focus is placed on the model for the
constructed map of the CMB anisotropy. Earth is at the center of the sphere depicted in Figure 6a.
If z(s ) and z(t) are the observed CMB anisotropy in directions s and t, then the standard model
for the CMB assumes that (z(s ), z(t)) is a realization of a bivariate Gaussian pair with mean zero
and the following covariance:

N(s , t) +
∞∑

	=1

(
2	 + 1

4π

)
C	 (θ ) P	 (s · t) . (1)

Here, N(s , t) is a contribution from measurement error, and the remaining portion depends on
s and t only through the cosine of the angle separating the pixels. This second term is a Legendre
decomposition; P	(u) is the 	th Legendre polynomial, defined for −1 ≤ u ≤ 1. Hence, the
CMB anisotropy field is modeled as an isotropic Gaussian process on the sphere. In the absence of
measurement error, such a process is fully characterized by its spherical harmonic power spectrum
{C	(θ )}∞

	=1, which depends on the values of the cosmological parameters θ . [Extensive testing of
the Gaussianity assumption has been conducted; the reader is referred to Marinucci (2004) for an
overview of methods.]
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In an idealized experiment with perfect ability to measure the CMB anisotropy,

1
2	 + 1

(
	∑

m=−	

|a	m|2
)

(2)

is the maximum likelihood estimator of C	, where a	m is the (	, m) coefficient in the spherical har-
monic transform of the field. There are significant observational limitations, however. In addition
to error in each of the measurements, a large band exists within which the Milky Way obscures
observation of approximately a third of the CMB. As the observable has a multivariate normal
distribution with well-defined mean and covariance, derivation of the likelihood function that
takes into account the incompletely observed field is not difficult. Unfortunately, however, direct
maximization is computationally prohibitive. Following an idea promoted by Efstathiou (2004),
Planck utilized a Markov chain Monte Carlo (MCMC)-based algorithm for numerically maximiz-
ing the likelihood only for estimating the power spectrum at large angular scales (	 ≤ 50) and the
pseudo-C	 method of Hivon et al. (2002) for higher 	 (Planck Collab. 2013). For this method, one
computes the spherical harmonic coefficients on an appropriately weighted version of the field:

ã	m =
∫

z(u)W (u)Y ∗
	m(u)du,

where W (u) is the weight in direction u and Y 	m is the (	, m) spherical harmonic. The weight
is chosen to downweight noisy pixels and mask the unobserved regions. The integral is over
the sphere but approximated by a sum over pixels. [CMB analysis motivated the creation of an
equal-area pixelization scheme for the sphere, HEALPix (Górski et al. 2005).] The pseudo-C	,
denoted C̃	, are estimated from the ã	m as in Equation 2. This form is chosen because it is possible
to construct a nonsingular matrix M such that

C̃	 =
∑

	′
M 	,	′C	′ .

[The reader is referred to appendix A2 in an article by Hivon et al. (2002) for the derivation.]
The estimator follows naturally from inverting this relationship. The inefficiency of this plug-in
estimator relative to the maximum likelihood estimator (MLE) is mitigated by the large sample
of coefficients that are averaged at high 	.

Figure 6b shows the Planck estimate (Planck Collab. 2014a). Theory predicts a smooth power
spectrum, and the variability in the estimate at low 	 is due to cosmic variance, the fact that we
have only a single CMB to measure. Nonparametric regression can be used to reduce this variance,
provided care is taken to avoid smoothing over important features (Genovese et al. 2004). The
ultimate step of estimating the cosmological parameters is facilitated by an adequate approximation
to the distribution of these estimators; this process is a relatively complicated one that must take
into account a wide range of potential sources of correlation and error in the estimator. For
example, the Planck team had to account for potential error sources such as cosmic variance,
instrumental noise, the masking caused by our galaxy, and contamination from sources other than
the Milky Way, among others. As was the case for the estimator, a separate derivation is performed
at low and high 	 values. The complexity requires that the full likelihood be made available as a
subroutine (see http://wiki.cosmos.esa.int/planckpla/index.php/Main_Page for details).

3.3. From Canonical Parameters to Cosmological Parameters

Current observations are largely consistent with the Lambda Cold Dark Matter (
CDM) model,
a particularly simple model for the Universe consisting of fewer than 20 free parameters. (The
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exact number depends on the particular data set being modeled.) For example, under the 
CDM
model, the power spectrum for the CMB can be characterized by 6 free parameters. More complex
models require more parameters and, in some cases, functional quantities such as the equation of
state, which are best estimated using flexible nonparametric methods (Genovese et al. 2009). As
stated previously, estimation of cosmological parameters typically relies on the theory that relates
these parameters to canonical parameters, so estimation for the cosmological parameters proceeds
by treating the estimate of the canonical parameter as the data. In the ideal case, this estimator
would be minimally sufficient for the cosmological parameters.

For example, the anisotropy observed in the CMB evolved from perturbations in the initial
density field, which, under a simple model, is assumed to have power law spectrum A(k), param-
eterized by As and ns . Then the power spectrum for the CMB is

C	 (θ ) ∝
∫ (

g (	, k, θ )2 A (k)
k

)
dk, (3)

where g is the transfer function relating the two spectra. The remaining parameters in θ in-
clude those that decompose the total matter or energy density of the Universe into important
constituents; their total is denoted �. The components of � express density relative to the crit-
ical density, which is the amount of matter/energy needed to eventually force the Universe to
stop expanding and collapse. If � = 1, the Universe is flat. A leading theory is that the early
Universe had a period of very rapid expansion, called inflation (Guth 1981); this theory explains
observational evidence that suggests the Universe is flat, or nearly so. Recent analysis showed
that Planck observations are consistent with inflation (BICEP2 Collab. 2014). The components
of � include �m, the density of total matter, and �
, the density of dark energy. The 
CDM
model assumes that �
 + �m = � = 1. Examples of other important parameters include the
optical depth (τ ), which characterizes the probability that a CMB photon would have reion-
ized, and the Hubble parameter (H 0), which represents the current rate of expansion of the
Universe.

3.3.1. Classic approaches. A long-standing approach to parameter estimation in astrophysics is
least squares, finding the value of the parameter θ that minimizes the sum of squared deviations
between the estimated canonical parameter and its theoretical prediction under θ :

χ2(θ ) =
n∑

i=1

(
f̂i − fi (θ )

σi

)2

,

where f̂ = ( f̂1, f̂2, . . . , f̂n) is the estimated canonical parameter, f (θ ) is its theoretical prediction
under cosmological parameters θ , and σi is the error in f̂i . (Assumed covariance structure in f̂ is
often incorporated in the natural way.) The literature is filled with references to χ2 values (the
sums of squared deviations for a fit) and reduced χ2 values (these sums of squares divided by
the degrees of freedom). The development is well presented in the standard text of Bevington
(1969). Uncertainties in the parameters are calculated based on the Hessian of the χ2 function at
its minimum. Avni (1976) assumed that χ2 has the chi-squared distribution in order to construct
a widely used procedure for constructing confidence regions for θ : The region consists of all
parameter values θ ′ for which χ2(θ ′) − χ2(θ̂ ) is less than some constant.

This least squares construction clearly performs best in cases in which f̂ is approximately
Gaussian with mean f (θ ) and covariance consistent with the assumed form; in this case, the use
of the curvature in the χ2 surface matches the well-grounded usage of MLEs. The limitations of
these approximations are evident as more data become available and greater precision is expected
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Table 1 The seven parameters in the Lambda Cold Dark Matter (
CDM) modela

Parameter Description MLE 68% credible interval
�b Baryonic matter density 0.0490 0.0490 ± 0.0073
�m Total matter density 0.3175 0.314 ± 0.020
�
 Dark energy density 0.6825 0.686 ± 0.020
H 0 Rate of expansion (km/s/Mpc) 67.11 67.4 ± 1.4
τ The optical depth 0.0925 0.097 ± 0.038
As Amplitude of initial spectrum (×109) 2.215 2.23 ± 0.16
ns Spectral index of initial spectrum 0.9624 0.9616 ± 0.0094

aThe parameters that define the 
CDM model, as estimated by Planck (Planck Collab. 2013). Under this model the
Universe is assumed to be flat, so �m + �
 = 1. Hence there are six free parameters. Abbreviation: MLE, maximum
likelihood estimate.

in estimates. As a result, there has been a shift toward the appropriate application of maximum
likelihood estimation, which has emphasized constructing Fisher information matrices for quoting
uncertainties and confidence regions. This naturally places an increased burden on the adequate
modeling of the relevant likelihood function.

3.3.2. The rise of Bayesian methods. A prominent challenge in these inference problems
is the complexity of the relationships between the cosmological parameters and the likelihood
for the estimator of the canonical parameter. This complexity is largely a result of the indirect
relationship between these parameters and the observables. For example, as presented above, the
power spectrum of the CMB is derived from input cosmological parameters by modeling the
effect of these parameter values on the properties of the Universe, which in turn affect the paths
of the CMB photons. Hence, the mapping from cosmological parameters to a power spectrum
is available only via sophisticated computer subroutines, the most widely used being CMBFAST
(Seljak & Zaldarriaga 1996, 1999).

In large part owing to these limitations, Christensen et al. (2001) and Knox et al. (2001)
promoted the use of MCMC techniques for cosmological parameter estimation and for the CMB
case in particular. Bayesian methods had been utilized and promoted in astrophysics prior to this
time [see Loredo (2013) for background], but the computational advantages of MCMC brought
them into much wider use. The random walks that underlie MCMC can proceed in a natural
manner in cosmological parameter space, requiring only the calculation of the forward mapping
from these parameter values into the needed likelihood. The Bayesian approach also allows for
the easy construction of one-dimensional and multidimensional region estimates of the unknowns
via marginalizations of the posterior. By the time the parameter estimates from the Wilkinson
Microwave Anisotropy Probe (WMAP) (Verde et al. 2003) were released, MCMC had become
the widely accepted approach to estimating cosmological parameters, and the Bayesian philosophy
had been embraced.

Significant effort has been placed into the construction of tools that ease the application of
MCMC in cosmology. Planck utilized the software package CosmoMC (Lewis 2013, Lewis
& Bridle 2002) to implement MCMC for cosmological parameter estimation. Table 1 shows
the MLEs and 68% credible intervals for the key parameters of the 
CDM model (Planck
Collab. 2014a).3 Careful consideration is also placed on appropriate parameterization in which to

3Note that it is standard in astrophysics to construct 68% intervals owing to their connection with error bars of size equal to
the standard error intervals. It is also common to call these “confidence intervals” even though they are based on the posterior.
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implement the chains of the MCMC; there are significant degeneracies between parameters that
can lead to poor performance if not addressed (Kosowsky et al. 2002). CosmoPMC (Kilbinger et al.
2011) implements the population Monte Carlo (PMC) approach developed by Cappé et al. (2008)
for use in the same contexts as an alternative to MCMC for approximating the posterior for cosmo-
logical parameters. The reader is referred to Wraith et al. (2009) for a comparison of the methods.

Improvements in the quantity and resolution of the available data have resulted in a corre-
sponding need to improve the quality of the approximations to the likelihood functions that relate
the cosmological parameters to the distribution for the estimators for the canonical parameters. A
growing challenge (opportunity) is the utilization of sophisticated simulation models that recreate
relevant aspects of the data-generation process. It is increasingly becoming the case that such
models reflect the best understanding of the relationships between parameters of interest and the
observables. In describing the GADGET-2 simulation model, Springel (2005, p. 1105) stated
that “[w]ithout numerical simulations, the 
CDM model may arguably not have developed into
the leading theoretical paradigm . . . because direct simulation is often the only available tool to
compute accurate theoretical predictions in the highly non-linear regime of gravitational dynam-
ics and hydrodynamics.” GADGET-2 and its descendants were used to create the Millennium
Simulations (Angulo et al. 2012, Boylan-Kolchin et al. 2009, Springel et al. 2005). The resulting
catalogs are studied in much the same way as observed data: Comparisons are made between
the resulting estimates of luminosity functions and other canonical parameters to validate the
parameter estimates that result from observational studies [see, for example, Guo et al. (2011)].
There are significant practical limitations to the use of these simulations models to constrain cos-
mological parameters, as exploration of the cosmological parameter space is not computationally
feasible. Schneider et al. (2008, p. 1) describe methods for constructing Gaussian process emulators
of complex simulation models, motivating their work by pointing out that “[t]he computational
demands for future observations will only increase as more accurate theoretical predictions are
required to match the reduced errors in the data.” Many smaller-scale simulation codes exist (e.g.,
SNANA) that can feasibly be used for parameter estimation; such codes have the advantage that
observational effects can be incorporated into the process (Weyant et al. 2013).

4. DISCUSSION

The above examples are only a sampling of the ways in which statistical inference plays a role in as-
trophysics. Nevertheless, these examples have been chosen to illustrate some important challenges
in this domain. First, methods must be able to handle massive data sets in order to be practical.
Future surveys such as the LSST will gather data on billions of objects, and taking full advantage
of these data sets will place unprecedented demands on statistical methods. Second, observational
limitations play an important role. The isotropy and homogeneity assumptions allow properties
of the Universe to be inferred from the limited view from the Earth, but significant errors that
would result from not adjusting for limitations such as Malmquist bias remain. Third, methods
need to be able to deal with heteroskedastic measurement error. Careful attention must be paid to
the errors in the estimates of the object-specific parameters, especially at the stage of estimating
canonical parameters. These estimates will inevitably be subject to an amount of error that de-
pends on other properties of the object. Fourth, the ultimate target, the cosmological parameters,
are related to the observables in complex ways. As the CMB example illustrates, even though the
observations constrain the cosmological parameters, the nature of the relationship is often indi-
rect. In many cases of interest, the best hope may be to model the data-generating process using
realistic simulation models. Finally, a shift from a variance-dominated era to a bias-dominated
era has occurred. As sample sizes have increased, there has been a move from concern with the
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variance of estimators to concern with bias, often referred to as systematic errors by astrophysi-
cists. These errors arise from a range of sources, including likelihood function misspecification,
observational biases, and so forth. Greater attention must be focused on methods for dealing with
this source of error; for instance, Lee et al. (2011) present a general method for modeling the bias
due to instrumental errors. Clearly, astrophysics will continue to grow as a source of challenging
and interesting statistical inference problems.

SUMMARY POINTS

1. Statistical inference is a key component of modern research in astrophysics, as the field
is becoming increasingly data driven.

2. Many astrophysical studies have the ultimate goal of estimating key cosmological
parameters.

3. Inference challenges in astrophysics are characterized by complexity: The relationship
between cosmological parameters and the observable data is complex, and these data are
of complex form. For this reason, it is useful to break the full inference process into three
distinct stages.

4. The first stage of inference, estimating properties of celestial objects from the raw ob-
servables, is often challenging owing to limitations in what can be observed and errors
in the measurements that are available.

5. The second stage of inference, estimating canonical parameters from the object-specific
properties, is often made difficult by our Earth-centered, noisy, limited view of the
Universe.

6. The third stage of inference, estimating the cosmological parameters from the estimates
of the canonical parameters, requires careful consideration of the distribution of these
estimates. Markov chain Monte Carlo is a popular technique for this stage.

7. At all stages, great care must be taken to adequately model the joint distribution of errors
in the estimates and then to carry these errors forward into the subsequent analysis.

FUTURE ISSUES

1. Because of ongoing surveys such as the Sloan Digital Sky Survey (SDSS), as well as future
surveys such as the Large Synoptic Survey Telescope (LSST), the already substantial
volume of data available to astronomers is only growing. Focus must be placed on the
development of procedures that can take advantage of this, avoiding data reduction steps
that discard useful physical information.

2. The LSST will be an exclusively photometric survey, meaning that statistical inference
procedures must be adapted to handle the low-resolution nature of this information. In
particular, techniques for accurately estimating redshift and classifying observed objects
are crucial.

3. Cosmological simulation models continue to grow in their accuracy and resolution, but
to fully exploit these tools, inference procedures must be able to adapt to situations in
which a simple likelihood function is unavailable.
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4. As the volume of data grows, the field shifts from variance-dominated challenges to
bias-dominated challengs. Statistical procedures must adapt by adequately modeling and
incorporating errors in the measurements and estimates derived from those data. Non-
parametric procedures will play a central role at this stage.
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