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Abstract

The evaluation of weight of evidence for forensic DNA profiles has been a
subject of controversy since their introduction over 20 years ago. Substantial
progress has been made for standard DNA profiles, but new issues have arisen
in recent years with the advent of more sensitive profiling techniques, allow-
ing profiles to be recovered from minuscule amounts of possibly degraded
DNA. These low-template DNA profiles suffer from enhanced stochastic ef-
fects, including dropin, dropout, and stutter, which pose problems for DNA
profile evaluation. These problems are now beginning to be overcome with
the emergence of several statistical models and software. We first review the
general principles of statistical evaluation of DNA profile evidence, and we
then focus on low-template DNA profiles, briefly reviewing the main statisti-
cal models and software. We cover methods that use allele presence/absence
and those that use electropherogram peak heights, focusing on the likelihood
ratio as measure of evidential weight.
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Electropherogram
(epg): a set of graphs
conveying DNA
profiling results

STR: short tandem
repeat

Polymerase chain
reaction (PCR):
a method used to
amplify DNA

Relative fluorescence
unit (RFU): unit of
epg peak height

Base pair (bp): unit of
DNA sequence length

1. INTRODUCTION

The lack of appropriate methods and software for the statistical analysis of low-template DNA
(LTDNA) profiles has been a source of controversy for more than a decade and has hindered
the widespread use of potentially very powerful evidence. At long last, substantial progress is now
being made, which we review here. We start with a brief review of standard DNA profiles, then
discuss the new difficulties for statistical evaluation that accompany the use of LTDNA samples,
which often also suffer effects of degradation due to environmental exposure. We then review the
statistical evaluation of evidence using likelihood ratios (LRs) and the development of LRs for
standard and then LTDNA profiles. Finally, we describe six software programs that are currently
available for LTDNA profiling: three that make use of peak heights and three that do not. We
hope that this review will help disseminate current best practices in the statistical evaluation of
LTDNA evidence, spur further developments, and advertise to the forensic and wider community
that robust methods for LTDNA evidence evaluation are now available. We have not verified the
software described here, but, where available, we cite validation studies conducted by the authors of
each program or package. In our view, courts are now able to avail themselves of the powerful new
LTDNA profiling technologies, provided that as much care is taken with the statistical analysis
as is necessary for the collection, handling, and analysis of the samples.

1.1. Standard DNA Profiles

The results of forensic DNA profiling are represented in an electropherogram (epg). Figure 1
shows an epg for a good-quality single-contributor profile. Briefly, profiling focuses on short
tandem repeat (STR) regions of the genome, which vary in length because of differing numbers of
repeats of a sequence motif such as the four-base motif ACAG. To measure the allele length, the
polymerase chain reaction (PCR) is used to amplify a DNA fragment that includes the motif repeats
together with some flanking DNA. The amplified fragment is labeled using a fluorescent dye and
allowed to traverse a capillary tube under an electric field in a process known as electrophoresis.
The time taken for this traverse is measured via a laser that causes the fluorescence to be detected,
generating an epg signal peak measured in relative fluorescence units (RFUs). The length of the
DNA fragment is then deduced from the time it takes to travel through the capillary. Because the
lengths of the flanking DNA fragments are known, typically accurate to the nearest base pair (bp),
the number of tandem repeats can be inferred.

Each of the three panels in Figure 1 corresponds to a different dye color. Choosing flanking
regions of different lengths allows the alleles from different loci to be separated on the basis of
their size. Because they are also color-separated by the dyes, multiple loci (here, 11) can be tested
in a single profiling run. Notice that peak heights tend to decline with fragment length. This can
occur for standard profiles, but the rate of decline gives a measure of degradation (see Section 3.5).
Pairs of peaks of a similar height that are close together correspond to the two alleles of a het-
erozygote, whereas the very tall single peaks, such as the two in the middle panel, correspond to
homozygotes. The leftmost pair of peaks in the middle panel indicates the presence of both X
and Y chromosomes and hence DNA from a male. At other loci, a pair of numbers represents the
genotype of an individual. For example, the pair 14,15 represents the genotype for the D3 locus
in Figure 1 (leftmost peaks in the top panel), and 13,13 represents that for locus D8. In practice,
some deviations from the simple tandem repeat model occur, such as changes in the repeat motif
or a partial repeat. For example, the 9.3 at the THO1 locus in Figure 1 indicates a 3-bp partial
repeat in addition to nine full 4-bp repeats. Some models of STR mutation and of stutter peak
heights use the longest uninterrupted sequence (Brookes et al. 2012).
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LTDNA:
low-template DNA

pg: picogram (10−12

gram)

PEAK IMBALANCE

Peak imbalance refers to variation in the peak heights at the two alleles of a heterozygote, which are expected to be
similar in standard DNA profiling, as in Figure 1. However, in LTDNA work, large differences in heterozygote
peak heights can lead to dropout of one allele. In both panels of Figure 2, for example, the vWA peak at allele 17 is
approximately twice the height of that at allele 18. In the early years of LTDNA interpretation, peak imbalance in
LTDNA work was assumed to mean that, except in the case of clearly distinguished major and minor contributors,
peak heights convey no useable information about the underlying amount of DNA. Thus, peak heights were only
used to decide whether the sample contains a given allele. However, statistical models of peak heights have recently
been introduced (see Section 3.8), allowing the extraction of information from the epg about the amount of DNA
underlying each peak.

1.2. Low-Template DNA Profiles

Various enhancements to DNA profiling protocols have been introduced in recent years to allow
profiling of smaller and more degraded DNA samples than was previously possible. For exam-
ple, scientists can now profile DNA from a touch that was insufficient to generate a traditional
fingerprint. Lohmueller & Rudin (2012) give a description of a complex DNA profiling case and
describe some of the laboratory and analysis issues that arise.

The most obvious enhancement is to increase the number of PCR cycles from 28 (the standard
number of cycles) to between 29 and 34. The term low copy number (LCN) profiling was initially
used, but because of confusion over whether or not this term referred to a specific 34-cycle profil-
ing technique, the more general term low-template DNA (LTDNA) profiling is now preferred.
The term template refers to the DNA strands available for copying and is loosely equivalent
to the amount of DNA used for profiling, measured in units of mass (picograms, abbreviated
pg). The nuclear DNA content of a single human cell is approximately 6.5 pg.

The peak heights in an epg provide a guide to the DNA template used in the profiling run.
The epg in Figure 1 is based on 500 pg of DNA, and heterozygote peaks may be as high as 1,400
RFU. Figure 2 shows the blue-dye results for two LTDNA profiling runs for the same individual
as in Figure 1. The starting DNA templates are 31 pg and 15 pg, which generate heterozygote
peak heights up to approximately 160 RFU and 80 RFU, respectively. The small number of cells
contributing to LTDNA profiles, together with the possibility for highly sensitive techniques to
detect extracellular and degraded DNA in a crime stain, often lead to stochastic effects that are
negligible at higher DNA template. These effects can include dropin, dropout, peak imbalance,
and exaggerated stutter (see sidebars, Dropin, Dropout, Peak Imbalance, and Stutter).

Because there is no clear distinction between LTDNA and standard DNA profiling, any method
of analysis for LTDNA profiles should return the same results as would a standard analysis when
presented with profiles obtained using optimal DNA template. Standard DNA profiling protocols
usually recommend using approximately 1,000 pg of DNA, but they typically perform well when
the DNA template is reduced to 300 pg and often lower. Figure 2 shows that despite some
dropout (for a brief description of dropout, see sidebar, Dropout), substantial information can be
obtained from LTDNA profiling of only 31 pg of (nondegraded) DNA, and some information
can be obtained from profiling as few as 15 pg.

The essential characteristic of LTDNA profiles is that stochastic phenomena are considered to
be potentially important. In single-contributor profiles such as that in Figure 1, a single peak at a
locus indicates a homozygous genotype. However, the single D3 peak in Figure 2 (top) has a height
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DROPOUT

Dropout arises when the DNA profile of a crime stain does not include an allele from a contributor. Several
instances of dropout in Figure 2 can be noted by comparison with Figure 1. For example, in the leftmost locus
(D3), allele 14 has dropped out in the top panel of Figure 2, and alleles 14 and 15 have dropped out in the bottom
panel. Dropout also includes peaks that fail to reach the height threshold regarded as sufficient to confidently
distinguish an allele from baseline noise. This threshold varies according to laboratory and profiling protocols, but
it is typically between 25 and 75 RFU. In Figure 2 (bottom), there is an above-baseline peak (∼25 RFU in height)
for allele 13 at the position of locus D16, which we know from the panel above corresponds to an allele, but as it
has not been labeled as such in this run, it is considered a dropout.

of approximately 90 RFU, and an interpreter of the epg should recognize the possibility that an
allele has dropped out (which we know is true in this case). A threshold can be adopted, typically
200 to 300 RFU, such that single peaks above this threshold are interpreted as homozygotes
(Lohmueller & Rudin 2012). On the basis of such a threshold, the UK National DNA Database
encodes a single peak at allele A as AF or AA, where F will match any allele in subsequent searches
of the database. Thresholds are somewhat arbitrary and should be selected according to the sample
and the profiling system employed. Puch-Solis et al. (2011) propose a method for choosing an
appropriate threshold using laboratory- and protocol-specific calibration data.

The effects of DNA degradation due to environmental exposure, and hence the dropout rate,
tend to increase with DNA fragment length, so stochastic effects may be important for only some
loci. Moreover, most DNA profiles are mixed, and DNA quantification techniques are unable to
estimate the amounts of DNA template originating from different contributors. Thus there may
be ample DNA from one contributor but little DNA from other contributors. Forensic scientists
often reserve the term contamination for the introduction of foreign DNA into a sample after
it is recovered. This distinction can be important in a trial, but we cannot determine from the
epg the times at which DNA from different sources came to be in the sample. Thus, the term
contamination is also used more loosely to refer to any DNA that is not from persons of interest to
the investigation, including dropin alleles. It is common to distinguish “gross contamination,” in
which all of an individual’s DNA is introduced into the crime-related sample, from environmental
contamination such as dropin (see sidebar, Dropin).

DROPIN

Dropin arises when an allele that is not in the genotype of any assumed contributor to the crime stain is observed
in the crime scene profile (CSP). Although a dropin allele must have come from somebody, treating the allele
as sporadic may be more appropriate than treating it as one among multiple alleles contributed by an unknown
individual, particularly if the DNA from that individual is extremely low template or degraded. The appearance
of sporadic peaks in DNA-blank control runs confirms the presence of dropin in LTDNA profiles. These peaks
are primarily thought to be a result of airborne DNA fragments, perhaps from previously analyzed samples, hence
the term dropin. However, sporadic alleles from degraded DNA may arise from environmental exposure at the
crime scene. Some authors only consider dropin due to lab-based contamination, but because the source of a dropin
allele cannot be verified, we here regard dropin as referring to any sporadic DNA alleles.
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Likelihood ratio
(LR): in forensic
evidence evaluation,
the LR is the
probability of the
evidence assuming Hp
to its probability
assuming Hd

Hp: hypothesis
representing the
prosecution allegation;
typically unique

Hd: hypothesis
representing an
alternative to Hp that
is consistent with the
defense case; typically,
many Hd should be
considered

Queried contributor
(Q): a contributor
under Hp but not
under Hd

CSP: crime scene
profile

2. PRINCIPLES OF DNA PROFILE EVIDENCE EVALUATION

2.1. Likelihood Ratios

Despite substantial resistance, not least from judges unfamiliar with quantitative evidence evalua-
tion, the use of likelihoods as the primary tool for evidence evaluation has gained ground in recent
years (Gill et al. 2012). In simple settings, we can form a likelihood ratio (Evett et al. 1991, Evett
& Weir 1998)

LR = Pr(E|H p)
Pr(E|H d)

, 1.

where E denotes the evidence and Hp and Hd represent competing hypotheses corresponding to
the prosecution and defense positions, respectively.

Many difficulties may arise in putting Equation 1 into practice, and some proponents of using
LRs in the legal process have understated these challenges. However, these difficulties are more
easily overcome than are the problems faced by alternative methods of evidence evaluation that
lack the sound conceptual basis of likelihood-based analyses (Robertson & Vignaux 1995).

One potential source of confusion for statisticians is that the LR is not considered as a statistic
to be tested against a null distribution. Finders of fact (a juror or a judge) can use LRs to update
probabilities for Hp and Hd using Bayes theorem. Updating these probabilities requires prior
probabilities, which can be based on other evidence, and may therefore lie outside the domain
of the DNA expert witness. Such a witness should not apply Bayes Theorem in court, except for
illustrative calculations (see Section 5).

2.2. Formulating the Hypotheses

One of the major difficulties in likelihood-based evidence evaluation is the choice of hypotheses,
Hp and Hd. Specifying Hp usually poses fewer problems because the prosecution makes a specific
allegation. In contrast, the defense is not required to give any account of the events surrounding an
alleged crime, making it difficult for a forensic scientist to choose an appropriate Hd. The forensic
scientist must usually allow for all reasonable alternatives to Hp. Gill & Haned (2013) propose an
exploratory framework for formulating competing hypotheses in the interpretation of complex
DNA profiles and discuss many of the associated issues.

Typically, Hp will specify a person of interest Q, such as the defendant or a crime victim, as a
source of the DNA that generated the crime scene profile (CSP). Then, it may be reasonable to
assume under Hd that Q is replaced by an unknown individual X. Problems can arise in specifying
the numbers of known and unknown contributors of DNA, their genetic ancestries (or so-called
ethnicities, see Section 2.4), and the levels of relatedness among them. To account for all such
possibilities, Hd should be decomposed into exhaustive, mutually exclusive alternatives, each of
which is precise enough to allow computation of the likelihood. The defense should seek to identify
plausible alternative scenarios that have not been considered.

Thus, the computation of Equation 1 is more complex than at first appears because the de-
nominator is a sum over alternative scenarios that are weighted by their plausibilities (which in
turn are based on other evidence). This weighting encroaches on the role of the finder of fact.
To avoid such potential encroachment, an LR can be reported for each scenario, which the finder
of fact can then combine. The forensic scientist may simplify this task by reporting only one LR
for multiple scenarios, the LR that most favors the defense. For example, a forensic scientist may
report only the smallest LR for a range of possible ethnicities of X and numbers of contributors of
DNA to the CSP. However, strict adherence to the “most favorable to the defendant” principle
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RMNE: random man
not excluded

is not always reasonable. For example, the alternative scenario in which the DNA was left by an
identical twin of Q, from whom he was separated at birth, would generate an LR of 1. Such a
scenario can rarely be unequivocally disproved, and the forensic scientist must in effect dismiss it
as implausible a priori while recognizing that the defense remains free to propose it at trial.

In some cases, the defense may accept that Q could be a source of the crime scene DNA but
assert that his DNA became part of the crime stain by some means other than committing the
crime, perhaps involving gross contamination of the stain. We do not consider such a defense here:
Although the relevance of DNA evidence is often an important issue, it is not easily amenable to
statistical analysis. Thus, in the remainder of this review, we assume that the source of the CSP,
not the relevance of the DNA evidence, is in dispute between the prosecution and the defense.

2.3. Random Man Not Excluded Probability

The major alternative to the LR approach for evidence evaluation is to report the inclusion prob-
ability, often referred to as the Random Man Not Excluded (RMNE) probability. This approach
simplifies the DNA profile evidence to the observation that an individual of interest, say Q, can-
not be excluded from having contributed DNA to the crime stain. Typically, a large fraction of
the population is excluded, so the nonexclusion of Q would be surprising if he were not a true
contributor. Because the RMNE probability gives a measure of this surprise, it conveys a sense of
the evidential strength that Q is a contributor.

For a single-contributor CSP matching the genotype of Q, the RMNE probability is numer-
ically similar to the LR, but they diverge in more complex scenarios. For example, the RMNE
probability does not depend on the genotype of Q, so its value is the same for all nonexcluded
individuals. The RMNE probability has two major perceived advantages over LRs: It does not
require the number of contributors to the crime stain to be specified, and it is regarded as being
easier to explain in court. However, by not addressing the question of direct interest to the court,
the RMNE approach wastes information, in addition to having other deficiencies that also apply
to standard profiles (Balding 2005, Bille et al. 2013, Gill et al. 2006). It faces particular diffi-
culties in evaluating LTDNA evidence (Buckleton & Curran 2008) because dropout and dropin
make the concept of exclusion difficult to define. One attempt to overcome this difficulty (Van
Nieuwerburgh et al. 2009) regards an individual Q as excluded if he has more than two alleles that
are not observed in the CSP.

Bille et al. (2013) propose an extension to the random match probability (RMP), which is
equivalent to the LR in single-source cases, that makes the RMP applicable to mixture CSPs.
They propose this approach as a middle ground between the LR and RMNE methods: The RMP
approach is similar to the RMNE approach but uses the number of contributors and the peak
heights to make more efficient use of the observed CSP data.

2.4. Population Genetics

Most analyses of forensic DNA profiling assume that the genotype of an unprofiled individual not
related to any profiled individual is an unordered pair of alleles that correspond to independent
random draws according to known allele fractions. In practice, these allele fractions are estimated
in one or more populations. The three main databases currently used in the United Kingdom are
for Caucasian, Afro-Caribbean, and Indo-Pakistani populations. A sampling adjustment may be
made to bias upward the frequency estimates of rare alleles and to avoid allele counts of zero. For
example, such an adjustment might involve adding a pseudocount of one or two to the observed
allele counts (Balding 1995). There are many deficiencies in current practice in this area: Databases
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FST: a population
genetics parameter
used here to specify
the coancestry of Q
and X relative to the
population in which
the allele fractions p
are estimated

in forensic use are often small and are convenience samples instead of samples resulting from a
designed experiment, and ethnic labels are assigned in a manner that is rarely precise and often
subjective (e.g., based on a police officer’s assessment).

These are long-standing problems in the use of DNA profile evidence. Fortunately, STR
allele fractions tend not to vary greatly across populations, however they are defined. Further,
incorporating a fixation index (FST) adjustment into the calculation of the LR can make an
allowance for the genetic ancestries of Q, X, and individuals in the database (Balding 2005). Here,
we consider FST to be the population genetics parameter that specifies the coancestry of Q and X
relative to the database population. The more similar are the ancestries of Q and X, and the more
they differ from those of the database population, the larger the appropriate value of FST, which
tends to reduce the LR. For details of FST adjustments in a range of non-LTDNA settings, the
reader is referred to Fung & Hu (2008). Considering that the value of FST is never precise, an
approximate allowance for coancestry between Q and X can be obtained by replacing each allele
fraction p with an adjusted value:

(1 − FST)p/(1 + FST) for an allele not in the profile of Q,

(FST + (1 − FST)p)/(1 + FST) for a heterozygote allele of Q,

(2FST + (1 − FST)p)/(1 + FST) for a homozygote allele of Q.

The appropriate value of FST is typically small, except for relatively few individuals X who
have substantial coancestry with Q. However, because coancestry levels among different X are
difficult to specify and because of the problems with population databases outlined above, forensic
scientists customarily err in favor of defendants by using a relatively large value of FST (say 2%
to 5%) for all X. Such large values can be limited to LRs computed using the database most
appropriate for Q: Little FST adjustment is required for LR calculations using more remote
databases. Thus, it is almost always favorable for the defense to report LRs obtained using the
database closest to the ancestry of Q, together with a generous value of FST, even though the
alternative X may have a different ancestry from Q.

In US forensic practice, owing to a long-standing misunderstanding introduced by the NRC2
report (Natl. Res. Counc. 1996), FST (also called θ ) is usually used to model only within-individual
genetic correlations (i.e., excess homozygosity). However, these correlations are of little relevance
to evidential weight. Only between-individual correlations matter in practice, and failing to model
them results in LR values that are biased against defendants. Modeling only excess homozygosity,
as proposed in the NRC2 report Recommendation 4.1, is essentially irrelevant and gives a false
impression of having adjusted for coancestry.

3. COMPUTING LIKELIHOODS

3.1. Standard, Single-Contributor Case

Consider first a standard, single-contributor CSP at a single locus. If the contributors under the
competing hypotheses are

H 1
p : Q and H 1

d : X,

then under the usual assumptions (Balding 2005, Buckleton et al. 2004), the LR is as follows:

LR = (1 + FST)(1 + 2FST)
2(FST + (1 − FST)p A)(FST + (1 − FST)pB )

if Q ≡ AB and CSP = AB, 2.

= (1 + FST)(1 + 2FST)
(2FST + (1 − FST)p A)(3FST + (1 − FST)p A)

if Q ≡ AA and CSP = A, 3.
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Table 1 Likelihoods under H 1
p and H 1

d for a single-contributor crime scene profile at a single
locus given an alleged contributor Q for whom dropout is considered possible

Crime scene
profile

L1
p (likelihood
under H1

p )
if Q ≡ AB

L1
p (likelihood
under H1

p )
if Q ≡ AA L1

d (likelihood under H1
d )

A D(1 − D) (1 − D2) p2
A(1 − D2) + 2p A(1 − p A)D(1 − D)

∅ D2 D2 Phom D2 + (1 − Phom)D2

∅ denotes no observed alleles.
D and D2 denote the probabilities of dropout for heterozygote and homozygote alleles, respectively.
Phom is the fraction of the population that has a homozygous genotype.

where ≡ denotes “has genotype” and the p are population allele fractions. Henceforth, we assume
the p have already been subjected to the sampling and FST adjustments described above. Thus,
we can ignore FST and Equations 2 and 3 simplify to 1/(2p A pB ) and 1/p2

A, respectively. Because
FST and, if appropriate, any coefficients measuring direct relatedness of Q and X account for the
positive correlations across loci due to shared ancestry between Q and X, full-profile LRs can be
computed via multiplication of single-locus LRs, which is standard practice in the assessment of
DNA profile evidence (Buckleton et al. 2004). Thus, we focus here on the single-locus case.

3.2. Allowing for Dropout

Suppose that we wish to evaluate an epg displaying low peak heights, which suggest that dropout
may have occurred. If at a particular locus Q ≡ AB and CSP = AB then no dropout has occurred
and the LR is unchanged from that given by Equation 2. Table 1 gives likelihoods for other cases.
These likelihoods are derived under a standard probability model, similar to that of Gill et al.
(2000) and further developed by several subsequent authors (Balding & Buckleton 2009; Gill et al.
2008, 2012), which assumes that allele dropouts are independent Bernoulli events with probability
D (D2 for homozygotes).

Consider the case in which Q ≡ AB and CSP = A (Table 1, top row). The likelihood L1
p is the

probability that the B allele of Q has dropped out (D), but the A allele has not (1−D). In L1
d, either

X is AA and no dropout has occurred (first term), or X is heterozygous but the non-A allele has
dropped out (second term). Logically, D in L1

p differs from D in L1
d, but both hypotheses typically

support similar values and the values of D in the two likelihoods are often taken to be equal for
illustrative LR calculations (Gill et al. 2007).

The case in which Q ≡ AA and CSP = A is consistent with zero dropout (D = D2 = 0). In
this case, LR = 1/p2

A, the simplified form of Equation 3 introduced above. Otherwise, if dropout
is impossible, Lp = LR = 0.

3.3. Profiled Contributors Not Subject to Dropout

LTDNA profiles are frequently mixed (containing DNA from multiple individuals). In one com-
mon scenario, there is ample DNA from a known, profiled contributor K, perhaps a victim, whereas
the offender, Q or X, contributes LTDNA. If the genotypes of K and of Q or X have no alleles in
common at a locus, then the likelihoods in Table 1 still apply. Otherwise, K is said to mask one
or both alleles of Q or X. Table 2 gives single-locus likelihoods for some cases of masking under
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Table 2 Likelihoods under hypotheses H 2
p and H 2

d for a two-contributor crime scene profile at a single locus when K is a
profiled contributor not subject to dropout

Crime
scene
profile

Genotype of
contributor

K

L2
p (likelihood
under H2

p )
if Q ≡ AB

L2
p (likelihood
under H2

p )
if Q ≡ AA L2

d (likelihood under H2
d )

ABC BC 1−D 1−D2 p2
A(1 − D2) + 2p A(p B + pC )(1 − D) + 2p A(1 − p A − p B −
pC )D(1 − D)

AB BB 1−D 1−D2 p2
A(1 − D2) + 2p A p B (1 − D) + 2p A(1 − p A − p B )D(1 − D)

BC BC D D2 (p B + pC )2 +2(p B + pC )(1− p B − pC )D+ Phet D2 + Phom D2

B BB D D2 p2
B + 2p B (1 − p B )D + Phet D2 + Phom D2

AB AB 1 1 (p A+ p B )2 +2(p A+ p B )(1− p A− p B )D+ Phet D2 + Phom D2

Phet and Phom denote the population fractions of heterozygous and homozygous genotypes that do not include any of the CSP alleles.

K: a possible
contributor to the
crime stain for whom a
reference profile is
available

the following hypotheses:

H 2
p : Q + K and H 2

d : X + K.

When Q ≡ AB, K ≡ BC, and CSP = ABC, the LR comparing H 2
p and H 2

d can be written in the
following form:

LR = L2
p

L2
d

= P (CSP = ABC|Q ≡ AB, K ≡ BC)∑
g∈� pg P (CSP = ABC|X ≡ g, K ≡ BC)

4.

where � denotes the set of possible genotypes and pg denotes the population fraction of genotype g.
The first row of Table 2 gives explicit expressions for numerator and denominator. The alleles of
K must appear in the CSP, and L2

p is obtained by noting whether or not each allele of Q has dropped
out or whether the occurrence of dropout cannot be determined because of masking by an allele
of K. L2

d is obtained by summing, over each possible genotype for X, the product of the population
fraction of that genotype and dropout, nondropout, or masking terms similar to those in L2

p.
Balding (2013) further extended this model by allowing the allelic status of an epg peak to be

uncertain, rather than limited to either present or absent. This status can be applied to alleles of
borderline peak height or to peaks that may be attributable to stutter (for a brief description, see
sidebar, Stutter) or other artifact. An uncertain allele is treated in the same way as an allele masked

STUTTER

Stutter peaks in electropherograms arise because of imperfect DNA copying during PCR. Most often, one repeat
unit of the DNA motif is omitted, generating a stutter peak at a position corresponding to one repeat unit shorter
than an allelic peak. Occasionally, two repeat units are omitted (sometimes called double stutter) or a repeat unit is
added (overstutter). Although stutter occurs for standard DNA profiles (many small stutter peaks can be observed
in Figure 1), stutter peak heights are exaggerated in some LTDNA protocols. Stutter is problematic when a
sample contains DNA from multiple contributors with different template levels because an allele peak from a
minor contributor can be indistinguishable from a stutter peak generated by an allele from a major contributor.
Threshold-based decision rules are often employed in practice; these rules suggest treating peaks in stutter positions
as stutter peaks if their heights are, say, less than 15% of the peak height at the parent allele. Improved methods
of evaluation are now available that allow an “uncertain” designation for peaks near the threshold or that use peak
heights continuously, avoiding thresholds altogether (see Section 3.8).
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by K: The dropout term has a value of 1 because we do not know whether or not the allele has
dropped out.

3.4. Modeling Dropin

Dropins are usually modeled as independent Bernoulli events: At each allele not in the genotype
of any hypothesized contributor, a dropin allele occurs with probability C and the allelic type of
the dropin is distributed in proportion to the p, after excluding the alleles of the hypothesized
contributors. When there are unprofiled contributors, such as X under Ld in Equation 4, a CSP
allele not attributable to K is included in the genotype of X for some terms of the sum; for other
terms, this allele is treated as a dropin. The probability of dropin at a locus should depend on
the relative frequencies of the nondropin alleles because dropins cannot be observed at those
alleles. This dependence implies different dropin probabilities for each term of the summation.
However, these complexities are often ignored in practice. Both this difficulty and that of modeling
the variable effect of degradation with fragment length for dropins provide reasons to avoid explicit
modeling of dropin where possible and to assume instead the presence of an additional unprofiled
contributor with a low DNA template and hence high dropout. Despite its limitations, the dropin
model may provide an acceptable approximation that can reduce computational effort, provided
the number of dropins allowed at a locus is limited. When unlimited dropout and dropin are
allowed, every CSP is consistent with every hypothesis for the contributors.

3.5. Multidose Dropout and Degradation

One consequence of the bottom row of Table 1 is that a null CSP (no observed alleles) is in-
formative (LR �= 1). This occurs because D2, the probability of dropout for a homozygous allele,
is in general not equal to the probability of dropout for two heterozygous alleles (D2). Balding
& Buckleton (2009) noted that we expect D2 < D2, and, on the basis of limited data, they used
D2 = D2/2 in their numerical calculations. Tvedebrink et al. (2009) criticized an obvious weak-
ness of this approximation: D2 can never exceed 0.5. They proposed an alternative model in which
dropout probabilities were determined as a function of an average peak height, which was used
as a proxy for DNA dose. A general formula is needed when multiple contributors are subject to
dropout because the model must then allow for individuals to contribute DNA template for the
same allele.

In Tvedebrink et al. (2009), D(k), the dropout probability for dose k of DNA can be written

D(k)
1 − D(k)

= (αs k)β, 5.

where s indicates the locus. For k large,

D(2k)
D(k)2

≈
(

2
αs k

)β

> 1,

implying that a homozygous dropout can be more likely than the independent dropout of both
alleles, which is implausible. However, because this inequality holds only for low dropout proba-
bilities (Tvedebrink et al. 2012a), the defect of the model is unimportant in practice.

Cowell et al. (2013) and Puch-Solis et al. (2013) define the dropout probability as corresponding
to the lower tail of a gamma distribution. Cowell et al. (2013) show that their definition implies,
for typical parameter values, a slower increase in dropout rate than that given by Equation 5 as
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U: an unprofiled
possible contributor of
DNA to the crime
stain

the DNA dose decreases. They note that their threshold-based definition of dropout must satisfy
D2 < D2, but no empirical comparison of goodness-of-fit has been made for these models.

DNA degrades over time at a rate that depends on temperature, humidity, and environmen-
tal exposure. This degradation is manifested in an approximately exponential decline of epg peak
heights as fragment lengths increase (Bright et al. 2013a). Tvedebrink et al. (2012b) proposed a geo-
metric model to estimate the effective amount of DNA at a given allele fragment length: The longer
the fragment, the smaller the effective dose. An STR allele consists of flanking regions and tandem
repeats, so the number of repeats that characterizes the allele is not a good proxy for fragment
length. Fragment length for many DNA profiling systems can be obtained from the Short Tandem
Repeat DNA Internet DataBase (STRbase) website (http://www.cstl.nist.gov/strbase/).

3.6. Additional Contributors Subject to Dropout

Given a multidose dropout model, likelihoods can be specified for any number of contributors,
each of whom may or may not be profiled and/or subject to dropout. For example, in the scenario
of Equation 4, if instead of K, we posit an unprofiled contributor U who is subject to dropout,
then we also need to sum the numerator and denominator over all possibilities for the genotype
of U, multiplying each term by the genotype probability, which yields the following equation:

LR =
∑

g∈� pg P (CSP = ABC|Q ≡ AB, U ≡ g)∑
g1,g2∈� pg1 pg2 P (CSP = ABC|X ≡ g1, U ≡ g2)

. 6.

Because two contributors are now subject to dropout, we need information about the relative
amounts of DNA from each contributor to compute the likelihood. This information can come
from the heights of peaks believed to have originated from only one individual (Tvedebrink et al.
2009), or DNA template levels can be unknown parameters to be eliminated via integration or
likelihood maximization (Balding 2013, Cowell et al. 2013).

3.7. Replicates

Because of the stochasticity of LTDNA profiles, attempting to replicate the profiling process
seems natural in order to distinguish robust signals that appear in each replicate from unreplicated
artifacts. Currently in the United Kingdom, most LTDNA work uses between two and four
profiling runs. Mitchell et al. (2012) report that they use three profiling runs if the total amount
of extracted DNA is <300 pg and one or two otherwise.

An early recommendation for the evaluation of replicate epgs was to first derive a single consen-
sus profile (Gill et al. 2000). Benschop et al. (2011) developed optimal strategies for constructing
a consensus from multiple replicates. They recognized that a full statistical analysis could obviate
the need for a consensus profile, but they felt that the statistical models and software available
when they were writing (in 2010) were not yet sufficiently advanced and available to be a practi-
cal option. The software review below suggests that in 2013, statistical analysis of replicates is a
practical option.

There are arguments for and against replication: Some view seeking verification of results
by replication wherever possible as fundamental to the scientific method. Pfeifer et al. (2012)
advocate replication to overcome the interpretation problems inherent in LTDNA profiles and
to benefit from combining the strengths of different profiling technologies. Grisedale & van Daal
(2012) oppose this view, noting that replication can divide an already minuscule sample, and for
very small samples it is preferable to use all available DNA to get the best profile possible from a
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Continuous model
(algorithm): here, a
model (algorithm) that
uses epg peak height
information, resulting
in an LR that varies
continuously with peak
height

single run. By sharing information across alleles and loci under an appropriate statistical model,
its parameters can be estimated, and likelihoods can be obtained from a single profiling run.

Curran et al. (2005) extended LR calculations to multiple replicates in the presence of dropout
and dropin. They assumed the replicates were independent, conditional on the genotypes of any
unknown contributor. For example, under the hypothesis Q + U, the likelihood for multiple
replicates can be expressed in the form

L =
∑
g∈�

pg

∏
r

P (CSPr |Q, U ≡ g), 7.

where CSPr denotes the set of alleles observed in the rth replicate. Note that whenever the
hypothesis specifies an unknown contributor, replicates are not unconditionally independent:
The assumption of independence only applies conditional on the unknown contributor genotypes
(i.e., for each term in the summation, not the overall sum).

3.8. Using Peak Heights

So far, we have assumed that the information in the epg is summarized as a list of alleles called
as present (possibly also a list of uncertain alleles). For mixed DNA profiles, epg peak heights
contain information about allele dose, as Figure 3 illustrates for a CSP with negligible dropout.
There are four peaks with roughly equal heights at loci D3 and D2, suggesting two contributors
and equal probabilities for the six possible pairings of the four alleles. At locus vWA, however,
there are only three peaks, and the peak at allele 17 is approximately double the height of those
at alleles 14 and 19, indicating that either the two contributors are 17,17 and 14,19, or they are
14,17 and 17,19. At D16, it appears that either both contributors are 11,13, or one is 11,11 and
the other is 13,13.

In LTDNA work, the variability of peak heights makes categorical inferences of allele counts
infeasible. However, an appropriate statistical model for peak height as a function of DNA template
can lead to useful inferences about the latter and hence about contributor genotypes (Pascali &
Merigioli 2012, Perlin & Sinelnikov 2009, Perlin & Szabady 2001). Although DNA profiling
systems also report peak areas (Evett et al. 1998, Gill et al. 1998), they are highly correlated with
peak heights (Tvedebrink et al. 2010), and the latter are usually preferred.

Continuous models (which use peak heights) lead to likelihoods of the same form as, for
example, Equation 7, but the CSP now consists of a peak height for each allele at a locus, rather
than an indicator of presence or absence. The lognormal or gamma distributions can provide
models for peak heights in which the means are specified by the DNA template and the variances
estimated by deviations from the mean over the whole profile (Cowell et al. 2007a). Puch-Solis
et al. (2013) also introduced a gamma model for stutter peak height, in which the mean height
was computed as a fraction of the mean at the parent allele, fixed over loci but estimated from the
observed profile (not fixed over runs).

Because baseline noise generates peaks across the entire epg, some so-called continuous models
are not fully continuous. Rather, they use a threshold of detection below which any peak is ignored.
Thus, the distribution of peak heights is continuous above the threshold but has an atom of
probability mass corresponding to dropout (below-threshold peak height).

Continuous methods are expected to outperform discrete methods because they exploit
additional information in the peak heights (Perlin & Sinelnikov 2009). However, peak heights in
LTDNA profiles are highly variable, and the pattern of variability may be sensitive to details of the
DNA profiling protocol, hindering their usefulness (Gill & Haned 2013). Parameter estimation
for some continuous models depends on only the CSP data (Cowell et al. 2013, Perlin et al. 2011),
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WoE: weight of
evidence

Discrete model
(algorithm): here, a
model (algorithm) that
uses epg peak heights
only indirectly after
peaks are classified as
allelic or nonallelic;
peak status may also be
uncertain in some
models

Ban: unit of WoE
used when comparing
two specified
hypotheses;
log10(LR) = x bans

whereas other models depend on calibration data generated under the same conditions that were
employed for the CSP being evaluated (Puch-Solis et al. 2013, Taylor et al. 2013). In the latter
case, a lack of calibration data may make evaluation impossible, whereas in the former case,
models may be sensitive to the details of the DNA profiling protocol. Although discrete-model
LRs may have similar drawbacks, the simpler data and modeling assumptions on which they are
based diminish such concerns, possibly allowing these models to enjoy an advantage of robustness
to laboratory-specific details in return for a loss of statistical efficiency. To our knowledge, no
work has assessed the robustness of any LTDNA model to varying the DNA profiling platform.

The gain in statistical efficiency from using peak height data is most important for single-
run CSPs. Puch-Solis et al. (2013) show results from two single-run CSPs: Both are two-person
mixtures, and in each analysis the contributor other than Q or X is regarded as unknown. These
authors find that their continuous model yielded a weight of evidence (WoE) in favor of a true
hypothesis that was approximately 2–3 decibans per locus higher than the WoE for a discrete
model. However, as the number of replicates increases, the LR computed from an LTDNA
sample under a discrete model often converges to the LR available from a CSP not subject to
dropout, in which case a continuous model can convey little advantage. When the dropout rate is
low, only two or three replicates can suffice to come close to this optimal LR.

4. CURRENT SOFTWARE

4.1. Overview of Software Programs

The currently available programs for computing LTDNA profile LRs under discrete models are
Forensim, Forensic Statistical Tool (FST), and likeLTD. TrueAllele, DNAmixtures, and STRmix
compute LTDNA profile LRs under continuous models. Table 3 summarizes the features of these
programs, and the programs are described briefly in subsequent subsections. Another continuous
model has been published by Puch-Solis et al. (2013), but no software has been released.

All six programs discussed here sum over unknown contributor genotypes. The population
genetics models that specify the prior distribution are similar across the six programs but dis-
agree over the use of FST. DNAmixtures represents the genotypes of the unknown contributors
and the peak height data in Bayesian networks and uses efficient network algorithms to perform
the integrations. (These algorithms are implemented in HUGIN and accessed through the R

Table 3 Summary of key features of software programs available for low-template DNA profile analysis

Program Open source Model
Allows

relatednessa
Parameter

elimination methodb

Maximum number of
unprofiled contributors

under Hd

Forensim � Discrete ✗ User 3
FST ✗ Discrete ✗ Plug-in 4
likeLTD � Discrete � Maximization 3
TrueAllele ✗ Continuous � Integration 6
DNAmixtures �c Continuous ✗ Maximization 6
STRmix ✗ Continuous � Integration 4

aSymbols indicate whether or not the program takes into account close relatedness between Q and X.
bThe method used to eliminate the model parameters from the likelihood (all programs use integration for the unprofiled contributor genotypes).
cThe DNAmixtures code is open source, but running it requires HUGIN, which is not.
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MCMC: Markov
chain Monte Carlo

package Rhugin.) Another R package, Rsolnp, is then used to maximize over the model parame-
ters. DNAmixtures as described here requires a licensed copy of the commercial software HUGIN
(http://www.hugin.com).

Forensim requires user-supplied estimates for the model parameters, and FST uses estimates
generated from in-house training data. Similar to DNAmixtures, likeLTD maximizes likelihoods
over the model parameters, avoiding the need to specify prior distributions, but for some param-
eters, it uses penalty functions, which are analogous to prior distributions.

TrueAllele and STRmix implement fully Bayesian inferences. This implies that a prior distri-
bution is assumed for all unknowns, leading to a posterior distribution that reflects both the prior
and the DNA profile evidence. The specification of prior distributions can be problematic in an
adversarial courtroom environment. In addition, performing Bayesian inference may appear to
conflict with the requirement that expert witnesses do not present to courts a probability that the
prosecution case is true, as that would require an assessment of all the evidence. However, it is
possible to report an LR relating only to the DNA evidence by focusing on the posterior distri-
bution for the genotype of the contributor of interest (X) under Hd. The LR is then evaluated in
terms of the posterior probability assigned to the genotype of Q.

The prior distribution for the genotype of X is given by the standard population genetics
model described above in Section 2.4. In the single-contributor setting discussed in Section 3.1,
the posterior probability that X has the genotype of Q is equal to 1. The LR is then the ratio
of the posterior to prior probabilities for that genotype and is equal to the inverse of the prior
probability. In more complex LTDNA settings, the posterior probability that X has the genotype
of Q is less than 1, and the LR is reduced accordingly.

TrueAllele and STRmix approximate the posterior distribution for the genotype of X using
Markov chain Monte Carlo (MCMC) algorithms to perform the required integrations over all
other unknowns, including the genotypes of other unprofiled contributors and model constants
such as prior distribution parameters. MCMC generates a sequence of output vectors, each of
which is treated as a sample from the joint posterior distribution of all unknowns. These outputs
facilitate the approximation of marginal posterior distributions for unknowns of interest other
than the genotype of X, such as the genotypes of other unprofiled contributors. Inferring the
genotypes of all contributors to a DNA mixture is sometimes called deconvolution.

Because computations are performed assuming Hd, the above approach is only feasible when
Hp is a special case of Hd, which is usually but not always the case. An exception arises when the
prosecution and defense propose different numbers of contributors to the CSP. Perlin et al. (2011)
noted that because the computations are performed under Hd, any possibility of prosecution bias
is avoided. This is also true whenever the algorithm for computing the LR is chosen without
case-specific knowledge.

Half of the maximum number of distinct alleles observed over a set of loci provides a lower
bound on the number of contributors to the CSP, but no upper bound exists. Both Lp and Ld

must be nondecreasing in the assumed number of contributors, and these likelihoods are difficult
to compute for large numbers of contributors (Table 3). Intuitively, one would expect the LR to
change little if at all as the number of contributors increases beyond the minimum number required
to explain the observed alleles. Cowell et al. (2013) use DNAmixtures to verify this intuition
for a CSP requiring at least three contributors. The calculated WoE of 14.09 bans assuming
three contributors decreases slightly as the number of assumed contributors increases, reaching
14.04 bans for eight contributors. Although this increase means that limiting the number of
contributors to the minimum required to explain the observed alleles is unfavorable to a defendant,
the effect size is negligible, and adjustments intended to favor the defendant, such as generous FST

and sampling adjustments, easily compensate for it.
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4.2. Features of Current Software Packages

The following sections discuss salient features and computation methods of current software
packages for computing LTDNA LRs.

4.2.1. Forensim. Forensim (Haned et al. 2012) is an R package for forensic DNA profile sim-
ulation and analysis that includes functions to compute LTDNA LRs in a manner similar to
LoComatioN (Gill et al. 2007). The LR calculation in this program is built around the recom-
mendations of Gill et al. (2006, 2012), and Gill & Haned (2013) propose its use as a basic model by
which other models may be assessed. Forensim includes a function, LRmix, which allows users to
enter parameter values through a graphical user interface (GUI) and to select files containing pro-
file information, as well as an allele frequency database. The GUI makes LRmix more accessible to
forensic scientists who are not familiar with scientific computing, but users can also choose to use
likEvid, which has no GUI but offers additional model flexibility (Haned et al. 2012). For example,
LRmix, but not likEvid, assumes that D is the same under Hp and Hd, and for all replicates and all
contributors, possibly leading to misleading inferences for complex mixtures. Forensim does not
estimate parameter values; it requires the user to enter values for dropout rates, dropin rates, and
FST. However, it can generate a plot of LR values as a function of the dropout rate D in addition
to a 95% confidence interval for D.

4.2.2. FST. FST (Mitchell et al. 2012) uses empirically estimated dropout rates from laboratory
experiments that varied the number of PCR cycles, STR locus, number of contributors, and
mixture ratio (approximately equal or not). The calibration data to estimate dropout rates used
2,000 amplifications of 700 DNA samples with between one and three contributors and between
6.25 pg and 500 pg of DNA template. The amplifications were run using 31 PCR cycles and in
triplicate for samples up to 300 pg of DNA and with two 28-cycle PCR iterations otherwise.

For the analysis of a crime scene DNA sample, an accurate DNA quantitation system is used, and
dropout rates are estimated by interpolation from the lab-generated dropout rates. Separate rates
are estimated for homozygous dropout, partial heterozygous dropout, and complete heterozygous
dropout, but no dropout rate is specified for cases in which multiple low-template contributors
have the same allele. Locus-specific dropout rates are adjusted according to the estimated degree
of degradation of a sample, from moderate to severe; sample degradation is estimated on the basis
of the ratio of the peak heights for the longest and shortest loci in each dye color. The dropin
rate is estimated as a function of the number of PCR cycles. Nonallelic stutter peaks are treated
as dropin. FST is not currently transportable outside the laboratory of the Office of the Chief
Medical Examiner, New York City, but Mitchell et al. (2012) state that they intend to make it
more widely available.

4.2.3. likeLTD. likeLTD (Balding 2013) is an R package that maximizes penalized likelihoods
over the model parameters, including the dropout probabilities for a reference individual in each
replicate, relative DNA templates for other contributors subject to dropout, degradation and
(optional) dropin parameters, and locus adjustment and slope parameters for the dropout model
in Equation 5. This tool allows for relatedness between Q and X, specified by two coefficients, and
it allows allelic positions to be classified as uncertain in addition to present or absent. likeLTD
takes the following as its inputs: the genotypes of Q and any profiled possible contributors; a list
of allelic and uncertain CSP calls for each locus and each replicate; and parameter values such
as sampling adjustment, FST and relatedness coefficients, the numbers of unprofiled contributors
under Hd and Hp, a parameter indicating whether or not dropin is being modeled, and the dropin
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and degradation penalties. The current version of likeLTD (5.0) has evolved from the model
described in Balding & Buckleton (2009). An earlier version has been integrated into the Lab
Retriever software (http://scieg.org/lab_retriever.html).

4.2.4. TrueAllele. TrueAllele (Perlin et al. 2011, 2013; Perlin & Sinelnikov 2009) models back-
ground noise (peak heights in the absence of any allele), allowing it to use epg peak heights at all
allelic positions without considering dropout. The underlying model is similar to that of Cowell
et al. (2007b). At each locus, the DNA template has a diffuse normal prior truncated at zero. The
relative DNA templates from all but one contributor are assigned a multivariate normal prior
truncated to a hypercube; the prior has constant variance and means equal to a priori uniform
locus-independent weights. The total and relative DNA template parameters, together with the
genotypes of the hypothesized contributors (temporarily assigned for unprofiled contributors),
specify the expected peak heights at all allelic positions. The peak height variances have one con-
tribution that is linear with respect to expected peak height and another contribution that specifies
the variance of the baseline peak heights. All three variance parameters are assigned inverse-gamma
priors. Given the means and variances outlined above, the peak heights are independent and have
normal distributions truncated at zero. TrueAllele can also account for stutter and some other
artifacts, DNA degradation and coancestry, using FST. In addition to assessing the identity of a
contributor, TrueAllele can be used to assess paternity and other types of relatedness, for example,
in familial database searches or disaster victim identification.

4.2.5. DNAmixtures. The R package DNAmixtures (Graversen 2013a,b) is based on the model
proposed by Cowell et al. (2013), which is a recent extension of earlier models (Cowell 2009;
Cowell et al. 2007a, 2011). Graversen & Lauritzen (2013) further describe computational aspects.
Allele peak heights are gamma distributed: The means are a function of the DNA template, the
fractions from different contributors, the genotypes of the hypothesized contributors, and the
fraction of PCR product that generates stutter peaks (assumed to be beta distributed). Dropin
is not explicitly modeled. Silent alleles are handled through the addition of an extra allele that
does not result in a peak. Each locus is represented in a Bayesian network, which facilitates
likelihood integration over the genotypes of the unprofiled contributors. This representation is
possible because loci are independent (contributors are assumed to be unrelated). The program
deals with the dependence of expected peak height across neighboring alleles due to stutter by
expressing the genotype in a Markov structure using partial allele sums. DNAmixtures does not
currently adjust for FST, relatedness, variation over loci in the peak height model, or degrada-
tion. However, it does allow for multiple profiling runs on the same DNA sample in addition
to allowing for the analysis of multiple DNA samples assumed to have the same set of contrib-
utors who can contribute different proportions of DNA template to each sample. DNAmixtures
also has facilities for deconvolution, reporting uncertainty in parameter estimates, and model
diagnostics.

4.2.6. STRmix. STRmix is the result of a collaboration between Environmental Science &
Research (ESR) in New Zealand, Forensic Science South Australia, and the Australian National
Institute of Forensic Science. Its underlying models are outlined in Bright et al. (2013a,b) and
Taylor et al. (2013). Model parameters include DNA template and degradation for each contrib-
utor, as well as amplification efficiency for each locus. Input data include the genotypes of profiled
possible contributors, and, for the CSP, allelic designations, peak heights, molecular weights
(fragment lengths), and expected stutter ratios. STRmix can incorporate an FST adjustment
and can handle multiple replicates of differing intensities (assuming each replicate has the same
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contributors in the same proportions). The rate of dropout (which corresponds to a subthreshold
peak height) is controlled by the peak height variances, which are obtained from calibration
data. Two dropin models are available: One uses a fixed penalty, and the other uses a function of
observed peak height. STRmix allows different profiling kits and populations. Users can generate
an LR for each population, or a single LR can be obtained by weighting over populations.
Sampling variation is taken into account using the highest posterior density.

5. DISCUSSION

5.1. Quality of Results

Laboratory procedures to measure a physical quantity such as a concentration can be validated
by showing that the measured concentration consistently lies within an acceptable range of error
relative to the true concentration. Such validation is infeasible for software aimed at computing an
LR because it has no underlying true value (no equivalent to a true concentration exists). The LR
expresses our uncertainty about an unknown event and depends on modeling assumptions that
cannot be precisely verified in the context of noisy CSP data.

Some progress can be made in evaluating the validity and performance of software. Courts need
these kinds of evaluations to have confidence in the results of software-based forensic analyses.
Open source software is highly desirable in the court environment because openness to scrutiny
by any interested party is an invaluable source of bug reports and suggestions for improvement.

Cowell et al. (2013) noted that the LR implicating Q as a contributor to a crime stain can never
exceed the inverse of the match probability for a good-quality single-contributor profile. Thus,
they proposed the ratio of the actual LR to this theoretical upper bound as a measure of evidential
efficiency. The LR for a sequence of noisy replicate profiling runs of a single-contributor stain
should converge to the maximum efficiency of one. A sequence of runs from a mixed-source stain
can also reach this bound, provided that the DNA contributions from different individuals are
very different, allowing contributors to be distinguished either by different dropout rates for the
nonshared alleles or by different contributions to expected peak height. Ballantyne et al. (2013)
propose subsampling to generate different mixture ratios in the replicates as a strategy to assist
mixture deconvolution. The upper bound on efficiency provides a means to check a statistical
model for LTDNA profiles that include many replicates.

Gill & Haned (2013) promote the use of performance tests using a false Hp, which can be
a useful way to check whether a model or program implementing it is performing as expected
and to compare the behaviors of different models. Performance tests may improve understanding
for those unfamiliar with LRs, but they have no direct bearing on the strength of evidence in a
specific case. Forensim and FST both facilitate the comparison of an LR with values obtained
for the same CSP and hypotheses, but the genotype of Q is replaced with a genotype chosen
randomly according to the assumed population genetics model. This permits forensic scientists
to make statements similar to the following: “The reported LR is greater than 99.9% of LRs
calculated in the same way but replacing Q with a random noncontributor.” Unless the number
of observed alleles in the CSP is large, a randomly chosen false Q almost always generates a
small LR and is therefore effectively excluded under almost any reasonable model. Thus, many
simulated examples may generate few situations in which a false Q is a plausible contributor given
the CSP. However, both Forensim and FST are computationally fast, so the computational cost is
not an issue as it may be for other programs. Balding (2013) reports LRs computed for randomly
generated Q genotypes, and noted that a false Q usually explains few CSP alleles, so Hp often
requires one more contributor than does Hd.
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Owing to the recent emergence of new programs and updates to existing programs, few sys-
tematic comparisons of the performance of the programs described above have been published.
Such comparisons are a high priority now that the field is beginning to mature. From results
that are available, the various programs often do generate different results when comparing the
same hypothesis pair. The most important differences are typically between the continuous and
discrete algorithms, as the former exploit peak height information. The resulting WoEs can differ
substantially, by as much as several bans for single-replicate profiles (less for multiple replicates).
Smaller differences arise between programs within these two classes owing to different modeling
assumptions and approaches to eliminating nuisance parameters. These differences appear to be
small relative to the 10 or more orders of magnitude over which LRs range in practical applica-
tions. It follows that it is fruitless to insist on very precise likelihood calculations under any specific
model. An error of 1 deciban (∼26% on the natural scale) should be regarded as negligible; dif-
ferent, reasonable, modeling assumptions often have larger implications than this, so bans should
be reported to at most one decimal place.

5.2. Presentation of Results: A New Scale for Evidence?

One way to assist a court in interpreting an LR is through illustrative calculations. In court, we
have used the following language to describe a WoE of 6 bans comparing Q with an unrelated
X:

Consider the hypothetical scenario in which, on the basis of the non-DNA evidence, a juror considered
that there were 1,000 men who could be the questioned DNA source: Mr. Q and 999 men unrelated to
him. If each is initially considered equally likely to be the source, the effect of the DNA evidence would
be to change the probability that Mr. Q is indeed the correct source from 1 in 1,000 up to 99.9%.

Another possible template sentence that may be helpful is to say that the evidence is as strong as
it would be if an eyewitness had chosen Mr. Q from a lineup of 1 million men, and we have to
decide whether the eyewitness has picked out the culprit without error or has chosen completely
at random. However, neither of these formulations allows for possible relatedness between Q and
X.

Because the range of LRs that are reported to courts spans more than 10 orders of magnitude,
reporting LRs on a logarithmic scale is convenient. Here we use the ban, a WoE unit introduced
by Alan Turing (Good 1979) where log10(LR) = x bans. The ban is not currently used in courts,
but it may prove useful. There is a convenient analogy between these units of WoE and of the
Richter scale for earthquake magnitude. Both are logarithmic scales for which typical values range
up to about 10 and are reported to at most one decimal place. There is no maximum value for the
WoE, but in practice in the United Kingdom, any value above 9 bans (LR > 1 billion) is reported
as “over a billion.” The crucial difference between earthquakes and evidence is that WoE depends
on the hypotheses compared. Courts therefore need to be reminded that WoE is specific to the
stated pair of hypotheses.
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RELATED RESOURCES

International Society for Forensic Genetics (ISFG) software page: http://www.isfg.org/software
European Forensic Genetics (EUROFORGEN) Network of Excellence: http://euroforgen.com

384 Steele · Balding

http://www.isfg.org/software
http://euroforgen.com

	ar: 
	logo: 



