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Abstract

A dynamic treatment regime consists of a sequence of decision rules, one
per stage of intervention, that dictate how to individualize treatments to
patients, based on evolving treatment and covariate history. These regimes
are particularly useful for managing chronic disorders and fit well into the
larger paradigm of personalized medicine. They provide one way to opera-
tionalize a clinical decision support system. Statistics plays a key role in the
construction of evidence-based dynamic treatment regimes—informing the
best study design as well as efficient estimation and valid inference. Owing
to the many novel methodological challenges this area offers, it has been
growing in popularity among statisticians in recent years. In this article, we
review the key developments in this exciting field of research. In particu-
lar, we discuss the sequential multiple assignment randomized trial designs,
estimation techniques like Q-learning and marginal structural models, and
several inference techniques designed to address the associated nonstandard
asymptotics. We reference software whenever available. We also outline
some important future directions.
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1. INTRODUCTION

Personalized medicine is an increasingly popular theme in today’s health care. Operationally, per-
sonalized treatments are decision rules that dictate what treatment to provide given a patient state
(consisting of, e.g., demographics, results of diagnostic tests, and genetic information). Dynamic
treatment regimes (DTRs) (Murphy 2003; Robins 1986, 1989, 1993, 1997, 2004) generalize per-
sonalized medicine to time-varying treatment settings in which treatment is repeatedly tailored to
a patient’s time-varying—or dynamic—state. DTRs are alternatively known as adaptive treatment
strategies (Lavori & Dawson 2000, 2008; Murphy 2005b; Thall et al. 2000, 2002) or treatment
policies (Lunceford et al. 2002; Wahed & Tsiatis 2004, 2006). These decision rules offer an ef-
fective vehicle for personalized management of chronic conditions (e.g., alcohol and drug abuse,
cancer, diabetes, HIV infection, and mental illnesses), for which a patient typically has to be treated
at multiple stages, and help clinicians adapt the treatment (type, dosage, and timing) at each stage
to the evolving treatment and covariate history. DTRs underpin clinical decision support systems,
which represent a key element of the chronic care model (Wagner et al. 2001).

A simple example of a DTR arising in the treatment of alcohol dependence is this: After the
patient completes an intensive outpatient program, provide the medication naltrexone (NTX)
along with face-to-face medical management. If within the following two months the patient
experiences two or more heavy-drinking days, then immediately augment the NTX with cognitive
behavioral therapy (CBT). Otherwise, at the end of the two months, provide telephone disease
management in addition to the NTX. Rosthøj et al. (2006) give an example of a DTR used in
guiding warfarin dosing to control the risk of both clotting and excessive bleeding. Here, the
decision rules input summaries of the trajectory of the international normalized ratio (a measure
of clotting tendency of blood) over the recent past and output recommendations concerning how
much to change the dose of warfarin (if at all). Robins et al. (2008) provide a DTR example also,
this one concerning decision rules that input summaries of the trajectories of plasma HIV RNA
and CD4 counts over the recent past and output when to start an asymptomatic HIV-infected
subject on highly active antiretroviral therapy. In Section 3, we review different statistical methods
for constructing the decision rules in a DTR.

Traditionally, personalized medicine concerns single-stage decision making. In a single-stage
(nondynamic) decision problem, one observes a random vector, the first observation, O1; then one
selects an action (here a treatment action), a1, from a set A1 of actions. Then, depending on which
action was selected, one makes a second observation, O2(a1). To avoid technical details and for
simplicity, we assume sufficient regularity for all statements here and below. A decision rule, e.g.,
d1, is a mapping from the range of O1 into A1. The quality of a treatment for a particular value of
O1 is evaluated in terms of its utility, e.g., r(O1, a1, O2(a1)), for a known function r. The utility
may be a summary of one outcome, such as percent days abstinent in an alcohol dependence
study, or a composite outcome; for example, in Wang et al. (2012), the utility is a compound
score numerically combining information on treatment efficacy, toxicity, and the risk of disease
progression. The optimal decision rule outputs the treatment (action) that maximizes the expected
utility, U (o 1; a1) = E[r(O1, a1, O2(a1)) | O1 = o 1]; because the expected utility depends on o1, the
treatment that maximizes the expected utility may depend on o1 and thus provide a personalized
treatment decision. Equivalently, the optimal decision rule is given by arg maxd1 E[U (O1; d1(O1))],
where the maximum is taken over all functions on the range of O1. E[U (O1; d1(O1))] is called the
value of the decision rule, d1.

Constructing DTRs involves solving, or estimating quantities relevant in, a multistage decision
problem. In multistage decision problems, observations are interwoven with action selection; we
can denote such a sequence by O1, a1, O2(a1), a2, O3(ā2), . . . , OK (āK−1), aK , OK+1(āK ), where
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ā j = {a1, . . . , a j }, and O j+1(ā j ) denotes the observation made at stage j + 1 subsequent to the
selection of the action sequence ā j . A DTR is a sequence of decision rules, d̄K = (d1, . . . , dK ); the
decision rule dj is a mapping from the range of (O1, a1, . . . , O j (ā j−1)) into the jth action space,
A j . When K = 2 and the treatment actions are discrete, the value of the DTR (d1, d2) can be
written on one line as

E

⎡
⎣ ∑

a1∈A1

1a1=d1(O1)

∑
a2∈A2

1a2=d2(O1,a1,O2(a1))r (O1, a1, O2(a1), a2, O3(a1, a2))

⎤
⎦ . 1.

(The generalization to more than two stages is straightforward.) Using this formula, we might
compare two or more DTRs in terms of their value or, equivalently, their expected utility. The
optimal DTR is the set of decision rules, d̄K , that maximizes the value.

Constructing the optimal decision rules in multistage decision problems is challenging because
of the time-varying or dynamic nature of this problem. Historically, an early method for solving
(e.g., constructing the optimal decision rules) multistage decision problems is dynamic program-
ming (DP), which dates at least as far back as Bellman (1957). The primary reason why classical DP
algorithms have seen little use in DTR research is that these algorithms require complete knowl-
edge of, or a full model for, the multivariate distribution of the data for any set of actions; this
requirement is impractical in many application areas (the curse of modeling) (Kulkarni et al. 2011).
Moreover, DP methods are computationally very expensive, and they become hard to manage in
moderately high-dimensional problems; in other words, they suffer from the curse of dimension-
ality (Sutton & Barto 1998). But DP provides an important theoretical and conceptual foundation
for research in multistage decision problems. In fact, as we illustrate below, many present-day
estimation methods build on classical DP algorithms but relax their stringent requirements.

2. DATA SOURCES FOR CONSTRUCTING DTRs

Most statistical research in the arena of DTRs concerns (a) the comparison of two or more
preconceived DTRs in terms of their value and (b) the estimation of the optimal DTR, i.e.,
estimating the sequence of decision rules, one per stage, that results in the highest value, within
a class of DTRs. In each case, the data used in comparing or constructing DTRs are usually
from (a) sequentially randomized studies, (b) longitudinal observational studies, or (c) dynamical
system models. Research based on the first source of data, i.e., sequentially randomized studies,
is experiencing a period of rapid growth as a result of the increasing number of clinical trials in
which many of the patients are randomized multiple times, in a sequential manner. However, by
far the majority of statistical research, led by Robins’s (1986, 1989, 1993, 1997) pioneering work,
concerns the use of data from longitudinal, observational studies. The third data source, based
on simulating from or otherwise using existing dynamical system models, has received much less
attention in DTR development. In this section, we briefly review the first two types of data sources,
their advantages and drawbacks, and the assumptions required to perform valid analyses in each,
along with some examples. Dynamical system models are discussed in Section 3.

2.1. Sequential Multiple Assignment Randomized Trials

Beginning with Robins’s (1986, 1989, 1993, 1997) work, sequentially randomized trials were used
as a conceptual tool to precisely state the inferential goals in DTR research. More recently, trial
designs, known as sequential multiple assignment randomized trial (SMART) designs (Lavori &
Dawson 2000, 2004; Murphy 2005b), have been implemented in practice. SMART designs involve
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Figure 1
Hypothetical sequential multiple assignment randomized trial (SMART) design schematic for the addiction
management example (an R within a circle denotes randomization at a critical decision point). Abbreviations:
CBT, cognitive behavioral therapy; NTX, naltrexone; TM, telephone monitoring.

an initial randomization of patients to available treatment actions, followed by rerandomizations
(of some or all of the patients) at each subsequent stage to treatment actions available at that
stage. The rerandomizations and set of treatment actions at each subsequent stage may depend
on information collected in prior stages, such as how well the patient responded to the previous
treatment.

Recent SMARTs include a smoking cessation study (Chakraborty et al. 2010), a study involving
treatment of autism among children (Kasari 2009, Lei et al. 2011), a study involving interventions
for children with attention deficit hyperactivity disorder (Nahum-Shani et al. 2012a,b), a study
involving treatment for pregnant drug abusers ( Jones 2010, Lei et al. 2011), and a study involving
alcohol-dependent individuals (Lei et al. 2011). For a list of some other SMARTs, we refer the
reader to the following website: http://methodology.psu.edu/ra/adap-treat-strat/projects.

To make the discussion more concrete, Figure 1 shows a hypothetical SMART design based on
the addiction management example introduced earlier. In this trial, each participant is randomly
assigned to one of two possible initial treatments: CBT or NTX. Participants are classified as
nonresponders or responders to the initial treatment according to whether they do or do not
experience more than two heavy-drinking days during the next two months. A nonresponder to
NTX is rerandomized to one of the two subsequent treatment options: either a switch to CBT
or an augmentation of NTX with CBT (CBT + NTX). Similarly, a nonresponder to CBT is
rerandomized to either a switch to NTX or an augmentation (CBT + NTX). Responders to the
initial treatment receive telephone monitoring (TM) for an additional six months. One goal of the
study might be to construct a DTR leading to a maximal mean number of non-heavy-drinking
days over 12 months.

We denote the observable data trajectory for a participant in a two-stage SMART by
(O1, A1, O2, A2, O3), where O1, O2, and O3 are the pretreatment information, intermediate
outcomes, and final outcomes, respectively. The randomized treatment actions are A1 and A2, and
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the primary outcome is Y = r(O1, A1, O2, A2, O3) for a known function r. For example, in the
addiction management study above, O1 may include addiction severity and comorbid conditions;
O2 may include the participant’s binary response status, side effects, and adherence to the initial
treatment; and Y may be the number of non-heavy-drinking days over the 12-month study
period.

To connect the distribution of the data collected in the above SMART to the distributions con-
sidered in the multistage decision problem in Section 1, we make a short digression into the field of
causal inference. Recall that, in the case of two stages (Section 1), we denoted the sequence of ran-
dom observations by (O1, a1, O2(a1), a2, O3(a1, a2)) for the selected actions (a1, a2). These obser-
vations are potential outcomes (Robins 1986, Rubin 1974). Potential outcomes or counterfactual
outcomes are defined as a participant’s outcome had he or she followed a particular treatment (se-
quence), which is possibly different from the treatment (sequence) he or she was actually observed
to follow. Consider, for example, a single-stage randomized trial in which participants can receive
either a or a′. Accordingly, any participant in this study is conceptualized as having two potential
second observations, O2(a) and O2(a′). However, only one of these—the one corresponding to the
treatment to which a participant is randomized—will be observed. Clearly, observing the O2 under
both treatments a and a′ is impossible without further data and assumptions (e.g., in a crossover trial
with no carryover effect). Now suppose that participants are treated over two stages and can receive
at each stage either a or a′ (A1 = A2 = {a, a ′}). In this case, four sequences of potential obser-
vations exist, (O2(a), O3(a, a)), (O2(a), O3(a, a ′)), (O2(a ′), O3(a ′, a)), and (O2(a ′), O3(a ′, a ′)); only
one of these sequences will be observed for any given participant.

To connect the potential observations to the observations made during a SMART, we make
two assumptions (Robins 1997):

1. Consistency: The potential outcome under the observed treatment and the observed out-
come agree.

2. No unmeasured confounders: For any treatment sequence āK , and conditional on the
history H j = (Ō j , Āj−1), treatment Aj is independent of future (potential) outcomes,
O j+1(ā j ), . . . , OK (āK−1), OK+1(āK ). That is, for any possible treatment sequence āK ,

Aj ⊥(O j+1(ā j ), . . . , OK (āK−1), OK+1(āK ))
∣∣H j ∀ j = 1, . . . , K .

The consistency assumption subsumes Rubin’s (1980) more explanatory stable unit treatment
value assumption (SUTVA), which is this: Each participant’s potential outcome is not influenced
by the treatment applied to the other participants. In clinical trials, SUTVA is most often violated
when the treatment is not well defined. For example, the treatment as defined may not specify
that some aspects of the treatment are provided in a group setting containing multiple participants
from the trial. In this case, the response of one participant to treatment may influence the response
of another participant if they are in the same group.

Under the consistency assumption, the potential outcomes in a two-stage SMART are con-
nected to the observable data by O2 = O2(A1) and O3 = O3(A1, A2). The no-unmeasured-
confounders assumption holds in a SMART design if the randomization probabilities depend at
most on the past observations; more precisely, the randomization probabilities for A1 and A2 may
depend on O1 and (O1, A1, O2), respectively. Under this assumption,

P (O2(a1) ≤ o 2 | O1 = o 1) = P (O2 ≤ o 2 | O1 = o 1, A1 = a1), and

P (O3(a1, a2) ≤ y | O1 = o 1, O2(a1) = o 2) = P (O3 ≤ y | O1 = o 1, A1 = a1, O2 = o 2, A2 = a2).

The above probability statements imply that the value for a DTR can be written as a function of
the multivariate distribution of the observable data obtained from a SMART. In the case of two
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stages, Equation 1 can be written as

E

⎡
⎣E

⎡
⎣ ∑

a1∈A1

1a1=d1(H 1) E

⎡
⎣ ∑

a2∈A2

1a2=d2(H 2) E[r(H 2, A2, O3)|H 2, A2 = a2]|
⎤
⎦ |H 1, A1 = a1

⎤
⎦

⎤
⎦

[recall that H 1 = O1 and H 2 = (O1, A1, O2)]. A similar result holds for settings with more than
two stages. Thus, the validity of the two assumptions ensures that data from SMARTs can be
effectively used to evaluate prespecified DTRs or to estimate the optimal DTR within a certain
class.

2.1.1. Some practical considerations in designing a SMART. Many authors recommend that
the design of a SMART be no more complicated than necessary. Indeed, the class of treatment
options at each stage should not be unnecessarily restricted (Lavori & Dawson 2004, Murphy
2005b). For example, using a low-dimensional summary criterion (e.g., responder/nonresponder
status, as used in the addiction management SMART example) to restrict the class of possible
treatments is preferable to using all intermediate outcomes (e.g., improvement of symptom sever-
ity, side effects, adherence). Furthermore, a SMART is best viewed as one trial among a series of
randomized trials intended to develop and/or refine a DTR. It should eventually be followed by
a confirmatory randomized trial that compares the developed regime and an appropriate control
(Murphy 2005b). That is, the construction of DTRs is developmental as opposed to confirmatory.
In this sense, a scientist employing a SMART design has a similar goal to Box et al.’s (1978) goal
of developing multicomponent treatments. Indeed, the SMART can be viewed as an extension of
the factorial design to a setting in which the time and sequencing of treatments play crucial roles
(Murphy & Bingham 2009). As a result, the primary hypothesis, i.e., the hypothesis used to deter-
mine the sample size for the trial, often concerns a main effect. However, because of the multiple
randomizations, we can consider many interesting secondary research questions with random-
ized data, though the SMART may or may not have enough power to address these secondary
hypothesis questions.

Most often, the primary hypothesis concerns the main effect of the first-stage treatment. For
example, in the addiction management study, an interesting primary research question might ask
what the best initial treatment would be on average if we marginalized over secondary treatments.
In other words, here the researcher wants to compare the mean primary outcome of the patients
receiving NTX as the initial treatment with the mean primary outcome of those receiving CBT.
Another interesting primary question could concern the main effect of a second-stage treatment:
On average, what is the best secondary treatment, a switch or an augmentation, for nonrespon-
ders to initial treatment? Here, the researcher might compare the mean primary outcome of
nonresponders assigned to switch with the mean primary outcome of nonresponders assigned to
augmentation. In all of these cases, sample size formulae are standard or easily derived.

Alternatively, the primary research question may concern the comparison of two of the
embedded DTRs. In the example of the addiction management SMART, four embedded
DTRs exist, corresponding to two options for the first-stage treatment and two options for
the second-stage treatment for nonresponders (only one option exists for the responders). For
example, one embedded regime in this SMART is to treat the patient with NTX at stage 1,
to give TM at stage 2 if the patient is a responder, and to give CBT at stage 2 if the patient
is a nonresponder; other embedded regimes can be described similarly. Dawson & Lavori
(2010, 2012), Murphy (2005b), and Oetting et al. (2011) consider how to determine appropriate
sample sizes to compare two embedded DTRs in the context of a continuous outcome. A
web application that calculates the required sample size for a SMART design for a continuous

452 Chakraborty · Murphy



ST01CH20-Murphy ARI 29 November 2013 16:50

endpoint can be found at http://methodologymedia.psu.edu/smart/samplesize. Much work
has concerned survival endpoints (Feng & Wahed 2008; Lunceford et al. 2002; Wahed & Tsiatis
2004, 2006). Relevant sample size formulae can be found in Feng & Wahed (2009) and Li
& Murphy (2011). A web application for sample size calculation in this case can be found at
http://methodologymedia.psu.edu/logranktest/samplesize.

2.1.2. SMART versus other designs. The SMART design discussed above involves stages
of treatment and/or experimentation. In this regard, it bears superficial similarity with adaptive
designs (Coffey et al. 2012). Adaptive design is an umbrella term used to denote different trial
designs that allow certain trial features to change based on accumulating data while maintaining
the statistical, scientific, and ethical integrity of the trial (Coffey et al. 2012). In a SMART design,
each participant moves through multiple stages of treatment, whereas in adaptive designs, each
stage involves different participants. The goal of a SMART is to develop a good DTR that could
benefit future patients. Many adaptive designs try to provide the most efficacious treatment to
each patient in the trial based on the current knowledge available at the time that a participant is
randomized. In a SMART, unlike in an adaptive design, design elements such as the final sample
size, randomization probabilities, and treatment options are prespecified. SMART designs involve
within-participant adaptation of treatment, whereas adaptive designs involve between-participant
adaptation. Although in some settings the incorporation of adaptive elements into a SMART
design is possible (Thall et al. 2002, Thall & Wathen 2005), how to achieve optimal incorporation
is an open question that warrants further research.

SMART designs have some operational similarity with classical crossover trial designs; how-
ever, they differ greatly in the scientific goal. In particular, a crossover design is typically used to
contrast the effects of stand-alone treatments, whereas a SMART is used to develop a DTR, i.e.,
a sequence of treatments. Treatment allocation at any stage after the initial stage of a SMART
typically depends on a participant’s intermediate outcome (response/nonresponse). However, in
a crossover trial, participants receive all the candidate treatments irrespective of their intermedi-
ate outcomes. And most importantly, an attempt to wash out the carryover effect is crucial in a
crossover trial, whereas the process of constructing a DTR involves harnessing carryover effects
so as to improve outcomes. That is, carryover effects such as synergistic interactions between
treatments at different stages may lead to a better DTR, as compared with a DTR in which no
carryover effects exist.

2.2. Observational Studies

In observational studies, the treatments are not randomized. In particular, we do not know with
certainty the reasons why different individuals receive differing treatments or the reasons why
one individual receives different treatments at different times. Indeed, data in which the treat-
ments are (sequentially) randomized, when available, are preferable for making inferences con-
cerning DTRs. However, observational studies are the most common source of data for con-
structing DTRs, and most research in statistics has concentrated on how best to use observational
data.

In observational data, associations observed in the data (e.g., between treatment and outcome)
may partially stem from the unobserved or unknown reasons why individuals receive differing
treatments, as opposed to stemming from the effects of the treatments. Thus, to conduct infer-
ence, one requires assumptions. Assumptions such as the consistency and the no-unmeasured-
confounders assumptions discussed earlier can be used to justify estimation and inference based
on observational data; the plausibility of these assumptions is generally best justified by scientific,
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expert knowledge. Researchers have undertaken many studies aimed at constructing DTRs from
observational data. Data sources include hospital databases (Cotton & Heagerty 2011, Orellana
et al. 2010a, Robins et al. 2008, Rosthøj et al. 2006), randomized encouragement trials (Moodie
et al. 2009), and cohort studies (van der Laan & Petersen 2007b).

The assumption of no unmeasured confounders deserves careful consideration and thought
in the observational data setting. The assumption states that, conditional on the past history,
treatment received at stage j is independent of future potential observations and outcome: P (Aj =
a | H j , O j+1(ā j ), . . . , OK (āK−1), OK+1(āK )) = P (Aj = a | H j ). This assumption allows us to
effectively view the observational data as coming from a sequentially randomized trial, albeit with
unknown as opposed to known randomization probabilities at stage j. The assumption may be
(approximately) true in observational settings where all relevant common causes of outcomes and
treatment have been observed.

In addition to careful consideration of causal inference issues, using observational data to
construct DTRs requires careful thought concerning how the data may restrict the set of DTRs
that can be assessed, absent further assumptions. This set is called the feasible (Robins 1994) or
viable (Wang et al. 2012) DTRs. Feasibility of a DTR d̄K requires a positive probability that some
participants in the study will have followed d̄K .

3. DATA ANALYSIS

As mentioned in Section 2, two common goals are (a) the estimation/comparison of a few DTRs
in terms of their value and (b) the estimation of the optimal DTR within a certain class. In this
section, we review the analysis strategies for both. Throughout, we assume that both the no-
unmeasured-confounders and consistency assumptions hold and that all DTRs considered are
feasible.

Weighting is often used to address both goals. Weights, or inverse probability of treatment
weights (IPTWs), were originally developed to estimate the value of nondynamic regimes (Robins
1999, Robins et al. 2000) but later were adapted to the problem of estimating the value of DTRs.
Murphy et al. (2001) and Wang et al. (2012) use IPTWs to estimate the values of a few DTRs.
To see why weights might be used, consider a SMART like that in Figure 1, which gives only
one option for responding participants (e.g., TM). Suppose that the treatment assignment prob-
abilities at stage 1 and the treatment assignment probabilities for the nonresponders are uniform
(randomization probability is 0.5). Now, suppose we want to estimate the value of the embedded
DTR: Treat the patient with NTX at stage 1, give TM at stage 2 if the patient is a responder, and
give CBT at stage 2 if the patient is a nonresponder. To estimate the value, we utilize the outcome
of all participants with treatment patterns consistent with this DTR. However, within this group
of participants, responders are overrepresented compared with nonresponders because the non-
responders were subdivided in the trial, whereas the responders were not. The IPTWs are used to
adjust for overrepresentation of participants across the treatment patterns consistent with a given
DTR. In this example, data from responders would have a weight of 1/0.5, as responders were
randomized only in stage 1 (with a probability of 0.5), whereas data from nonresponders would
have a weight of 1/(0.5)(0.5), as they have been randomized twice (each with a probability of 0.5).
We refer the reader to Nahum-Shani et al. (2012a) and Wang et al. (2012) for detailed explanations
of how IPTWs can account for this over- and underrepresentation in SMARTs. Lunceford et al.
(2002), Miyahara & Wahed (2010), and Wahed & Tsiatis (2004, 2006) use IPTWs in estimating
the value of DTRs in the survival analysis setting. Improved versions of the IPTW estimator are
available in papers by Robins and colleagues (Murphy et al. 2001; Orellana et al. 2010a,b; Robins
et al. 2008) and Zhang et al. (2012b).
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3.1. Direct Methods for Estimating an Optimal DTR

For notational simplicity, let d denote the DTR, d̄K , in the following. Recall from Section 1 that
the value of a DTR is the mean of the utility, marginalized over all observations that might be
affected by the treatment. In direct methods, one specifies a class of DTRs D (see below for an
example), estimates the value for each candidate DTR d ∈ D, e.g., V̂ d , and then selects the DTR
in D with maximal estimated value.

Robins and colleagues (Orellana et al. 2010a, Robins et al. 2008) pioneered the use of IPTWs
for estimating an optimal DTR. For a simple example, we consider DTRs that use a risk score
to indicate when to initiate treatment. At the clinic visit at which the risk score is greater than or
equal to x, treatment is initiated. The value varies by DTR, i.e., by x. In Robins et al. (2008), the
value is parameterized as a polynomial function in x and in pretreatment variables, e.g., V(x; β) =
β0 + β1x + β2x2. The optimal DTR is to initiate treatment when the risk score is greater than or
equal to x0, where x0 = arg maxx V(x, β). To estimate the optimal DTR, we need estimators of
the βs. In the simplest setting, we estimate the βs by solving an inverse probability of treatment–
weighted estimating equation. To improve efficiency in the estimation of the βs, Robins et al.
(2008) take advantage of the fact that some individuals’ treatment sequences will be consistent with
more than one DTR. For example, if the individual initiates treatment with a risk score of 12, and
at the prior office visits, the individual’s risk score was always lower than 10, then this individual has
a treatment sequence consistent with x = 10, 11, and 12. To improve efficiency, this individual’s
data are used to estimate the value, V(x; β), for x = 10, 11, and 12. Operationally, the estimating
equation uses three replicates of this individual’s data. In the above example, the individual’s data
are copied twice to produce three replicates, and the replicated outcome Y is relabeled as Y10, Y11,
and Y12 (Y10 = Y11 = Y12). In general, the number of replicates of an individual’s data is equal to
the number of DTRs with which his or her observed treatment is consistent.

We can estimate the βs by solving

0 = Pn

[∑
x

wd x ,π · ∂

∂β
V(x; β) (Y x − V(x; β))

]
,

where Pn is an average over the augmented data set (containing the replicates). Nahum-Shani
et al. (2012a), in the context of SMART, provide an intuitive discussion of why replication of
participants can be used to account for a participant’s observed treatment being consistent with
more than one DTR. The observational data setting can be more complicated (see Robins et al.
2008 and Shortreed & Moodie 2012 for detailed expositions). Related work that compares a range
of candidate DTRs by incorporating a treatment-tailoring threshold can be found in Cotton &
Heagerty (2011), Hernán et al. (2006), Petersen et al. (2007), and van der Laan & Petersen (2007a).

Direct methods for a one-stage decision-making setting (e.g., K = 1) have seen a great deal
of research; here, the single-decision rule is often called an individualized decision rule. As Qian
& Murphy (2011) highlight, the one-stage decision-making problem has a close connection with
classification. Subsequently, researchers have proposed methods based on classification for es-
timating the decision rule (Zhang et al. 2012a, Zhao et al. 2012). Other work in the one-stage
decision setting includes Cai et al. (2011) and Imai & Ratkovicz (2013).

3.2. Indirect Methods for Estimating an Optimal DTR

Indirect approaches to estimating the optimal DTR are commonly employed when scientists
wish to consider decision rules that may depend on multiple covariates or depend on covariates in
a complex manner. In the indirect approach, the stage-specific conditional mean outcomes (called
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Q-functions) or contrasts thereof are modeled first, and then the optimal decision rules are found
via maximization of these estimated conditional means or contrasts. These methods were originally
developed in the reinforcement learning literature within computer science but were later adapted
to statistics. One such procedure that has become particularly popular in the DTR literature
is Q-learning (Sutton & Barto 1998). Q-learning is an approximate DP method—approximate
because data and models are used to approximate the Q-functions. In its simplest incarnation,
Q-learning uses linear models for the Q-functions and can be viewed as an extension of least
squares regression to multistage decision problems (Murphy 2005a). However, one can use more
flexible models for the Q-functions, e.g., regression trees (Ernst et al. 2005) or kernels (Ormoneit
& Sen 2002). The version of Q-learning considered in the DTR literature is most similar to the
fitted Q-iteration algorithm (Ernst et al. 2005) in the reinforcement learning literature.

3.2.1. Q-learning with linear models. For clarity, here we define Q-functions and describe Q-
learning for studies with only two stages; generalization to K (≥2) stages is straightforward (Murphy
2005a). For simplicity, assume that the data come from a SMART with two possible treatments
at each stage, Aj ∈ {−1, 1}, and that the treatment is randomized with known randomization
probabilities. The data from a SMART involving n subjects will consist of n data trajectories
of the form (O1, A1, O2, A2, O3). As before, the histories are defined as H 1 = O1 and H 2 =
(O1, A1, O2). The study can have either a single terminal utility (primary outcome), Y, observed
at the end of stage 2, or two stage-specific utilities, Y1 and Y2, adding up to the primary outcome,
Y = Y1 + Y2 (in general, Y can be any known function of the data). The interest lies in estimating
a two-stage DTR (d1, d2), with d j (H j ) ∈ {−1, 1}.

The optimal Q-functions for the two stages are defined as Q2(H 2, A2) = E[Y 2 | H 2, A2] and
Q1(H 1, A1) = E[Y 1 + maxa2 Q2(H 2, a2) | H 1, A1]. We can use a backward induction argument
(Sutton & Barto 1998) to prove that the optimal treatment at a particular stage is given by the value
of the action that maximizes the associated Q-function. In particular, if these two Q-functions
were known, the optimal DTR (d1, d2) would be d j (h j ) = arg maxa j Q j (h j , a j ), j = 1, 2. In
practice, the true Q-functions are unknown and hence must be estimated. Because Q-functions
are conditional expectations, a natural approach to modeling them is via regression models. A
DP (moving backward through the stages) approach is used to estimate the parameters. Consider
linear regression models for the Q-functions. Let the stage j ( j = 1, 2) Q-function be modeled
as Q j (H j , Aj ; β j , ψ j ) = βT

j H j0 + (ψT
j H j1)Aj , where H j0 and H j1 are two (possibly different)

features of the history, Hj.
Many versions of the Q-learning algorithm exist, depending on whether there are parameters

that are common across the stages and depending on the form of the dependent variable used in
the stage 1 regression. One form for the Q-learning algorithm consists of the following steps:

1. Stage 2 regression: (β̂2, ψ̂2) = arg minβ2,ψ2
1
n

∑n
i=1 (Y2i − Q2(H 2i , A2i ; β2, ψ2))2.

2. Stage 1 dependent variable: Ŷ 1i = Y 1i + maxa2 Q2(H 2i , a2; β̂2, ψ̂2), i = 1, . . . , n.
3. Stage 1 regression: (β̂1, ψ̂1) = arg minβ1,ψ1

1
n

∑n
i=1 (Ŷ1i − Q1(H 1i , A1i ; β1, ψ1))2.

In step 2, the quantity Ŷ1i is a predictor of the unobserved random variable Y1i +maxa2 Q2(H 2i , a2),
i = 1, . . . , n. The estimated optimal DTR using Q-learning is given by (d̂1, d̂2), where the stage j
optimal rule is specified as d̂ j (h j ) = arg maxa j Q j (h j , a j ; β̂ j , ψ̂ j ), j = 1, 2.

Q-learning (with K = 2) has been implemented in the R package qLearn, freely available
from http://cran.r-project.org/web/packages/qLearn/index.html, and in the SAS procedure
QLEARN, located at http://methodology.psu.edu/downloads/procqlearn. Q-learning can be
extended for application to observational data by incorporating appropriate adjustments to ac-
count for confounding; more precisely, we can make this adjustment either by including all the
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measured confounders—or simply the propensity score as a proxy for all measured confounders—
in the models for Q-functions, or by weighting the stage-specific regressions by the inverse of
the propensity scores (Moodie et al. 2012). Q-learning is a version of Robins’s (2004) optimal
structural nested mean model developed in the causal inference literature (see Chakraborty et al.
2010 for a detailed discussion and derivation).

Q-learning has been generalized in several ways. Lizotte et al. (2010, 2012) generalize
Q-learning for use when different patients may make different trade-offs among multiple
outcomes, and thus a data analysis of one composite outcome is insufficient. Q-learning has
also been generalized to settings in which Y is a (possibly censored) survival time (Goldberg &
Kosorok 2012, Zhao et al. 2011). Both these papers provide a Q-learning method with the aim
of maximizing a truncated survival time.

3.2.2. Approaches based on dynamical systems models. An alternate indirect approach to
estimating an optimal DTR is to use dynamical systems models. By dynamical systems models, we
mean a time-ordered sequence of nested conditional models (each model conditions on past data)
for the multivariate distribution of the data. In this approach, one first develops a dynamical systems
model; this model may be constructed using expert opinion or may be estimated using observational
or sequentially randomized data sets. Indeed, these types of models are quite attractive when strong
biological, behavioral, or social theories exist to guide the formation of the nested conditional
models. Once the dynamical systems model is in hand, algorithms from control theory, such as
DP or constrained optimization algorithms, are used to estimate the optimal DTR (Rivera et al.
2007). This approach is common in applications in engineering, economics, and business. The
clinical field has seen much less development. Bayesian methods have been employed in simple,
low-dimensional problems (one example is Thall et al. 2007).

Rosenberg et al. (2007) and Banks et al. (2011) discuss how different data sources with models
based on ordinary differential equations can be used to build a dynamical systems model to estimate
an optimal DTR in AIDS treatment. In this setting, the treatment is a continuous dose of antiviral
therapy, and the optimal DTR is chosen to bring the dynamical system to its steady state. Rivera and
colleagues (Navarro-Barrientos et al. 2011, Rivera et al. 2007), in a series of presentations (available
at http://csel.asu.edu/node/13) and papers, discuss how common dynamical systems models
might be used to describe behavioral dynamics and thus form the basis for DTRs that involve
behavioral techniques in obesity and addiction treatment. Gaweda et al. (2005, 2008) examined
the use of control-theoretic approaches to anemia management in patients with end-stage renal
disease. Bennett & Hauser (2012) discuss a framework for simulating clinical decision making
from electronic medical records data. In summary, although the dynamical systems approaches
to developing DTRs are emerging, from a statistical perspective, they still lag behind the other
approaches presented earlier. This area is ripe for further growth.

4. CONFIDENCE SETS

High-quality measures of confidence are needed in the development of DTRs for both (a) the
parameters indexing the optimal DTR and (b) the value of a DTR—either a prespecified or
estimated DTR. Numerous authors (Lunceford et al. 2002; Thall et al. 2000, 2002; Wahed &
Tsiatis 2004, 2006) have addressed inference for the values of prespecified regimes; however, there
is little work on inference for the value of an estimated regime. We return to this problem after
discussing the construction of confidence intervals (CIs) for the parameters indexing the optimal
regime. Measures of confidence for these parameters are important for the following reasons. First,
if the CIs for some of these parameters contain zero, then the corresponding patient variables
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need not be collected in the future, thus lowering the data collection burden. Second, CIs for
the coefficient of the treatment variable can be used to indicate whether insufficient evidence
in the data exists to suggest that one treatment is best, and therefore considerations other than
the treatment effect, e.g., cost, patient/clinician familiarity, and/or preference, should be used to
decide on treatment.

Orellana et al. (2010a) discuss the construction of confidence sets for parameters indexing the
optimal DTR when direct methods of estimation using IPTW are employed. These confidence
sets are based on standard Taylor series arguments and are asymptotically valid under a set of
smoothness assumptions. Robins (2004) points out that nonregularity arises in the indirect esti-
mation of DTRs. By nonregularity, we mean that the asymptotic distribution of the estimator
of the treatment effect parameter does not converge uniformly over the parameter space (see
below for further details). Indeed, the treatment effect parameters at any stage prior to the last
can be nonregular. This phenomenon has practical consequences, including bias in estimation
and poor frequentist properties of Wald-type or other standard CIs in small samples. Any infer-
ence technique that aims to provide good frequentist properties such as nominal Type I error
and/or nominal coverage of CIs in small samples has to address this problem of nonregularity.
Robins (2004) discusses a simple but instructive example that can help us better understand the
problem; here, we present a slightly modified version, as presented by Chakraborty et al. (2010).
Consider the problem of estimating |μ| based on n independent and identically distributed ob-
servations X 1, . . . , X n from N (μ, 1). |X̄ n| is the maximum likelihood estimator of |μ|, where
X̄ n is the sample average. The asymptotic distribution of

√
n(|X̄ n| − |μ|) for any μ 	= 0 is a

standard normal, whereas for μ = 0, it is nonnormal; that is, the change in the distribution as a
function of μ is abrupt. Thus, |X̄ n| is a nonregular estimator of |μ|; an exact proof of the non-
regularity of this estimator uses local alternatives as in Leeb & Pötscher (2003). Also, for μ =
0, limn→∞ E[

√
n(|X̄ n| − |μ|)] =

√
2
π

. This asymptotic bias (Robins 2004) is one symptom of the
underlying nonregularity.

Next we review the problem of nonregularity in the context of Q-learning. Suppose we want to
construct CIs for the parameters ψ j appearing in the model for Q-functions. In a two-stage setup,
the inference for the stage 2 parameters ψ2 is straightforward because this inference falls in the
standard linear regression framework. In contrast, inference for ψ1 is complicated. The stage 1–
dependent variable in Q-learning for the ith participant is Ŷ 1i = Y 1i + maxa2 Q2(H 2i , a2; β̂2, ψ̂2) =
Y 1i + β̂T

2 H 20,i +|ψ̂T
2 H 21,i |, i = 1, . . . , n, which is a nondifferentiable function of ψ̂2 (owing to the

presence of the absolute value function). Because ψ̂1 is a function of Ŷ 1i , i = 1, . . . , n, it is in turn
a nonsmooth function of ψ̂2. As a consequence, the distribution of

√
n(ψ̂1 −ψ1) does not converge

uniformly over the parameter space (Robins 2004). More specifically, the asymptotic distribution
of

√
n(ψ̂1 − ψ1) is normal if ψ2 is such that p �= P [H 2 : ψT

2 H 21 = 0] = 0 but is nonnormal if
p > 0, and this change in the distribution happens abruptly. Below we present several different
approaches to address the problem.

4.1. Adjusted Projection Confidence Intervals

As discussed in Robins (2004), a joint CI for all of the parameters (in our two-stage example,
both the first- and second-stage regression coefficients) can be formed by inverting hypothesis
tests. That is, if the parameters are ψ = (ψ1, ψ2) and a hypothesis test of ψ = ψ0 for each value
of ψ0 is well behaved, then a joint (1 − α)% CI, say, C for ψ , can be constructed. This case
applies in Q-learning because constructing a well-behaved hypothesis test statistic when all of
the regression coefficients are set to fixed values is easy (the test statistic is based on a quadratic
form involving the estimating functions evaluated at the fixed values). Next, a projected CI for ψ1
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is given by ∪ψ2 {ψ1 : (ψ1, ψ2) ∈ C}. Unfortunately, this interval is very conservative. As a result,
Robins (2004), using ideas advanced by Berger & Boos (1994), adjusts the usual projection CI.
We discuss this idea in the context of the two-stage Q-learning method presented above.

Recall that we are interested in a CI for ψ1. In this context, ψ2 is a nuisance parameter. If the
true value of ψ2 were known, then the asymptotic distribution of

√
n(ψ̂1 −ψ1) would be regular (in

fact, normal), and standard procedures could be used to construct an asymptotically valid CI. Let
C(ψ2) denote a (1 − α)% asymptotic CI for ψ1 if ψ2 were known. Let S be a (1 − ε)% asymptotic
CI for ψ2. Then, it follows that ∪ψ2∈S{ψ1 : ψ1 ∈ C(ψ2)} is a (1 − α − ε)% CI for ψ1. Importantly,
P (ψ1 ∈ ∪ψ2∈SC(ψ2)) ≥ 1 − α + oP (1) + P (ψ2 /∈ S) = 1 − α − ε + oP (1). Thus, this CI is the union
of the CIs C(ψ2) over all values ψ2 ∈ S and is an asymptotically valid (1 − α − ε)% CI for ψ1. The
main downside of this approach is that it appears to be computationally difficult to implement; to
our knowledge, this CI has not yet been implemented.

4.2. Adaptive Confidence Intervals

Laber and colleagues (E. Laber, D. Lizotte, M. Qian, S. Murphy, submitted) develop an adaptive
bootstrap procedure to construct CIs for linear combinations cT ψ1, where c is a known vector. In
this procedure, they decompose the asymptotic expansion of cT √

n(ψ̂1 − ψ1) as Wn + Un, where
the first term, Wn, is smooth and asymptotically normally distributed, and the distribution of the
second term, Un, depends on the underlying data-generating process in a nonsmooth manner.
The adaptive confidence intervals (ACIs) are formed by first constructing smooth data-dependent
upper and lower bounds on Un and thereby on c T √

n(ψ̂1 − ψ1). The data-dependent upper and
lower bounds use a pretest (Olshen 1973) that partitions the data into two sets: (a) patients for
whom a treatment effect appears to exist and (b) patients for whom a treatment effect does not
appear to exist. The pretests are performed using a critical value λn, which is a tuning parameter of
the procedure and can be varied; Laber and colleagues (E. Laber, D. Lizotte, M. Qian, S. Murphy,
submitted) use λn = log log n in their analysis.

Let the upper and lower bounds on cT √
n(ψ̂1 − ψ1) be given by U (c) and L(c), respectively;

both these quantities are functions of λn. Laber and colleagues (E. Laber, D. Lizotte, M. Qian, S.
Murphy, submitted) show that the asymptotic distributions of cT √

n(ψ̂1−ψ1),U (c), andL(c) are all
equal in the regular case when p = 0. That is, when there is a large treatment effect for almost all pa-
tients, the bounds are asymptotically tight. However, when there is a nonnull subset of patients with
no treatment effect, the asymptotic distribution of U (c) is stochastically larger than the asymptotic
distribution of cT √

n(ψ̂1 − ψ1), and likewise the asymptotic distribution of L(c) is stochastically
smaller. This adaptivity between nonregular and regular settings is a key feature of this procedure.
We can approximate the distributions of U (c) and L(c) using the bootstrap. Let û be the 1 − α/2
quantile of the bootstrap distribution of U (c), and let l̂ be the α/2 quantile of the bootstrap dis-
tribution of L(c). Then (cT ψ̂1 − û/

√
n, cT ψ̂1 − l̂/

√
n) is the ACI for cT ψ1. Laber and colleagues

(E. Laber, D. Lizotte, M. Qian, S. Murphy, submitted) prove the consistency of the bootstrap
in this context, and in particular that P (cT ψ̂1 − û/

√
n ≤ cT ψ1 ≤ cT ψ̂1 − l̂/

√
n) ≥ 1 − α + oP (1),

where the probability statement is with respect to the bootstrap distribution. Furthermore, if p =
0, then the above inequality can be strengthened to equality. This result shows that the adaptive
bootstrap method can be used to construct valid, though potentially conservative, CIs regardless
of the underlying parameters of the generative model. This method is implemented in the SAS
procedure QLEARN: http://methodology.psu.edu/downloads/procqlearn.

4.3. m-Out-of-n Bootstrap Confidence Intervals

The m-out-of-n bootstrap is a tool for producing valid CIs for nonsmooth functionals (Shao 1994).
This method is the same as the ordinary bootstrap, except that the resample size (m) satisfies these
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requirements: m → ∞ as n → ∞, but m = o(n). Chakraborty et al. (2013) propose a data-driven
method for choosing m in the context of Q-learning, a method that is directly connected to an
estimated degree of nonregularity. This method is adaptive in that it leads to the usual n-out-of-n
bootstrap in regular settings ( p = 0) and the m-out-of-n bootstrap otherwise.

In this approach, Chakraborty et al. (2013) consider a class of resample sizes of the form
m = n[1+η(1−p)]/(1+η), where η > 0 is a tuning parameter. For implementation, one first needs
to estimate p using a plug-in estimator, p̂ = PnI[n(H T

21 ψ̂2)2 ≤ (H T
21 �̂ψ̂2

H 21) · χ2
1,1−ν ], where

n−1�̂ψ̂2
is the plug-in estimator of the asymptotic covariance matrix of ψ̂2, and χ2

1,1−ν is the
(1 − ν) × 100 percentile of a χ2 distribution with 1 degree of freedom. Then the data-driven
choice of the resample size is given by m̂ = n[1+η(1−p)]/(1+η). For fixed n, m̂ is a monotonically
decreasing function of p̂ , taking values in the interval [n(1/1+η), n]. Thus, η governs the smallest
acceptable resample size. The procedure is robust to the choice of ν. Once m̂ is computed, a
(1 − α) × 100% m-out-of-n bootstrap CI for cT ψ1 is given by (cT ψ̂1 − û/

√
m̂, cT ψ̂1 − l̂/

√
m̂),

where l̂ and û are the (α/2) × 100 and (1 − α/2) × 100 percentiles of cT √
m(ψ̂ (b)

1 − ψ̂1), respec-
tively [ψ̂ (b)

1 is the m-out-of-n bootstrap analog of ψ̂1]. This bootstrap procedure is consistent, and
P (cT ψ̂1 − û/

√
m̂ ≤ cT ψ1 ≤ cT ψ̂1 − l̂/

√
m̂) ≥ 1 − α + oP (1), where the probability statement is

with respect to the bootstrap distribution. Furthermore, if p = 0, then the procedure possesses the
adaptive property in that the above inequality is an equality. The method has been implemented
in the R package qLearn at http://cran.r-project.org/web/packages/qLearn/index.html. We
refer the reader to the Supplemental Appendix for a simulation study that illustrates the perfor-
mance of the above approaches to forming a CI (follow the Supplemental Material link from
the Annual Reviews home page at http://www.annualreviews.org).

4.4. Confidence Intervals for the Value of an Estimated DTR

The topic of constructing CIs for the value of an estimated DTR has not been adequately addressed
in the literature yet, but we can gain some insight by exploiting its connection with classification.
As Qian & Murphy (2011) and Zhao et al. (2012) highlight, the value of a DTR can be expressed
in a similar form as the misclassification error rate in a weighted classification problem. Thus,
constructing a CI for the value of an estimated DTR is equivalent to constructing a CI for the
test error of an estimated weighted classifier. Unfortunately, even in an unweighted classification
problem, constructing a CI for the test error is difficult because of inherent nonsmoothness;
standard methods like normal approximation or usual bootstrap fail. Laber & Murphy (2011)
develop a method for constructing such CIs using smooth data-dependent upper and lower bounds
on the test error; this method is similar to the ACI method described in Section 4.2. Although
intuitively one can expect that this method could be successfully adapted for the value of an
estimated DTR, more targeted research is needed to extend and fine-tune the procedure to the
current setting.

5. DISCUSSION AND THE FUTURE

DTRs make up an increasingly active area of current statistical research and have received much
interest from the clinical science community. SMART studies are increasing in number, indicating
that, for some time, the design of and data analysis for these trials will provide a steady source
of new statistical problems. For example, many interventions are administered in group settings;
in the case of DTRs, this type of administration requires the design and analysis of cluster-
randomized SMARTs. At the design level, cluster randomization would imply increased sample
size requirements because of intraclass correlation. At the analysis level, it would open up questions
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such as how best to incorporate random effects models or generalized estimating equations into the
existing framework of estimation and how the intraclass correlation would affect the nonregularity
in inference. Furthermore, the development of statistical methods that can be used in the analysis
of longitudinal observational data sets will likely continue to be necessary in this area. In either
case, methods for variable selection and model checking in the context of constructing data-driven
DTRs, both of which pose issues slightly different from those of similar topics in the prediction
literature, are underdeveloped and warrant further research.

Inference in the domain of DTRs is a particularly challenging problem because of the nonreg-
ularity of the estimators under certain underlying longitudinal data distributions. This challenge
occurs both when the targets of inference are the parameters indexing the optimal DTR and when
the target is the value of an estimated DTR. In these nonregular problems, methods for developing
optimal CIs represent an open area of research. Interest is growing in CIs for other parameters.
One example is data-dependent parameters, such as the first-stage regression coefficients that
would result in a future study in which the estimated second-stage decision rule is used to assign
treatment. CIs for this type of parameter are as yet undeveloped.

Today’s health care increasingly uses sophisticated mobile devices (e.g., smart phones, actigraph
units containing accelerometers) to remotely monitor patients’ chronic conditions and to intervene
when needed. This increased use is an instance in which methods from online reinforcement
learning in the infinite horizon setting may be useful. Development of sound estimation and
inference techniques for such a setting is an important research direction.

The field of DTRs is in its infancy but is quickly evolving. These methods and trial designs hold
much promise for informing sequential decision making in health care. To achieve this promise,
many of the problems discussed above require further efforts on the part of the statistical commu-
nity. Dissemination of the newly developed methods into the medical domains and collaboration
with clinical scientists will be crucial.
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