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Abstract

Markov chain Monte Carlo (MCMC) algorithms are an indispensable tool
for performing Bayesian inference. This review discusses widely used sam-
pling algorithms and illustrates their implementation on a probit regression
model for lupus data. The examples considered highlight the importance of
tuning the simulation parameters and underscore the important contribu-
tions of modern developments such as adaptive MCMC. We then use the
theory underlying MCMC to explain the validity of the algorithms consid-
ered and to assess the variance of the resulting Monte Carlo estimators.
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1. INTRODUCTION

A search for Markov chain Monte Carlo (MCMC) articles on Google Scholar yields over 100,000
hits, and a general web search on Google yields 1.7 million hits. These results stem largely from
the ubiquitous use of these algorithms in modern computational statistics, as we now describe.

MCMC algorithms are used to solve problems in many scientific fields, including physics
(where many MCMC algorithms originated), chemistry, and computer science. The widespread
popularity of MCMC samplers is largely due to their impact on solving statistical computation
problems related to Bayesian inference. Specifically, suppose we are given an independent and
identically distributed (i.i.d.) sample {x1, . . . , xn} from a parametric sampling density f (x|θ ), where
x ∈ X ⊂ Rk and θ ∈ � ⊂ Rd . Suppose we also have some prior density p(θ ). Then, the Bayesian
paradigm prescribes that all aspects of inference should be based on the posterior density

π (θ |�x) = p(θ ) f (�x|θ )∫
�

p(θ ) f (�x|θ )dθ
, 1.

where �x = {x1, . . . , xn}. Of greatest interest are the posterior means of functionals g : X → R,
defined by

I =
∫

�

g(θ )π (θ |�x)dθ =
∫

�
g(θ )p(θ ) f (�x|θ )dθ∫
�

p(θ ) f (�x|θ )dθ
. 2.

Such expectations are usually impossible to compute directly because of the integrals that appear
in the denominators of Equations 1 and 2. However, we can still study Equation 2 as long as we can
sample from π . In the traditional Monte Carlo paradigm, we generate an i.i.d. sample θ1, . . . , θM

from π and estimate I from Equation 2 using

ÎM = 1
M

M∑
i=1

g(θi ). 3.

This estimate generally works well in cases where the i.i.d. sample θ1, . . . , θM can be generated,
and in particular ÎM → I with probability 1 as M → ∞.

However, when π is complicated and high-dimensional, classical methods devised to draw
independent samples from the distribution of interest cannot be implemented. In this case, an
MCMC algorithm proceeds instead by constructing an updating algorithm for generating θt+1

once we know θt . MCMC updating algorithms are constructed by specifying a set of transition
probabilities for an associated Markov chain (e.g., Meyn & Tweedie 1993, Tierney 1994). The
MCMC method then uses the realizations θ1, . . . , θM obtained from the Markov chain as the
Monte Carlo sample in Equation 3, or more commonly with the slight modification

ÎM = 1
M − B

M∑
i=B+1

g(θi ), 4.

where B is a fixed nonnegative integer (e.g., 1,000) indicating the amount of burn-in, i.e., the
number of initial samples that will be discarded because they are excessively biased toward the
(arbitrary) initial value θ0. If the Markov chain has π as an invariant distribution, and if it satisfies
the mild technical conditions of being aperiodic and irreducible, then the ergodic theorem implies
that with probability one, ÎM → I as M → ∞ (see Section 8.1).

Unlike the traditional Monte Carlo methods, in which the samples are independent, MCMC
samplers yield dependent draws. Thus, the theoretical study of these algorithms is much more
difficult, as is the assessment of their convergence speed and Monte Carlo variance. A compre-
hensive evolution of the field can be traced through the articles included in volumes edited by
Spiegelhalter et al. (2002) and Brooks et al. (2011) and can be found in books devoted to Monte

180 Craiu · Rosenthal



ST01CH09-Rosenthal ARI 25 November 2013 13:47

Table 1 The number of latent membranous lupus nephritis cases (numerator), and the total number of cases
(denominator), for each combination of the values of the two covariates

IgA = 0 IgA = 0.5 IgA = 1 IgA = 1.5 IgA = 2
�IgG = −3.0 0/1 – – – –
�IgG = −2.5 0/3 – – – –
�IgG = −2.0 0/7 – – – 0/1
�IgG = −1.5 0/6 0/1 – – –
�IgG = −1.0 0/6 0/1 0/1 – 0/1
�IgG = −0.5 0/4 – – 1/1 –
�IgG = 0 0/3 – 0/1 1/1 –
�IgG = 0.5 3/4 – 1/1 1/1 1/1
�IgG = 1.0 1/1 – 1/1 1/1 4/4
�IgG = 1.5 1/1 – – 2/2 –

Carlo methods in statistics, such as those by Chen et al. (2000), Liu (2001), and Robert & Casella
(2004, 2010). We recognize that for those scientists who are not familiar with MCMC techniques
but need to use them for statistical analysis, the wealth of information contained in the literature
can be overwhelming. Therefore, this review provides a concise overview of the ingredients needed
for using MCMC in most applications. As we discuss these ingredients, we point the reader in
need of more sophisticated methods to the relevant literature.

1.1. Example: Lupus Data

As a specific example, we present lupus data that were analyzed first by van Dyk & Meng (2001)
and subsequently by Craiu & Meng (2005) and Craiu & Lemieux (2007). These data, presented
in Table 1, contain disease statuses for 55 patients, 18 of whom have been diagnosed with latent
membranous lupus, together with two clinical covariates, IgA and �IgG (�IgG = IgG3 − IgG4),
which are computed from the patients’ levels of immunoglobulin of types A and G, respectively.

To model the data generation process we need to formulate the sampling distribution of the
binary response variable. We can follow van Dyk & Meng (2001) and consider a probit regression
(PR) model: For each patient 1 ≤ i ≤ 55, we model the disease indicator variables as independent,

Y i ∼ Bernoulli
(
�(xT

i β)
)
, 5.

where �(·) is the cumulative distribution function (CDF) of N(0, 1), xi = (1, �IgGi , Ig Ai ) is the
covariate vector, and β is a 3 × 1 parameter vector. We assume a flat prior p(β) ∝ 1 throughout
the paper.

For the PR model, the posterior is thus

πPR(�β| �Y, �IgA, ��IgG) ∝
55∏

i=1

[
�(β0 + �IgGiβ1 + Ig Aiβ2)Y i

× (1 − �(β0 + �IgGiβ1 + Ig Aiβ2))(1−Y i )] .

6.

We return to this example several times below.

1.2. Choice of Markov Chain Monte Carlo Algorithm

Not all MCMC samplers are used equally. Ease of implementation (e.g., preexisting software),
simplicity of formulation, computational efficiency, and good theoretical properties all contribute
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(not necessarily in that order) to an algorithm’s successful and rapid dissemination. In this article,
we focus on the most widely used MCMC samplers: the Metropolis–Hastings (MH) algorithm
(Section 2), the Gibbs sampler (Section 3), and variable-at-a-time Metropolis (Section 4). We also
discuss the optimization and adaptation of MCMC algorithms (Section 5), the use of simulated
tempering (Section 6), the assessment of MCMC errors (Section 7), and the theoretical foundations
of MCMC (Section 8).

2. THE METROPOLIS–HASTINGS ALGORITHM

2.1. Overview of the Metropolis–Hastings Algorithm

The MH algorithm was developed by Metropolis et al. (1953) and Hastings (1970). It updates the
state of the Markov chain as follows. [For simplicity, we write the target (posterior) distribution as
simply π (θ ).] Assume that the state of the chain at time t is θt . Then, the updating rule to construct
θt+1 (i.e., the transition kernel for the MH chain) is defined by the following two steps:

Step 1: A proposal ωt is drawn from a proposal density q (ω|θt);
Step 2: Set

θt+1 =
{

ωt with probability r
θt with probability 1 − r

,

where

r = min
{

1,
π (ωt)q (θt |ωt)
π (θt)q (ωt |θt)

}
. 7.

The acceptance probability generated by Equation 7 is independent of the normalizing constant
for π (i.e., this probability does not require the value of the denominator in Equation 1) and is
chosen precisely to ensure that π is an invariant distribution, the key condition to ensure that
ÎM → I as M → ∞ as discussed above; see Section 8.2.

The most popular variant of the MH algorithm is the random walk Metropolis (RWM) algo-
rithm, in which ωt = θt + εt , and εt is generated from a spherically symmetric distribution, e.g.,
the Gaussian case for which εt ∼ N (0, 
). Another common choice is the independence sampler
(IS), in which q (ω|θt) = q (ω); i.e., ωt does not depend on the current state of the chain, θt . In
general, RWM is used in situations for which we have little idea about the shape of the target dis-
tribution and therefore need to meander through the parameter space. In the opposite situation,
in which we have a pretty good idea about the target π , we are able to produce a credible approxi-
mation q that can be used as the proposal in the IS algorithm. Modifications of these MH samplers
include the delayed-rejection (Green & Mira 2001), multiple-try Metropolis (Casarin et al. 2013,
Liu et al. 2000), and reversible-jump algorithms (Green 1995, Richardson & Green 1997), among
others.

In practice, one must decide which sampler to use and, maybe more importantly, what values
to choose for the simulation parameters. For instance, in the case of the RWM, the proposal
covariance matrix 
 plays a crucial role in the performance of the sampling algorithm (Roberts
et al. 1997, Roberts & Rosenthal 2001).

2.2. Application to the Lupus Data

To see the effect of these choices in action, let us consider the lupus data under the PR model
formulation. The target distribution has density given by Equation 6. Because we have little idea of
the shape of πPR, selecting a suitable independence proposal distribution will be difficult. Instead,
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we use the RWM algorithm with a Gaussian proposal. We illustrate this using two possible
choices for the variance-covariance matrix � of the Gaussian proposal distribution: 
1 = 0.6 I3

and 
2 = 1.2 I3, where Id is the identity matrix in Rd×d .
In Figure 1a, we plot 5,000 samples for (β0, β1) obtained from the RWM with proposal

variance 
1. This plot is superimposed on the two-dimensional projection of the contour plot for
the density πPR, which has been obtained from a large Monte Carlo sample produced by a state-
of-the-art sampler and which offers an accurate description of the target. The two red lines mark
the coordinates of the initial value of the chain chosen to be the maximum likelihood estimate
for β. Note that the samples do not cover the entire support of the distribution. Moreover, from
the autocorrelation plots shown in Figure 1b, we can see that this chain is very “sticky,” i.e., the
realizations of the chain are strongly dependent despite an acceptance rate of 39%. As discussed
in Section 5, this rate is usually considered reasonably high. Thus, one may be tempted to believe
that the strong dependence between the Monte Carlo draws is due to the proposal variance being
too small because sampling from a normal distribution with a small variance results in draws that
are close to the mean.
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Figure 1
(a,c) Scatterplots of 5,000 samples for (β0,β1) obtained using random walk Metropolis (RWM) with proposal variances (a) �1 and
(c) �2. The points are superimposed on the two-dimensional projection of the contour plot for the target πPR. (b,d ) Autocorrelation
plots for the three components of the chain for RWM with proposal variances (b) �1 and (d ) �2. Abbreviation: ACF, autocorrelation
function.
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Figure 2
Pair plots for the samples obtained using random walk Metropolis with proposal variance �2.

We consider doubling the variance and use �2 = 1.2 I3 as the proposal’s covariance matrix.
The larger variance brings the acceptance rate down to 24%. Figure 1c shows the same plots
as Figure 1a for the sampler that uses �2. The chain seems to travel further into the tails of
the distribution, but the serial correlation remains extremely high. Such a high autocorrelation
implies that the 5,000-element Monte Carlo sample contains the same amount of information
that a much smaller sample of independent realizations would contain. This reduction in effective
sample size is computationally wasteful because we spend a lot of time collecting samples that
are essentially uninformative. In fact, under certain conditions, Geyer (1992) has shown that the
asymptotic variance of ÎM is σ 2/M , where

σ 2 = Varπ {g(θ )} + 2
∞∑

k=1

cov{g(θ1), g(θk+1)}, 8.

which illustrates the importance of having small correlations between the successive draws θt .
The high autocorrelation between the successive draws can be explained if we consider the

the strong posterior dependence between the parameters, as illustrated by Figure 2, in which
we have plotted the samples obtained in pairs. These plots provide an intuitive explanation for
the poor mixing exhibited by the two RWM samplers because their proposals have independent
components and therefore deviate significantly from the target configuration. We use these RWM
algorithms for the aforementioned lupus data to illustrate various theoretical considerations about
MCMC in Section 8.4.
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3. THE GIBBS SAMPLER

3.1. Overview of the Gibbs Sampler

The Gibbs sampler algorithm was first used by Geman & Geman (1984) in the context of image
restoration. Subsequently, Gelfand & Smith (1992) and Tanner & Wong (1987) recognized the
algorithm’s power for fitting statistical models. Assume that the vector of parameters θ ∈ Rd is
partitioned into s subvectors so that θ = (η1, . . . , ηs ). Assume that the current state of the chain is
θ (t) = (η(t)

1 , . . . , η(t)
s ). The transition kernel for the Gibbs chain requires updating each subvector

in turn by sampling it from its conditional distribution, given all of the other subvectors. More
precisely, step t + 1 of the sampler involves the following updates:

η
(t+1)
1 ∼ π

(
η1|η(t)

2 , . . . , η(t)
s

)
η

(t+1)
2 ∼ π

(
η2|η(t+1)

1 , η
(t)
3 , . . . , η(t)

s

)
. . . . . . . . .

η(t+1)
s ∼ π

(
ηs |η(t+1)

1 , η
(t+1)
2 , . . . , η

(t+1)
s −1

)
.

9.

Cycling through the blocks in a fixed order defines the Gibbs sampler with deterministic scan;
an alternative implementation involves a random scan in which the next block to be updated is
sampled at random, and each η j has a strictly positive probability of being updated. In general, it is
not known whether the Gibbs sampler with random scan is more efficient than the Gibbs sampler
with deterministic scan (Amit 1991, 1996; Liu et al. 1995). An obvious choice for the blocks η

is obtained when s = d and η j = θ j for 1 ≤ j ≤ d . Whenever possible, however, the blocks η

should contain as many individual components of θ as possible while being able to sample from
the conditional distributions in Equation 9 (see the analysis of Liu et al. 1994).

3.2. Application to the Lupus Data

The Gibbs sampler cannot be implemented directly because, as can be seen from Equation 6, the
conditional distribution of β j given the data and all of the other parameters cannot be sampled di-
rectly. However, this difficulty dissolves once we expand the model specification to include auxiliary
variables (see also Albert & Chib 1993). Specifically, for each i ∈ {1, . . . , 55}, consider the latent
variables ψi ∼ N (xT

i β, 1), of which only the sign Yi is observed [i.e., Y i = 1(ψi > 0)]. Let X be the
n × p matrix with ith row xi and ψ = (ψ1, . . . , ψn). After introducing ψ , we notice that the con-
ditional distributions of β|ψ, X and ψ |β, Y can be sampled directly. Alternatively, sampling from
these two conditional distributions will yield draws from the conditional distribution p(β,ψ |X, Y ),
the marginal of which, in β, is the target π (β). The Monte Carlo approach makes marginalization
easy because we need only to drop the ψ values from the samples {(βt, ψt); 1 ≤ t ≤ M } drawn
from p(β,ψ |X, Y ) and thereby retain only the samples {βt ; 1 ≤ t ≤ m} as draws from the target
π (β). This computational strategy of expanding the model so that conditional distributions are
available in closed form is known as the data augmentation (DA) algorithm (Tanner & Wong
1987).

The Gibbs sampler (or DA algorithm) for the lupus data alternates between sampling from

β|ψ, X ∼ N (β̃, (XT X)−1),

with β̃ = (XT X)−1XT ψ , and

ψi |β, Y i ∼ TN (xT
i β, 1, Y i ),
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where TN (μ, σ 2, Y ) is N (μ, σ 2) truncated to be positive if Y = 1 and negative if Y = 0. In this
formulation, η1 = (β0, β1, β2)T and η j+1 = ψ j for every j = 1, . . . , n.

The Gibbs sampling algorithm does not require tuning and does not reject any of the samples
produced. Despite these apparent advantages, the Gibbs sampler is not always preferred over
the MH algorithm. For instance, in the PR model considered here, the chain moves slowly across
the parameter space. In Figure 3a we plot its trajectory for the first 300 samples when started at the
maximum likelihood estimate (MLE). The sluggishness suggested by Figure 3a is confirmed by
the autocorrelation plots, which show strong and persistent serial dependence for each parameter
(Figure 3b). This dependence is not necessarily a characteristic of Gibbs samplers; the high
posterior dependence between parameters in the lupus data makes convergence to the target
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Figure 3
(a) Trajectory of the Gibbs chain for 300 updates for (β0, β1) (c) Scatterplots of 5,000 samples for (β0, β1) obtained using
variable-at-a-time MH. The points are superimposed on the two-dimensional projection of the contour plot for the target πPR.
(b,d ) Autocorrelation plots for the three components of the chain for (b) the Gibbs sampler and (d ) variable-at-a-time MH.
Abbreviation: ACF, autocorrelation function; MH, Metropolis–Hastings.
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difficult because the Gibbs sampler will always attempt to move the chain in directions that are
parallel to the coordinate axes.

DA algorithms have been studied extensively owing to their intensive use in statistical mod-
elling, e.g., linear and nonlinear mixed models and mixture models for which the auxiliary latent
variables are natural extensions of the model specification. Liu & Wu (1999) and Meng & van
Dyk (1999) propose modified versions of the basic DA algorithm that are designed to break the
serial dependence between the Monte Carlo samples and that have the potential to drastically
improve the mixing of the Markov chain. We refer the reader to van Dyk & Meng (2001) for an
implementation of a marginal DA algorithm for the lupus data.

4. VARIABLE-AT-A-TIME METROPOLIS

4.1. Overview of Variable-at-a-Time Metropolis

Metropolis-style moves can be combined with Gibbs-style variable-at-a-time moves to create a
variable-at-a-time Metropolis algorithm. [This algorithm is also sometimes called Metropolis-
within-Gibbs, but it was actually the original form of the algorithm used by Metropolis et al.
(1953).]

Assume again that the vector of parameters θ ∈ Rd is partitioned into s subvectors such that
θ = (η1, . . . , ηs ). Variable-at-a-time Metropolis then proceeds by proposing to move just one
coordinate (or subset of coordinates) at a time, leaving all other coordinates fixed. In its most
common form, we might try to move the ith coordinate by proposing a new state ωt+1, where
ωt+1, j = ηt, j for all j 
= i , and where ηt,i ∼ N (ηt,i , σ

2). (Here ωt+1, j is the jth coordinate of ωt+1,
etc.) We then accept the proposal ωt+1 according to the MH rule (see Equation 7).

As with the Gibbs sampler, we need to choose which coordinate to update each time.
Again, we can proceed either by choosing coordinates in the sequence 1, 2, . . . , d , 1, 2, . . .

(systematic-scan) or by choosing the coordinate to update uniformly from {1, 2, . . . , d } on each
iteration (random-scan). (In this formulation, one systematic-scan iteration is roughly equivalent
to d random-scan ones.)

The variable-at-a-time Metropolis algorithm is often a good generic choice. Unlike the full
Metropolis algorithm, it does not require moving all coordinates at once (which can be challenging
to do efficiently). In addition, unlike Gibbs sampling, variable-at-a-time Metropolis does not
require the ability to sample from the full conditional distributions (which could be infeasible).

4.2. Application to the Lupus Data

We now try using a componentwise RWM to update each coordinate of β. Specifically, the
proposal ωt+1,h is generated from N (βt,h, σ

2
h ) at time t + 1 for each coordinate h and is accepted

with probability
min{1, π (ωt+1,h |βt,[−h])/π (βt,h |βt,[−h])}, 10.

where βt,[−h] is the vector of the most recent updates for all the components of β except βh . Note
that the ratio involved in Equation 10 is identical to π (ωt+1,h, βt,[−h])/π (βt,h, βt,[−h]) and can be
computed in closed form because it is independent of any unknown normalizing constants.

We have implemented the algorithm using σ = (
√

5, 5, 2
√

2). These values were chosen to
yield acceptance rates for each component of between 20% and 25%. Figure 3c shows the samples
obtained, and Figure 3d presents the autocorrelation functions. Notice that although the serial
dependence is smaller than in the full MH implementation, it remains high. Also, the samples
cover most of the support of the posterior density π . In the one-at-a-time implementation, we are
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no longer forcing all components of the chain to move together simultaneously, which seems to
improve the spread of the resulting sample.

5. OPTIMIZING AND ADAPTING THE RANDOM WALK
METROPOLIS ALGORITHM

Consider the RWM algorithm with proposals ωt = θt + εt , where εt ∼ N (0, 
) (i.i.d.). Although
very specific, this algorithm still allows for great flexibility in the choice of proposal covariance
matrix 
. This raises the question of what 
 leads to the best performance of the algorithm, which
we now discuss.

5.1. Optimal Scaling

We first note that if the elements on the diagonal of 
 are very small, then the proposals ωt will
usually be very close to the previous states θt . Thus, the proposals will usually be accepted, but the
chain will hardly move, which is clearly suboptimal. However, if 
 is very large, then the proposals
ωt will usually be very far from the previous states θt . Thus, these proposals (especially in high
dimensions) will likely be out in the tails of the target density π in at least one coordinate and
thus will likely have much lower π values. This implies that they will almost always be rejected,
which is again clearly suboptimal. The optimal scaling, then, is somewhere in between these two
extremes. That is, we want our proposal scaling to be neither too small nor too large. Rather, it
should be “just right” (this is sometimes called the Goldilocks principle).

In a pioneering paper, Roberts and colleagues (1997) took this a step further, proving that (for
a certain idealized high-dimensional limit, at least) the optimal acceptance rate (i.e., the limiting
fraction of accepted proposed moves) is equal to the specific fraction 0.234, ∼23%. However, any
acceptance rate between ∼15% and 50% is still fairly efficient (see, e.g., Roberts & Rosenthal
2001, figure 3). Later optimal scaling results obtained by Roberts & Rosenthal (2001) and Bedard
(2006) indicate that (again, for a certain idealized high-dimensional limit) the optimal proposal
covariance 
 should be chosen to be proportional to the true covariance matrix of the target
distribution π (with the constant of proportionality chosen to achieve the 0.234 acceptance rate).
In Figure 4, we compare two RWM chains with similar acceptance rates but different choices of
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Figure 4
Trace plots of the first coordinate of random walk Metropolis on the same 20-dimensional target. Acceptance rates in both plots are
approximately 0.234, and the proposal covariance matrix 
 is proportional to either (a) the identity I20 or (b) the target covariance
matrix. The run in (b) clearly mixes much faster.
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the proposal distribution variance. The chain for which the variance of the proposal distribution
is proportional to that of the target exhibits considerably better mixing.

5.2. Adaptive Markov Chain Monte Carlo

Unfortunately, one generally has little idea about the true covariance of π at the beginning of a
simulation. Thus, direct application of the optimal scaling results of the previous section is difficult
or impossible. One possible approach is to first perform a number of exploratory MCMC runs
to get an idea of the geography of the target’s important regions and to then use this knowledge
to tune the proposal to be approximately optimal. However, this approach requires restarting the
chain multiple times, using each run to tune different subsets of the simulation parameters. Because
this process can be lengthy and onerous, especially in high-dimensional spaces, it generally has
limited success in complex models.

Alternatively, one can build upon the recent advances in adaptive MCMC (AMCMC) in which
the proposal distribution is updated continuously at any time t using the information contained
in the samples obtained up until that time (see, e.g., Bai et al. 2011, Craiu et al. 2009, Haario
et al. 2001, Roberts & Rosenthal 2009). Such an approach does not require restarting the chain
and can be fully automated. However, this approach requires careful theoretical analysis because
the process loses its Markovian property by using the past realizations of the chain (instead of
using only its current state), and asymptotic ergodicity must be proven on a case-by-case basis.
Fortunately, the general frameworks developed by, e.g., Andrieu et al. (2005) and Roberts &
Rosenthal (2007), have made proving the validity of adaptive samplers easier.

5.3. Application to the Lupus Data

We have implemented the adaptive RWM proposed by Haario et al. (2001) (see also Roberts &
Rosenthal 2009) in which at each time t > 1,000, we use the following approximation for 
 in the
Gaussian proposal:


t = (2.4)2

3
SamVart + εI3, 11.

where ε = 0.01 and SamVart is the sample variance of all samples drawn up to time t − 1. This
adaptation attempts to mimic the theoretical optimal scaling results discussed in Section 5.1; if
SamVart happened to equal the true covariance matrix of π and if ε = 0, then Equation 11 would
indeed be the optimal proposal covariance. Figure 5 shows the same plots as those generated
for Figure 1a–d. The reduction in serial autocorrelation is apparent. For instance, the mean,
median, lower quartile, and upper quartile for the autocorrelations of the RWM sampler with 
2

computed up to lag 200 equal 0.537, 0.513, 0.377, and 0.664, respectively; they equal the much
smaller values 0.065, 0.029, 0.007, and 0.059, respectively, for the adaptive RWM.

6. SIMULATED TEMPERING

Particular challenges arise in MCMC when the target density π is multimodal, i.e., the target
density has distinct high-probability regions separated by low-probability barriers that are difficult
for the Markov chain to traverse. In such cases, a simple MCMC algorithm such as RWM may
easily explore well within any one modal region, but the chain may take an unfeasibly long time
to move between modes. This leads to extremely slow convergence and poor resulting estimates.

Simulated tempering attempts to flatten out the distribution into related distributions with less
pronounced modes that can be sampled more easily. If done carefully, simulated tempering can
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Figure 5
Left panel: Scatterplot of 30,000 samples for (β0,β1) obtained using random walk Metropolis (RWM) with adaptive variance. The
points are superimposed on the two-dimensional projection of the contour plot for the target πPR. Right panels: Autocorrelation plots
for the three components of the chain show much lower serial dependence when compared with nonadaptive RWM samplers.
Abbreviation: ACF, autocorrelation function.

compensate for this flattening out, ultimately yielding good estimates for expected values from
the original target density π , as explained below.

Specifically, simulated tempering requires a sequence π1, π2, . . . , πm of target densities, where
π1 = π is the original density and πτ is flatter for the distributions for which τ is large. (The
parameter τ is usually referred to as the temperature, making π1 the cold density and πτ for larger
values of τ the so-called hot densities.) These different densities can then be combined to define
a single joint density π̄ on � × {1, 2, . . . , m}, defined by π̄ (θ, τ ) = 1

m πτ (θ ) for 1 ≤ τ ≤ m and
θ ∈ �. (Weights other than the uniform choice, 1

m , may also be used.)
Simulated tempering then uses π̄ to define a joint Markov chain (θ, τ ) on � × {1, 2, . . . , m},

with target density π̄ . In the simplest case, this chain is a version of variable-at-a-time Metropolis
that alternates (say) between spatial moves, which propose (say) θ ′ ∼ N (θ, σ 2

θ ) and accept with
the usual Metropolis probability min(1,

π (θ ′,�τ )
π (θ,�τ ) ) = min(1,

πτ (θ ′)
πτ (θ ) ), and temperature moves, which

propose (say) τ ′ = τ ± 1 (with a probability of 1
2 each) and accept with the usual Metropolis

probability min(1,
π (θ,τ ′)
π (θ,τ ) ) = min(1,

πτ ′ (θ )
πτ (θ ) ).

As is usual for Metropolis algorithms, this chain should converge in distribution to the density
π̄ . But, of course, our interest is in the original density π = π1, not in π̄ . The genius of simulated
tempering is that ultimately, we count only those samples corresponding to τ = 1. That is, once
we have a good sample from π̄ , we simply discard all the sample values corresponding to τ 
= 1,
and what remains is a good sample from π .

6.1. A Simple Example

For a specific example, suppose the target density is given by π (θ ) = 1
2 N (0, 1; θ ) + 1

2 N (20, 1; θ ).
This target density is a mixture of the standard normal density N (0, 1; θ ) and the normal density
N (20, 1; θ ) with mean 20 and variance 1. This chain is highly multimodal (Figure 6a), leading to
very poor mixing of ordinary RWM (Figure 7a).

However, if πτ (θ ) = 1
2 N (0, τ 2; θ ) + 1

2 N (20, τ 2; θ ), i.e., a mixture of two normal densities
with means 0 and 20 but with variances τ 2 instead of 1, then π1 = π is the original target
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(a) The highly multimodal target density π (θ ) = 1

2 N (0, 1; θ ) + 1
2 N (20, 1; θ ). (b) A somewhat flatter density

π4 = 1
2 N (0, 42; θ ) + 1

2 N (20, 42; θ ). (c) An even flatter density π10 = 1
2 N (0, 102; θ ) + 1

2 N (20, 102; θ ).

density, but πτ becomes flatter for larger τ (Figure 6a–c). This behavior allows us to define a
joint simulated tempering chain on π̄ (with proposal scaling σθ = 1, say), which mixes much faster
owing to the flattened high-temperature distributions (Figure 7b). We can then identify the θ

values corresponding to τ = 1 in this faster-mixing joint chain to get a very good sample from
π1 = π (Figure 7c). As with all Monte Carlo sampling, a good sample from π allows us to compute
good estimates for expected values I = E(g) for functionals g of interest.
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Trace plots for the highly multimodal target density π (θ ) = 1

2 N (0, 1; θ ) + 1
2 N (20, 1; θ ). (a) Ordinary random walk Metropolis gets

stuck in the modal region of π near 20 and cannot find the second modal region near 0. (b) The θ coordinates of simulated tempering
for π̄ . (c) Red circles indicate the θ values of the simulated tempering corresponding to τ = 1 (and hence to π ). (d ) The θ1 coordinates
for the corresponding parallel tempering algorithm, showing excellent mixing.
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6.2. Choosing the Tempered Distributions

Simulated tempering often works quite well, but it raises the question of how to find appropriate
tempered distributions πτ . Usually, we will not know convenient choices such as the one given
above, πτ = 1

2 N (0, τ 2) + 1
2 N (20, τ 2). Thus, we require more generic choices.

One promising approach is to let the hotter densities πτ (θ ) correspond to taking smaller and
smaller powers of the original target density π (θ ), i.e., to let πτ (θ ) = c τ (π (θ ))1/τ for an appropriate
normalizing constant c τ . (It is common to write β = 1/τ and refer to β as the inverse temperature.)
This formula guarantees that π1 = π and that πτ will be flatter for larger τ (because small positive
powers move all positive numbers closer to 1), which is precisely what we need. As a specific
example, if π (θ ) happened to be the density of N (μ, σ 2), then c τ (π (θ ))1/τ would be the density of
N (μ, τσ 2). This is indeed a flatter density, similar to the simple example above, which confirms
that this approach holds promise.

Unfortunately, this approach has the following problem. If we propose to move τ to τ ′, then
with this formula, we should accept this proposal with probability

min
(

1,
πτ ′ (θ )
πτ (θ )

)
= min

(
1,

c τ ′

c τ

(π (θ ))(1/τ ′)−(1/τ )
)

.

This formula explicitly depends on the normalizing constants c τ and c τ ′ ; these constants do not
cancel as they do in ordinary RWM. This dependence is problematic because the values of c τ are
usually unknown and infeasible to calculate. So, what can be done?

6.3. Parallel Tempering

One idea is to use parallel tempering, sometimes called Metropolis-coupled MCMC (MCMCMC).
In this algorithm, the state space is �m, corresponding to m different chains, each with its own
value of θ . So, the state at time t is given by θt = (θt1, θt2, . . . , θtm). Intuitively, each θtτ is at its own
temperature τ , i.e., converging towards its own target density πτ . The overall target density is
now π̄ (θ ) = π1(θ1)π2(θ2) . . . πm(θm), i.e., the density that makes each coordinate of θ independent
and following the density of its own temperature. For any 1 ≤ τ ≤ m, then, the algorithm can
update the chain θt−1,τ at temperature τ by proposing (say) θ ′

t,τ ∼ N (θt−1,τ , σ
2) and accepting this

proposal with the usual Metropolis probability min(1,
πτ (θ ′

t,τ )
πτ (θt−1,τ ) ).

Crucially, the chain can also choose temperatures τ and τ ′ (perhaps choosing each temperature
uniformly from {1, 2, . . . , m}), and it can then propose to swap the values θn,τ and θt,τ ′ . This
proposal will then be accepted with its usual Metropolis probability, min(1,

πτ (θt,τ ′ )πτ ′ (θt,τ )
πτ (θt,τ )πτ ′ (θt,τ ′ ) ). The

beauty of parallel tempering is that it allows the normalizing constants to cancel. That is, if
πτ (θ ) = c τ (π (θ ))1/τ , then the acceptance probability becomes

min

(
1,

c τ π (θt,τ ′ )1/τ c τ ′π (θt,τ )1/τ ′

c τ π (θt,τ )1/τ c τ ′π (θt,τ ′ )1/τ ′

)
= min

(
1,

π (θt,τ ′ )1/τπ (θt,τ )1/τ ′

π (θt,τ )1/τπ (θt,τ ′ )1/τ ′

)
.

Thus, the values of c τ and c τ ′ are not required to run the algorithm.
As a first test, we can apply parallel tempering to the simple example given above, again using

πτ (θ ) = 1
2 N (0, τ 2; θ )+ 1

2 N (20, τ 2; θ ) for τ = 1, 2, . . . , 10. Parallel tempering works pretty well in
this case (Figure 7d ). Of course, the normalizing constants in this example were known, so parallel
tempering was not really required. However, these constants are unknown in many applications;
parallel tempering is often a useful sampling method in such cases.
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7. ASSESSING MARKOV CHAIN MONTE CARLO ERRORS

When considering any statistical estimation procedure, the amount of uncertainty in the estimate,
e.g., some measure of its standard error, is an important issue. In conventional Monte Carlo
algorithms, where the {θi } are i.i.d., as in Equation 3, the standard error is given by 1√

M
SD(g(θ )),

where SD(g(θ )) is the usual estimate of the standard deviation of the distribution of the g(θi ).
However, with MCMC there is usually extensive serial correlation in the samples θi , so the usual
i.i.d.-based estimate of standard error does not apply. So-called perfect sampling algorithms are
an exception [see, for example, Propp & Wilson (1996) or Craiu & Meng (2011)], but they are
hard to adapt for Bayesian computation. Indeed, the standard error for MCMC is usually both
larger than in the i.i.d. case (owing to the correlations) and harder to quantify.

The simplest way to estimate standard error from an MCMC estimate is to rerun the entire
Markov chain several times using the same values of run length M and burn-in B as in Equation 4
but starting from different initial values θ0 drawn from the same overdispersed (i.e., well spread-out)
initial distribution. This process leads to a sequence of i.i.d. estimates of the target expectation
I, and standard errors from the resulting sequence of estimates can then be computed in the
usual i.i.d. manner. (We illustrate this in Section 8.4 using the RWM algorithms for the lupus
data presented in Section 2.1.) However, such a procedure is often highly inefficient, raising the
question of how to estimate standard error from a single run of a single Markov chain. Specifically,
we would like to estimate v ≡ Var( 1

M −B

∑M
i=B+1 g(θi )).

7.1. Variance Estimate

To estimate the variance of v above, let ḡ(θ ) = g(θ ) − E(g), so E(ḡ) = 0. And, assume that B is
large enough that θi ≈ π for i > B. Then, writing ≈ to mean “equal in the limit as M → ∞,”
we compute that

v ≈ E

⎡
⎣((

1
M − B

M∑
i=B+1

g(θi )

)
− E(g)

)2
⎤
⎦ = E

⎡
⎣(

1
M − B

M∑
i=B+1

ḡ(θi )

)2
⎤
⎦

= 1
(M − B)2

[
(M − B)E(ḡ(θi )2) + 2(M − B − 1)E(ḡ(θi )ḡ(θi+1))

+ 2(M − B − 2)E(ḡ(θi )ḡ(θi+2)) + · · ·]
≈ 1

M − B
(
E(ḡ(θi )2) + 2E(ḡ(θi )ḡ(θi+1)) + 2E(ḡ(θi )ḡ(θi+2)) + · · ·)

= 1
M − B

(Varπ (g) + 2Covπ (g(θi )g(θi+1)) + 2Covπ (g(θi )g(θi+2)) + · · ·)

= 1
M − B

Varπ (g) (1 + 2Corrπ (g(θi ), g(θi+1)) + 2Corrπ (g(θi ), g(θi+2)) + · · ·)

≡ 1
M − B

Varπ (g)(ACT ) = (i.i.d . variance) (ACT ),

where i.i.d. variance is the value for the variance that we would obtain if the samples {θ i} were in
fact i.i.d., and

ACT = 1 + 2
∞∑

k=1

Corrπ (g(θ0), g(θk)) ≡ 1 + 2
∞∑

k=1

ρk =
∞∑

k=−∞
ρk = 2

( ∞∑
k=0

ρk

)
− 1

is the factor by which the variance is multiplied owing to the serial correlations from the Markov
chain (sometimes called the integrated autocorrelation time). Here, Corrπ refers to the theoretical
correlation that would arise from a sequence {θi }∞

i=−∞ that was in stationarity (so each θ i had density
π ) and that followed the Markov chain transitions. This assumption implies that the correlations
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are a function of the time lag between the two variables and, in particular, that ρ−k = ρk as above.
The standard error is then given by s e = √

v = (i.i.d . − s e)
√

ACT .
Now, both the i.i.d. variance and the quantity ACT can be estimated from the sample run. (For

example, the built-in ACF function in R automatically computes the lag correlations ρk. Note also
that when computing ACT in practice, we do not sum over all k. Rather, we sum only until, say,
|ρk| < 0.05 or ρk < 0, because for large k we should have ρk ≈ 0 but the estimates of ρk will always
contain some sampling error.) This procedure provides a method of estimating the standard error
of the sample. It also provides a method of comparing different MCMC algorithms because in
most cases, ACT � 1 and better chains would have smaller ACT values. In the most extreme
case, one sometimes even tries to design antithetic chains for which ACT < 1 (see Adler 1981,
Barone & Frigessi 1990, Craiu & Lemieux 2007, Craiu & Meng 2005, Neal 1995).

7.2. Confidence Intervals

Suppose we estimate u ≡ E(g) by the quantity e = 1
M −B

∑M
i=B+1 g(θi ) and obtain an estimate e

and an approximate variance (as above) v. Then what is, say, a 95% confidence interval for u?
Well, if a central limit theorem (CLT) applies (as discussed in Section 8), then for large values

of M − B, we have the normal approximation that e ≈ N (u, v). It then follows as usual that
(e − u)v−1/2 ≈ N (0, 1), so P(−1.96 < (e − u)v−1/2 < 1.96) ≈ 0.95, so P(−1.96

√
v < e − u <

1.96
√

v) ≈ 0.95. This gives us our desired confidence interval: With a probability of 95%, the
interval (e −1.96

√
v, e +1.96

√
v) will contain u. (Strictly speaking, we should use the t distribution,

not the normal distribution. But if M − B is at all large, then the t and normal distributions are
very similar. Thus, we can ignore this issue for now.) Such confidence intervals allow us to more
appropriately assess the uncertainty of our MCMC estimates (e.g., Flegal et al. 2008).

The above analysis raises the question of whether a CLT even holds for Markov chains. We
answer this and other questions when we consider the theory of MCMC in the following section.

8. THEORETICAL FOUNDATIONS OF MARKOV CHAIN
MONTE CARLO

We close with some theoretical considerations about MCMC. Specifically, why does MCMC
work? The key is that the distribution of θn converges in various senses to the target distribution
π (·). This convergence follows from basic Markov chain theory, as we discuss below.

8.1. Markov Chain Convergence

A basic fact about Markov chains is that if a Markov chain is irreducible and aperiodic, with
stationarity distribution π , then θt converges in distribution to π as t → ∞. More precisely, we
have Theorem 1 (see, e.g., Meyn & Tweedie 1993, Roberts & Rosenthal 2004, Rosenthal 2001,
Tierney 1994).

Theorem 1: If a Markov chain is irreducible, with stationarity probability density π ,
then for π-a.e. initial value θ0: (a) if g :� → R with E(|g|) < ∞, then lim

n→∞
1
n

∑n
i=1 g(θi ) =

E(g) ≡ ∫
g(θ )π (θ )dθ , and (b) if the chain is also aperiodic, then furthermore lim

t→∞
P(θt ∈

S) = ∫
S π (θ ) dθ for all measurable S ⊆ �.

We now discuss the various conditions of the theorem, one at a time.
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Being irreducible means, essentially, that the chain has positive probability of eventually getting
from any one location to any other. In the discrete case, we can define irreducibility as saying
that for all i, j ∈ � there exists t ∈ N such that P(θt = j |θ0 = i ) > 0. In the general case,
however, this definition is problematic because the probability of hitting any particular state is
usually zero. Instead, we can define irreducibility (or φ-irreducibility) as saying that there is some
reference measure φ such that for all ζ ∈ �, and for all A ⊆ � with φ(A) > 0, there exists
t ∈ N such that P(θt ∈ A|θ0 = ζ ) > 0. This condition is usually satisfied for MCMC (aside from
certain rare cases in which the state space consists of highly disjoint pieces) and is generally not a
concern.

Being aperiodic means that there are no forced cycles, i.e., that there do not exist disjoint
nonempty subsets �1,�2, . . . , �d ⊆ � for some d ≥ 2 such that P (θt+1 ∈ �i+1|θt = ζ ) = 1
for all ζ ∈ �i (1 ≤ i ≤ d − 1), and P (θt+1 ∈ �1|θt = ζ ) = 1 for all ζ ∈ �d . This condition
virtually always holds for MCMC. For example, it holds (a) if P (θt+1 = ζ |θt = ζ ) > 0, as for
the Metropolis algorithm (owing to the positive probability of rejection); (b) if two iterations are
sometimes equivalent to just one, as for the Gibbs sampler; or (c) if the transition probabilities have
positive densities throughout �, as is often the case. In short, we have never known aperiodicity
to be a problem for MCMC.

The condition that the density π be stationary for the chain is the most subtle one, as we discuss
next.

8.2. Reversibility and Stationarity of Markov Chains

For ease of notation, this section focuses on discrete Markov chains, although the general case is
similar upon replacing probability mass functions with measures and sums with integrals. We thus
let π be a probability mass function on � and assume for simplicity that π (θ ) > 0 for all θ ∈ �.
We also let P (i, j ) = P(θ1 = j |θ0 = i ) be the Markov chain’s transition probabilities.

We say that π is stationary for the Markov chain if it is preserved under the chain’s dynamics,
i.e., if the chain has the property that whenever θ0 ∼ π [meaning that P(θ0 = i ) = π (i ) for all
i ∈ �], then also θ1 ∼ π [i.e., P(θ1 = i ) = π (i ) for all i ∈ �]. Equivalently,

∑
i∈� π (i )P (i, j ) = π ( j )

for all j ∈ �. Intuitively, this means that the probabilities π are left invariant by the chain, which
explains why the chain might converge to those probabilities in the limit.

We now show that reversibility is automatically satisfied by MH algorithms, thereby explaining
why the Metropolis acceptance probabilities are defined as they are. Indeed, let q (i, j ) = P(ωt =
j |θt−1 = i ) be the proposal distribution, which is then accepted with probability min(1,

π ( j )q ( j,i )
π (i )q (i, j ) ).

Then, for i, j ∈ � with i 
= j ,

P (i, j ) = q (i, j ) min
(

1,
π ( j )q ( j, i )
π (i )q (i, j )

)
.

It follows that

π (i )P (i, j ) = π (i )q (i, j ) min
(

1,
π ( j )q ( j, i )
π (i )q (i, j )

)
= min(π (i )q (i, j ), π ( j )q ( j, i )).

By inspection, this last expression is symmetric in i and j. It then follows that π (i )P (i, j ) =
π ( j )P ( j, i ) for all i, j ∈ � (at least for i 
= j , but the case i = j is trivial). This property is
described as π being reversible for the chain. [Intuitively, reversibility implies that if θ0 ∼ π ,
then P(θ0 = i, θ1 = j ) = P(θ0 = j, θ1 = i ), i.e., the probability of starting at i and moving
to j is the same as that of starting at j and moving to i. This property is also called being time
reversible.]
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The importance of reversibility is that it implies stationarity of π . Indeed, using reversibility,
we compute that if θ0 ∼ π , then

P(θ1 = j ) =
∑
i∈�

P(θ0 = i )P(i, j ) =
∑
i∈�

π (i )P (i, j ) =
∑
i∈�

π ( j )P ( j, i )

= π ( j )
∑
i∈�

P ( j, i ) = π ( j ).

Thus, θ1 ∼ π , too, so π is stationary.
We conclude that the stationarity condition holds automatically for any MH algorithm. Hence,

assuming irreducibility and aperiodicity (which, as noted above, are virtually always satisfied for
MCMC), Theorem 1 applies and establishes the asymptotic validity of MCMC.

8.3. Markov Chain Monte Carlo Convergence Rates

Write Pt(ζ, S) = P[θt ∈ S|θ0 = ζ ] for the t-step transition probabilities for the chain, and let
D(ζ, t) = ||Pt(ζ, ·) − �(·)|| supS⊆� |Pt(ζ, S) − �(S)| be a measure (specifically, the total variation
distance) of the chain’s distance from stationarity after t steps, where �(S) = ∫

S π (ζ ) dζ is the
target probability distribution. Then, the chain is said to be ergodic if limt→∞ D(ζ, t) = 0 for π-
a.e. ζ ∈ �, i.e., if the chain transition probabilities Pt(ζ, S) converge (uniformly) to � as t → ∞,
which Theorem 1 indicates is usually true for MCMC. However, ergodicity alone says nothing
about the convergence rate, i.e., how quickly this convergence occurs.

By contrast, a quantitative bound on convergence is an actual number t∗ such that D(ζ, t∗) <

0.01, i.e., such that the chain’s probabilities are within 0.01 of stationary after t∗ iterations. (The
cutoff value 0.01 is arbitrary but has become fairly standard.) We then sometimes say that the chain
“converges in t∗ iterations.” Quantitative bounds, when available, are the most useful because they
provide precise instructions about how long an MCMC algorithm must be run. Unfortunately,
these bounds are often difficult to establish for complicated statistical models, although some
progress has been made (e.g., Douc et al. 2004; Jones & Hobert 2001; Rosenthal 1995, 2002).

Halfway between these two extremes is geometric ergodicity, which is more useful than plain
ergodicity but which is often easier to compute than are quantitative bounds. A chain is geomet-
rically ergodic if there are ρ < 1 and �-a.e.-finite M :� → [0, ∞] such that D(ζ, t) ≤ M (ζ )ρt

for all ζ ∈ � and t ∈ N, i.e., such that the convergence to � happens exponentially quickly.
If a Markov chain is geometrically ergodic and g :� → R such that E(|g|2+a ) < ∞ for some

a > 0, then a CLT holds for quantities such as e = 1
M −B

∑M
i=B+1 g(θi ) (Geyer 1992, Tierney

1994), and we have the normal approximation that e ≈ N (u, v). [In fact, if the Markov chain is
reversible as above, then it suffices to take a = 0 (Roberts & Rosenthal 1997).] As explained in
Section 7.2, this approximation is key to obtaining confidence intervals and thus more reliable
estimates.

Now, if the state space � is finite, then assuming irreducibility and aperiodicity, any Markov
chain on � is always geometrically ergodic. However, this result is not true for infinite state
spaces. The RWM algorithm is known to be geometrically ergodic essentially (i.e., under a few
mild technical conditions) if and only if π has exponential tails, i.e., there are a, b, c > 0 such that
π (θ ) ≤ ae−b |θ | whenever |θ | > c (Mengersen & Tweedie 1996, Roberts & Tweedie 1996). The
Gibbs sampler is known to be geometrically ergodic for certain models (e.g., Papaspiliopoulos &
Roberts 2008). But in some cases, geometric ergodicity can be difficult to ascertain.

In the absence of theoretical convergence bounds, it is difficult to determine whether the chain
has reached stationarity. One option is to independently run some large number K of chains,
each with an initial state drawn from the same overdispersed starting distribution. If M and B
are large enough, we expect the estimators provided by each chain to approximately agree. For
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mathematical formalization of this general principle see, e.g., Gelman & Rubin (1992) and Brooks
& Gelman (1998).

8.4. Convergence of Random Walk Metropolis for the Lupus Data

We now illustrate some of the above ideas using the RWM algorithm for the lupus data pre-
sented in Section 2.1. We consider running RWM for M = 6,000 iterations, using a burn-in
of B = 1,000 iterations. We initialize the chain using draws from an overdispersed starting dis-
tribution centred at the MLE by setting βinit = β̂MLE + W , where W is a vector of three i.i.d.
random variables, each of which is generated from a Student distribution with two degrees of
freedom.

We repeated this entire experiment a total of K = 350 times with proposal variance-covariance
matrix 
1 = 0.6 I3 (Figure 8), and we performed it another K = 350 times with proposal variance-
covariance matrix 
2 = 1.2 I3 (Figure 9). The corresponding lists of estimates of the three β i

values illustrated in Figures 8 and 9 show that despite the use of wide, overdispersed start-
ing distributions, the resulting estimates are concentrated around particular values (boxplots, top
rows; histograms, bottom rows), indicating fairly good convergence. They are also approximately
normally distributed (normal Q-Q plots, middle rows; histograms, bottom rows), indicating approxi-
mate consistency with a CLT. Choosing larger values of M and B would likely result in even more
concentrated values and more normal-looking distributions of the various estimates. This brief
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Figure 8
Results of K = 350 independent replications of a random walk Metropolis algorithm for the lupus data described in Section 2.1 with
proposal variance-covariance matrix 
1 = 0.6 I3. Resulting estimates of the quantities β0 (left column), β1 (middle column), and β2 (right
column) are shown in the respective boxplots (top row), normal Q-Q plots (middle row), and histograms (bottom row).
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Figure 9
Results of K = 350 independent replications of a random walk Metropolis algorithm for the lupus data described in Section 2.1 with
proposal variance-covariance matrix 
2 = 1.2 I3. Resulting estimates of the quantities β0 (left column), β1 (middle column), and β2 (right
column) are shown in the resulting boxplots (top row), normal Q-Q plots (middle row), and histograms (bottom row).

experiment illustrates that even in the absence of theoretical convergence bounds, one can use
multiple independent runs from overdispersed starting distributions to assess the convergence,
accuracy, and normality of MCMC estimates.

8.5. The Case of the Independence Sampler

When it comes to MCMC convergence rates, one case is particularly tractable, namely the inde-
pendence sampler. Unsurprisingly, as long as an independence sampler’s proposal satisfies q (θ ) > 0
whenever π (θ ) > 0, irreducibility, aperiodicity, and stationarity all follow easily, and Theorem 1
therefore immediately establishes ergodicity. What is remarkable, however, is that the indepen-
dence sampler is geometrically ergodic if and only if there is δ > 0 such that q (θ ) ≥ δπ (θ ) for
π-a.e. θ ∈ �, and furthermore in this case D(ζ, n) ≤ (1 − δ)n for π-a.e. ζ ∈ � (Mengersen &
Tweedie 1996, Roberts & Tweedie 1996). That is, for the independence sampler, we have not
only an easy test for geometric ergodicity but also a free quantitative bound.

For a simple, specific example, consider an independence sampler on � = [0, ∞) with target
density π (θ ) = e−θ . If the proposal density is, say, q (θ ) = 0.01 e−0.01θ , then q (θ ) ≥ 0.01 π (θ )
for all θ ∈ �. That is, the above condition for ergodicity holds when δ = 0.01: The chain is
geometrically ergodic with D(ζ, t) ≤ (1− δ)t = (0.99)t and hence converges in t∗ = 459 iterations
[because (0.99)459 < 0.01]. By contrast, if q (θ ) = 5e−5θ , then the above condition does not hold
for any value δ > 0. Thus, the chain is not geometrically ergodic. In fact, Rosenthal & Roberts
(2011) showed that in this case 4,000,000 ≤ t∗ ≤ 14,000,000, i.e., the chain takes at least four
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million iterations to converge. This example illustrates how geometric ergodicity can sometimes
make a tremendous difference between MCMC algorithms that converge efficiently and those that
converge very poorly. Moreover, it illustrates once again how MCMC methodology can help us
explore target probability distributions and understand their statistical properties. The interplay
between practical implementation and theoretical analysis involves many novel ideas with great
potential for future development.
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