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Abstract

Statistical genetics is undergoing the same transition to big data that all
branches of applied statistics are experiencing, and this transition is only
accelerating with the advent of inexpensive DNA sequencing technology.
This brief review highlights some modern techniques with recent successes
in statistical genetics. These include (a) Lasso penalized regression for as-
sociation mapping, (b) ethnic admixture estimation, (c) matrix completion
for genotype and sequence imputation, (d ) the fused Lasso for discov-
ery of copy number variation, (e) haplotyping, ( f ) relatedness estimation,
( g) variance components models, and (h) rare variant testing. For more than
a century, genetics has been both a driver and beneficiary of statistical the-
ory and practice. This symbiotic relationship will persist for the foreseeable
future.
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Gene: an inherited
DNA segment whose
expression ultimately
leads to an observable
trait

Genome: the full set
of genetic material of
an individual

Locus: the position of
a specific DNA
segment on a
chromosome

Allele: one of the
possible states that a
gene can take; also
called a variant

Variant: an allele at a
locus; can be common
or rare

Single-nucleotide
polymorphism
(SNP): a locus,
usually biallelic and
never more than
tetraallelic,
characterized by
variation at a single
base position

1. INTRODUCTION

Genetics and statistics have coevolved for more than a century (Bodmer 2010), and modern statis-
ticians are heavily involved in current genetic studies (Mechanic et al. 2012). This symbiotic
relationship will likely continue well into the twenty-first century. The current review provides a
limited survey of statistical genetics and its future over the next decade. The repeated revolutions
in both genetics and statistics suggest that considering a longer time horizon would be foolish. Our
review focuses on linkage and association studies (gene mapping) for disease traits, as well as how
these studies are impacted by cheap DNA sequencing, fast parallel computing, and recent advances
in statistics. It is also worth emphasizing the positive benefits genetics exerts on statistics by suggest-
ing new problems and serving as a testing ground for new techniques. Indeed, statistical geneticists
have helped usher in a new era of theoretical statistics dominated by big data and high-dimensional
problems. To assist readers new to the field of genetics, we include definitions for key genetic terms
and acronyms. These readers may also consult reference texts (Laird & Lange 2011, Strachan &
Read 2011, Thomas 2004, Ziegler et al. 2010) for fuller explanations of genetic concepts.

The advent of high-throughput single-nucleotide polymorphism (SNP) genotyping focused
statisticians’ attention on several challenges: (a) less stringent p-value adjustments for multiple
testing, (b) model selection with a wild excess of predictors over outcomes, (c) quality control
of massive data sets, (d ) adjustment for potential confounders such as population substructure,
and (e) ultrafast computation of test statistics (Cantor et al. 2010). However, once statisticians
successfully overcame these hurdles, along came next-generation sequencing (see sidebar, The
Accelerating Pace of Genetic Data Acquisition). Although this new technology produces orders
of magnitude more data, it is more error prone and creates enormous problems of data storage
and manipulation (Mechanic et al. 2012). In compensation, inexpensive sequencing technology
has fostered the study of rare variants (Bodmer & Bonilla 2008). Previous genomewide association
studies (GWAS) dealt exclusively with common variants (see sidebar, Current Standard Genetic
Data Analysis Procedures). The outcomes have been spectacular by many metrics (Hindorff et al.
2009). Unfortunately, their utility has reached the point of diminishing returns (Ku et al. 2010,
Visscher et al. 2012). Although more associated SNPs are being discovered via GWAS, their

THE ACCELERATING PACE OF GENETIC DATA ACQUISITION

A dramatic scale-up of genetic data production has occurred in the last decade. Genotyping scans have increased from
hundreds of markers to millions of SNPs, with parallel advances in sequencing technology. After roughly 13 years and
at a cost of $3 billion, the first human genome sequence was completed in 2003. The NIH then called for technologies
capable of sequencing a human genome for $1,000 or less, in a day or less. The goal is to make genome sequencing
a common research and diagnostic tool. The “next-generation” sequencers increased throughput and lowered cost
via reaction miniaturization and parallelization. Today we are entering a third generation of sequencing technology
characterized by innovations such as single-molecule sequencing, longer reads, and new detection methods including
ion semiconductors, mass spectrometry, and electron microscopy. Currently, sequencing a complete human genome
costs several thousands of dollars, so labs often sequence only exomes (roughly the 1% of the genome that encodes
genes) or other regions of interest. However, continuing advances in sequencing technology suggest that $1,000
or even $100 whole-genome sequences produced within hours will be available soon. It will then be routine for
researchers and clinicians to obtain each subject’s full 6-billion-base-pair diploid sequence. The statistical challenges
of coping with this level of data will be enormous. For a more detailed overview, follow the Supplemental Material
link from the Annual Reviews home page at http://www.annualreviews.org.
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CURRENT STANDARD GENETIC DATA ANALYSIS PROCEDURES

To map genes that influence traits, one searches for correlations between the phenotypes and genotypes of study
subjects. Genotypes may be assayed from a predefined set of candidate gene regions (hypothesis-driven) or from
throughout the genome (hypothesis-free). Inexpensive, high-density, whole-genome SNP genotyping became avail-
able around the turn of the millennium. This technology allowed hypothesis-free genomewide association studies
(GWAS) of unrelated individuals to become the standard gene-mapping procedure, as Risch & Merikangas (1996)
predicted. DNA is extracted from each individual and interrogated via a SNP chip that yields his or her genotypes.
Fortunately, competition among several vendors rapidly brought the per-chip cost down to a few hundred dollars
and the per-chip yield up to several million SNPs. Genotyping error and missing data rates are typically low, con-
siderably below 1%. In a standard GWAS, each SNP is analyzed separately for correlation with a given trait using
either linear regression (for quantitative traits) or logistic regression (for qualitative traits). Today, routine GWAS
can involve a few thousand unrelated individuals, each genotyped at a few million SNPs. GWAS have identified
thousands of previously unknown genes for hundreds of common human diseases (Hindorff et al. 2009). Despite
their many successes, standard GWAS have some inherent design limitations. For instance, predictors greatly out-
number observations, mandating stringent p-values; causative rare variants are therefore hard to find; and found
variants are thus fairly common, implying that they have small effect sizes. In addition, affected pedigrees, which
are more likely to include genes of relatively strong effect, are not analyzed in standard GWAS. Finally, interaction
analyses quickly become intractable.

Genotype: the two
alleles found at a locus
in an individual

Candidate gene:
a gene (or SNP) that is
singled out for study
because of prior
biological evidence or
statistical analyses

Linkage:
the tendency of nearby
loci to be inherited
together

Genetic association:
the tendency of a
particular genotype to
be seen in one group
(e.g., cases) over
another group (e.g.,
controls)

effects are minuscule at the population level. This state of affairs makes eminent sense because
alleles with major deleterious effects are quickly eliminated by natural selection and therefore are
unlikely to become common. In contrast, rare variants, with population frequencies below 1%,
may have quite large effects while scattered across a single gene (Gibson 2012).

The problem with rare variants is simply their rarity. Even in large studies, many rare variants
are observed in only a handful of people. This makes a simple marginal analysis of each variant
impractical. However, several possible remedies exist. First, one can turn to pedigrees in which rare
disease variants tend to cluster. To some degree, studies in population isolates, in which almost
everyone is related, fall into this category. The earlier paradigm of linkage analysis explicitly
exploits such pedigree data (Lange 2002). Second, one can combine rare variants in statistical
analysis by collapsing the variants (Li & Leal 2008) or by aggregating them empirically through
adaptive weights or group penalties. Here the Lasso and Euclidean penalties are useful tools
(Zhou et al. 2010, 2011b). Bayesian approaches that incorporate prior biological knowledge are
attractive in principle, but Markov chain Monte Carlo (MCMC) algorithms can quickly grind to a
halt under the sheer mass of sequence data. Third, one can use meta-analysis, which has become a
standard tool in statistical genetics because it borrows strength across studies (Cantor et al. 2010).
Sequence data both increase the need for meta-analysis and the challenges in employing it (Asimit
et al. 2012a, Derkach et al. 2013, Singh et al. 2013).

The two principal levers of inference in genetic analysis are relatedness and linkage disequilib-
rium (LD). Relatedness is problematic because paternity records, and occasionally even maternity
records, are unreliable. In population isolates, extended genealogies are suspect due to cryptic
relationships, particularly among pedigree founders. With dense genotyping, it is now possible to
estimate kinship coefficients quickly and accurately. These empirical estimates serve as surrogates
for fully traced pedigrees. Relatedness can also be assessed at the local level along the genome.
In reasonably short genomic intervals, one can determine highly specific dense haplotypes. Be-
cause two individuals with the same haplotype probably inherited that haplotype from a common
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Linkage equilibrium
(LE): describes loci
for which the
frequency of each
haplotype is the
product of its
component allele
frequencies

Linkage
disequilibrium (LD):
describes loci that are
not in linkage
equilibrium

Haplotype:
a combined set of
alleles from closely
linked loci usually
passed intact from
parent to child

Cryptic
relationships:
unstated relationships
within a sample of
individuals

Coverage: number of
redundant fragments
read to determine a
short region’s
sequence; multiple
fragments are required
due to high error rates

ancestor, detailed haplotyping permits statisticians to combine the strengths of association and
linkage analysis.

The questions we cover in this review include the following: (a) How can one perform model
selection in association studies? (b) How can one capitalize on pedigree data in association analysis?
(c) How can one best impute SNP genotypes in low-coverage sequencing data? (d ) How can one
estimate relatedness locally and globally along the genome? (e) What are good ways to include
rare variants in association analyses? ( f ) What role does data mining play in genomics? Many of
the methods described in this review have been or will be implemented in MENDEL, our freely
available statistical genetics package (Lange et al. 2013). To keep within reasonable page limits, we
largely ignore the important topics of gene expression and epigenetics. Instead, we emphasize the
interaction between models and computation. Algorithms are the glue that binds these two vital
ingredients. Unfortunately, not all algorithms are created equal. The best algorithms combine
speed, scalability, parsimony, statistical power, and fidelity to reality. Genetics offers a concrete
setting in which these tensions in computational statistics play out with maximal impact on society.

2. BLOCK DESCENT AND BLOCK ASCENT

A brief review cannot do justice to the scope of statistics and its relationship to genetics. Instead,
we focus on a few current vignettes that illustrate our main themes of modeling, penalization,
and optimization in high-dimensional data. We highlight two pillars of modern computational
statistics: block relaxation in this section (de Leeuw 1994) and the MM algorithm in Section
3 (Hunter & Lange 2004, Lange 2010, Wu & Lange 2010). These two algorithmic principles
guarantee that the objective function steadily ascends in maximization and steadily descends in
minimization. These principles should not be viewed as competitors. In fact, they can be mixed
and matched in creative ways in the same problem.

The twin notions of block descent and block ascent are conveyed by the generic term block
relaxation (de Leeuw 1994). Block relaxation is a good option in high dimensions where Newton’s
method and Fisher scoring hit insurmountable barriers. Block relaxation divides the parameters
into disjoint blocks and then cycles through the blocks, updating only those parameters within a
given block at each stage of a cycle. When each block consists of a single parameter, block relaxation
is called cyclic coordinate descent or cyclic coordinate ascent. Block relaxation is best suited to
unconstrained problems in which the domain of the objective function reduces to a Cartesian
product of the subdomains associated with the different blocks. Obviously, exact block updates are
a huge advantage. Equality constraints usually present insuperable barriers to cyclic coordinate
descent and ascent because parameters get locked into place. In some problems overlapping blocks
are advantageous.

2.1. Lasso Penalized Regression and Association Mapping

The regression problems generated from big data often entail a vast excess of predictors over
cases. This obstacle has spurred innovation in model selection and fast computation because
classical methods of regression are ill equipped in this realm. One of the most profound discoveries
of modern computational statistics has been the therapeutic effects of Lasso (�1) penalties (Chen
et al. 1998, Claerbout & Muir 1973, Santosa & Symes 1986, Taylor et al. 1979, Tibshirani 1996).
The imposition of Lasso penalties makes continuous model selection possible and avoids the
computational bottlenecks of classical selection by regression. Lasso penalties force most regres-
sion coefficients to equal 0. Cyclic coordinate descent is perfectly matched to the needs of Lasso
penalized regression if just a handful of predictors are ultimately selected (Friedman et al. 2007,
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Wu et al. 2009, Wu & Lange 2008). The amount of computation needed to update a regression
coefficient in each stage of a cycle is light, particularly if the coefficient starts and remains at 0.

Lasso penalized regression can be phrased as minimization of the objective function

f (θ) = g(θ) + ρ

p∑
j=1

|β j |, 1.

where the loss function in ordinary regression is

g(θ) =
m∑

i=1

⎛
⎝yi − μ −

p∑
j=1

xi j β j

⎞
⎠

2

.

Here θ = (μ, β1, . . . , βp )t is the parameter vector and X = (xi j ) is the m × p design matrix. In
generalized linear models such as logistic regression, the loss function becomes the negative log
likelihood (Friedman et al. 2010, Wu et al. 2009). The strength of the Lasso penalty in the criterion
given by Equation 1 is determined by the positive tuning constant ρ. The Lasso penalty shrinks each
β j toward the origin, discouraging models with large numbers of marginally relevant predictors.
No penalty is imposed on the intercept μ because it should appear in any plausible model.

In practice, minimization of the loss function drives regression. Standard methods of �2 re-
gression require matrix inversion, matrix diagonalization, or the solution of large systems of linear
equations. These tasks take O(p3) arithmetic operations and are intractable for problems with tens
of thousands of predictors. Furthermore, when the number of predictors exceeds the number of
cases, the familiar XtX matrix is singular. Coordinate descent avoids these thorny issues and enjoys
the desirable properties of simplicity, speed, and stability (Alexander & Lange 2011b, Friedman
et al. 2007, Wu & Lange 2008, Wu et al. 2009, Zhou et al. 2010). The tuning constant ρ can be
chosen by bracketing and by golden section search of an appropriate cross validation criterion.

The nondifferentiability of the Lasso penalty is the primary barrier to cyclic coordinate descent.
This obstacle is overcome by considering the two domains β j ≥ 0 and β j ≤ 0 separately when
updating β j. Ordinarily, the objective function is convex, and the signs of its forward and backward
directional derivatives at the origin determine the pertinent domain. The two derivatives along
the jth coordinate direction ej amount to

de j f (θ) = ∂

∂β j
g(θ) + ρ

{
1 β j ≥ 0
−1 β j < 0

for the forward direction and

d−e j f (θ) = − ∂

∂β j
g(θ) + ρ

{
−1 β j > 0
1 β j ≤ 0

for the backward direction. If either directional derivative is negative, then one solves for the
minimum in that direction. Otherwise, β j is set to 0.

In many settings, it is reasonable to couple regression coefficients so they enter a model as a
group. For instance, in GWAS, one might want to group the SNPs within a gene or the genes
within a biochemical pathway. One can coordinate the selection of predictors by adding group
penalties that preserve the convexity of the objective function and retain consistency with cyclic
coordinate descent (Friedman et al. 2010, Meier et al. 2008, Yuan & Lin 2006, Zhou et al.
2010). The conceptually simplest way to group regression coefficients is to add Euclidean distance
penalties. Suppose that p predictors are partitioned into a collection G of nonoverlapping but
exhaustive groups. If βg denotes the vector of regression coefficients pertinent to group g, then
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Ethnic admixture:
percentage of genes
from specific founder
populations in
individuals whose
ancestry can be traced
to two or more distinct
populations

the group Lasso

ρ
∑
g∈G

wg ||βg ||2

represents a reasonable penalty that tends to select model parameters in groups rather than in-
dividually. Here, the weight wg is typically chosen as the square root

√|g| of the group size |g|.
If currently βg = 0, then the Euclidean penalty ||βg ||2 reduces to a Lasso penalty as β j ∈ g is
updated. Once one β j in g lifts off 0, the remaining β j in g lift off 0 more easily.

Zhou et al. (2010) apply a combination of Lasso and Euclidean penalties in their regression
analysis of breast cancer data. Another instructive example is Wu & Lange’s (2008) earlier ap-
plication of the Lasso to studies of celiac disease. The latter example illustrates an advantage of
continuous model selection over traditional GWAS analysis in which models are built up by testing
one SNP at a time. The data, originally published by van Heel et al. (2007), consist of 2,200 subjects
genotyped for more than 300,000 SNPs. Both Lasso penalized and ordinary univariate logistic
regression reveal a strong association between celiac disease and SNPs in the major histocompat-
ibility complex class II region (human chromosome segment 6p21.3). The difference between the
two approaches can be seen in testing for two-way gene-by-gene interactions. Using a relatively
weak penalty that allows 50 predictors to enter the model, Wu & Lange (2008) find evidence
for four gene-by-gene interactions among these predictors. Two of the four interactions involve
SNPs whose marginal p-values were not deemed significant at a genomewide threshold of 10−7.

In practice, the Lasso shrinks as well as selects. Severe shrinkage encourages false positives
to enter a model to compensate. Statisticians have suggested two remedies. One is to substitute
nonconvex penalties for the Lasso. For example, the minimax concave penalty (MCP) (Zhang 2010)

ρp(t) = ρ

∫ |t|

0

(
1 − s

ργ

)
+

ds

starts out at t = 0 with slope ρ and gradually transitions to slope 0 at t = ργ . The beauty of this
penalty is that it can be majorized—as discussed in Section 3—by a v-shaped function very much
like the Lasso’s absolute value function. Thus, with minor differences, the coordinate descent al-
gorithm carries over (Breheny & Huang 2011, Mazumder et al. 2011). Model selection is achieved
without severe shrinkage, and inference in GWAS improves (Hoffman et al. 2013). The second
remedy, stability selection, weeds out false positives by looking for consistent predictor selection
across random halves of the data (Alexander & Lange 2011b, Meinshausen & Bühlmann 2010).

2.2. Ethnic Admixture

Population stratification is a potential confounding factor in genetic association studies. For-
tunately, estimated ancestries derived from multilocus genotype data can serve as covariates in
correcting for population stratification. Because it relies on Bayesian MCMC, the popular pro-
gram STRUCTURE is intolerably slow (Pritchard et al. 2000). Alternatives such as EIGENSTRAT

(part of the EIGENSOFT package) deliver principal components (Price et al. 2006); these flag qual-
ity control issues and cryptic relatedness in addition to population stratification. We now discuss
a fast, model-based method, which is embodied in the program ADMIXTURE (Alexander & Lange
2011a, Alexander et al. 2009). As its name implies, ADMIXTURE delivers admixture fractions, which
are easier to interpret than principal component scores.

Admixture fractions have been widely used to infer aspects of history from genetic data. Some
examples are (a) the evolutionary histories of populations, such as Jews (Behar et al. 2010), and of
individuals, such as an ancient Palaeo-Eskimo (Rasmussen et al. 2010); (b) the migratory patterns of
hunter-gatherers (Henn et al. 2011); (c) the breeding histories of domesticated plants and animals
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(Alhaddad et al. 2013, Kijas et al. 2012, Morris et al. 2013); and (d ) the linguistic stratification in
populations (Pagani et al. 2012). Admixture fractions have been used as covariates in several gene
mapping analyses, including studies of pulmonary function (Kumar et al. 2010), neuroblastoma
(Latorre et al. 2012), and systemic lupus erythematosus (Sánchez et al. 2012).

In the standard population admixture model, population k contributes a fraction wik of indi-
vidual i’s genome. The reference allele at SNP j has frequency fkj in population k. In unsupervised
learning, both the matrices W = (wik) and F = ( fkj ) are unknown. In supervised learning, F is
known. The model makes the reasonable assumption that gametes combine randomly and the
dubious assumption that all SNPs are inherited independently. Let yij represent the observed
number of copies of the reference allele at marker j of person i. Thus, yij equals 0, 1, or 2, and the
log likelihood of the data is

L(W, F) =
∑

i

∑
j

{
yi j ln

[∑
k

wik fkj

]
+ (2 − yi j ) ln

[∑
k

wik(1 − fkj )

]}
. 2.

Since all parameters play a role in inference, no penalties are added to the log likelihood.
There are some obvious hindrances to maximizing L(W, F). Given I unrelated sample people,

J SNPs, and K ancestral populations, the parameter matrices W = {wik} and F = { fkj } have
dimensions I × K and K × J, respectively, for a total of IK + KJ parameters. The modest choices
I = 1,000, J = 10,000, and K = 3 yield 33,000 parameters to estimate. Thus, the sheer number of
parameters makes Newton’s method and scoring infeasible. The storage required for the Hessian
matrix is prohibitively large, and the required matrix inversion is intractable. Moreover, the log
likelihood has at least K! equivalent global maxima and is subject to the bounds 0 ≤ fkj ≤ 1 and
wik ≥ 0 and the equality constraint

∑
k wik = 1.

Block ascent is an effective strategy for maximizing the log likelihood given by Equation 2.
Block ascent alternates between updating the W and F matrices. The log likelihood is concave
both in W when F is fixed and in F when W is fixed. In the W updates, the admixture proportions
for each individual i are optimized separately. In the F updates, the allele frequencies for each
SNP are optimized separately. The updates of the fkj are exact. The updates of the wik are found
iteratively by sequential quadratic programming; this tactic repeatedly maximizes the second-order
Taylor expansion of L(W, F) around the current parameter vector. Without constraints, sequential
quadratic programming coincides with Newton’s method. Block ascent can be accelerated by a
generic secant method (Zhou et al. 2011a). Standard errors are calculated via the parametric
bootstrap. The ADMIXTURE program implementing block ascent is three orders of magnitude
faster than STRUCTURE. To our knowledge, no one has carefully compared the suitability of
admixture coefficients versus principal components in analyzing GWAS data.

3. MM ALGORITHMS

The MM algorithm is a principle for constructing optimization algorithms (Hunter & Lange 2004,
Lange 2010, Wu & Lange 2010). The basic idea is to convert a complex optimization problem into
a sequence of simpler ones. In minimization, the MM principle majorizes the objective function
f(x) by a surrogate function g(x|xn) anchored at the current point xn. Majorization combines the
tangency condition g(xn|xn) = f (xn) and the domination condition g(x|xn) ≥ f (x) for all x. The
next iterate of the MM algorithm xn+1 is defined to minimize g(x|xn). Since

f (xn+1) ≤ g(xn+1|xn) ≤ g(xn|xn) = f (xn),

the MM iterates generate a descent algorithm that drives the objective function downhill.
Strictly speaking, this descent property depends only on decreasing g(x|xn), not on minimizing it.
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Constraint satisfaction is automatically enforced in finding xn+1. Under appropriate regularity
conditions, an MM algorithm is guaranteed to converge to a local minimum of the objective
function (Lange 2010). In maximization, we first minorize and then maximize. Thus, the acronym
MM does double duty in the forms majorize-minimize and minorize-maximize.

When successful, the MM algorithm simplifies optimization by (a) separating the variables of
a problem, (b) avoiding large matrix inversions, (c) linearizing a problem, (d ) restoring symmetry,
(e) dealing gracefully with equality and inequality constraints, and ( f ) making a nondifferentiable
problem smooth. The art in devising an MM algorithm lies in choosing a tractable surrogate
function g(x|xn) that hugs the objective function f(x) as tightly as possible.

The majorization relation between functions is closed under the formation of sums, nonnega-
tive products, limits, and composition with an increasing function. These rules allow one to simplify
complicated objective functions one piece at a time. Skill in dealing with inequalities is crucial
in constructing majorizations. Classical inequalities such as Jensen’s inequality, the information
inequality, the arithmetic mean–geometric mean inequality, and the Cauchy–Schwartz inequality
prove useful in many problems. The supporting hyperplane property of a convex function and the
quadratic upper bound principle of Böhning & Lindsay (1988) also have many applications.

All expectation-maximization (EM) algorithms are also MM algorithms (Lange 2010,
McLachlan & Krishnan 2007). Minorization is achieved via the information inequality by
contrasting observed data with complete data. Since the basic inequality is given, the difficulty in
constructing EM algorithms lies in identifying the complete data and calculating required condi-
tional expectations. Statistical geneticists derived gene- and haplotype-counting algorithms long
before the EM principle fully justified their use as ascent algorithms (Lange 2002, Smith 1957).

3.1. Matrix Completion and Genotype Imputation

SNP imputation can be viewed as a matrix completion problem. In the machine learning commu-
nity, matrix completion is a popular and effective imputation tool in many application domains
outside of genetics (Cai et al. 2010, Candès & Tao 2010, Chen et al. 2012a, Mazumder et al.
2010). This tool can recover an entire matrix when only a small portion of its entries is actu-
ally observed. In the pursuit of parsimony, matrix completion seeks the simplest matrix that is
consistent with the observed entries. This criterion conveniently translates into searching for a
low-rank matrix with a small squared error difference over the observed entries. The celebrated
Netflix Challenge represented a typical application to recommender systems (ACM-SIGKDD
& Netflix 2007, ACM-SIGKDD 2007). The goal of the Netflix Challenge was to impute a
480,189 × 17,770 matrix in which nearly 99% of the original entries were missing.

Imputing missing genotypes shares many features with the Netflix Challenge. Genotypes can
be coded as 0, 1, or 2 by counting reference alleles, such as the least frequent allele, and en-
tering the counts into a matrix with rows labeled by individuals and columns labeled by SNPs.
Despite its purely empirical nature, matrix completion can achieve good accuracy with relatively
little computational effort. In SNP imputation, matrix completion is performed via a window
that is slid along the genome (Chi et al. 2013). Its success is predicated on a low-rank struc-
ture in the data. LD ensures the validity of this assumption over short windows of contiguous
SNPs.

Let Y denote a partially observed matrix and � denote the set of index pairs (i, j) with yij

observed. Matrix completion minimizes the criterion

f (X) = 1
2

∑
(i, j )∈�

(yi j − xi j )2 + ρ
∑

k

σk 3.
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for a compatible matrix X = (xi j ) with singular values σ k. The positive tuning constant ρ deter-
mines the strength of the rank penalty. The singular values appear in the singular value decom-
position (SVD)

X =
∑

i

σi ui vt
i .

This sum-of-outer-products form of the SVD invokes an orthonormal collection of left singular
vectors ui, a corresponding orthonormal collection of right singular vectors vi , and a descending
sequence of nonnegative singular values σi . Equivalently, one can write the SVD of X in factored
form as U�Vt for orthogonal matrices U and V and a rectangular diagonal matrix �.

The nuclear norm ||X||nuc = ∑
k σk plays the same role in low-rank matrix approximation

that the �1 norm ||b||1 = ∑
k |bk| plays in sparse regression. To represent the matrix completion

criterion from Equation 3 more succinctly, one can introduce the Frobenius norm

||M||F =
√

tr(MMt) =
√∑

i

∑
j

m2
i j

induced by the trace inner product tr(MNt) and the projection operator P�(Y) with entries

P�(Y) =
{

yi j (i, j ) ∈ �

0 (i, j ) �∈ �.

Using this notation, the matrix completion criterion in Equation 3 becomes

f (X) = 1
2
||P�(Y) − P�(X)||2F + ρ||X||nuc.

After estimating the optimal X, genotypes can be imputed by clustering the entries of each column
of X into three groups corresponding to the coded genotypes 0, 1, and 2.

The MM algorithm allows for the restoration of the symmetry lost in the missing entries
(Mazumder et al. 2010). Suppose Xn is our current approximation of X. We simply replace a
missing entry yij of Y where (i, j ) �∈ � with the corresponding entry xnij of Xn and add the term
1
2 (xni j − xi j )2 to the criterion in Equation 3. Since the added terms majorize 0, they create a
legitimate surrogate function and lead to an MM algorithm. The problem can be rephrased in
matrix terms by defining the orthogonal complement operator P⊥

� (Y) via P⊥
� (Y) + P�(Y) = Y.

Then, the matrix Zn = P�(Y)+ P⊥
� (Xn) temporarily completes Y and yields the surrogate function

g(X|Xn) = 1
2
||Zn − X||2F + ρ||X||nuc

= 1
2
||Zn||2F − tr(ZnXt) + 1

2
||X||2F + ρ||X||nuc.

To make further progress, recall that the Frobenius norm is invariant under left and right mul-
tiplication of its argument by an orthogonal matrix. Thus, ||X||2F = ∑

k σ 2
k depends only on the

singular values of X. Majorizing the inner product −tr(ZnXt) is more subtle. Fortunately, one
can apply a matrix analog of the Cauchy–Schwarz inequality. Fan’s inequality (Borwein & Lewis
2006) says that

tr(ZnXt) ≤
∑

k

ωkσk

for the ordered singular values ωk of Zn. Equality is attained in Fan’s inequality if and only if
the right and left singular vectors for the two matrices Zn and X coincide. Thus, in minimizing
g(X|Xn), we can assume that the singular vectors of X coincide with those of Zn and rewrite the
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surrogate function as

g(X|Xn) = 1
2

∑
k

ω2
k −

∑
k

ωkσk + 1
2

∑
k

σ 2
k + ρ

∑
k

σk

= 1
2

∑
k

(ωk − σk)2 + ρ
∑

k

σk.

Standard calculus arguments demonstrate that the shrunken singular values

σk = max{ωk − ρ, 0}

are optimal. In practice, the full SVD of Zn need not be extracted. Rather, only the singular values
ωk > ρ are actually relevant in constructing Xn+1.

The above example teaches several timely lessons (Chi et al. 2013). First, although matrix
completion largely ignores the underlying genetics, it imputes genotypes almost as accurately as
the best hidden Markov models. Second, matrix completion is more than an order of magnitude
faster than competing imputation techniques because it focuses on relatively short windows and
exploits well-established algorithms for extracting singular values and vectors. Third, the versatility
and simplicity of the MM principle are on vivid display. Fourth, more exotic convex programming
methods that rely on Nesterov acceleration (Beck & Teboulle 2009, Nesterov 2007) can achieve
even more impressive speedups. Fifth, although the usual assumption of data missing completely
at random fails, matrix completion delivers good results. (In practice, most of the missing entries
of the genotype matrix occur because study subjects are genotyped on different platforms that have
different SNP sets.) Sixth, awareness of developments in data mining, even outside one’s narrow
application area, pays rich dividends.

3.2. Matrix Completion with Sequence Data

Matrix completion can also be applied to low-coverage sequence data, provided that read counts
are converted into expected dosages. A simple binomial model enables this conversion (Pasaniuc
et al. 2012, Sampson et al. 2011). Let Gij denote the latent genotype at SNP i for individual j, A
and B denote the major and minor alleles at SNP i, and Ri j = (ai j , bi j ) denote the read count pair
for j over A and B at SNP i, respectively. For a uniform read error of ε and a fixed value of the
coverage ni j = ai j + bi j , one has

Pr[Ri j = (ai j , bi j )|Gi j = A/A] =
(

ni j

ai j

)
(1 − ε)ai j εbi j ,

Pr[Ri j = (ai j , bi j )|Gi j = A/B] =
(

ni j

ai j

)
(1/2)ni j ,

Pr[Ri j = (ai j , bi j )|Gi j = B/B] =
(

ni j

ai j

)
εai j (1 − ε)bi j .

To convert these read counts into posterior expectations, one can reasonably impose Hardy–
Weinberg priors

Pr(Gi j = A/A) = p2
A,

Pr(Gi j = A/B) = 2p A pB,

Pr(Gi j = B/B) = p2
B,
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where pA and pB are the estimated allele frequencies from a study or reference panel such as the 1000
Genomes Project (1000 Genomes Proj. Consort. 2010). This leads to the posterior probabilities

q A/A = Pr[Gi j = A/A|Ri j = (ai j , bi j )] = (1 − ε)ai j εbi j p2
A

Z
,

q A/B = Pr[Gi j = A/B|Ri j = (ai j , bi j )] = 2(1/2)ni j p A pB

Z
,

qB/B = Pr[Gi j = B/B|Ri j = (ai j , bi j )] = εai j (1 − ε)bi j p2
B

Z
,

with normalizing constant

Z = (1 − ε)ai j εbi j p2
A + 2(1/2)ni j p A pB + εai j (1 − ε)bi j p2

B .

Finally, if A is the reference allele, then the posterior mean dosage can be expressed as the sum
xi j = 2q A/A + q A/B and fed into the matrix completion algorithm.

3.3. The Fused Lasso and Copy Number Variation

Copy number variants (CNVs) exist throughout the human genome and range in size from a few
kilobases to a few megabases. For a given SNP with alleles A and B, genotyping platforms typically
record the total DNA signal on a log scale, as well as the fraction of the signal attributed to the
B allele. Such data allow one to impute copy number along the genome. Normal DNA generates
a copy number of 2, deletions generate copy numbers of 0 or 1, and insertions generate copy
numbers of 3 or more. Here we consider a simplified version of the problem that employs only
signal intensity. Let yi and βi denote the observed and theoretical signal intensities at SNP i. With
m SNPs, the fused Lasso model (Tibshirani et al. 2005) for estimating the parameter vector β

minimizes the criterion

f (β) = 1
2

m∑
i=1

(yi − βi )2 + ρ1

m∑
i=1

|βi | + ρ2

m∑
i=2

|βi − βi−1|, 4.

where the first penalty pulls β̂i toward 0, the standardized value of yi for a copy number of 2, and
the second penalty controls the number of jumps between successive piecewise constant segments.
The tuning constants ρ1 and ρ2 determine the strength of these penalties.

Unfortunately, this twist on the standard Lasso penalty stymies coordinate descent. To con-
struct an MM algorithm, we replace the nondifferentiable function |x| by ||x||2,ε = √

x2 + ε

for small ε > 0. The concavity of the function u �→ √
u + ε on the interval [0, ∞) yields the

majorization

||x||2,ε ≤ ||xn||2,ε + 1
2||xn||2,ε

[x2 − x2
n ].

Substituting ||x||2,ε for |x| in the criterion given by Equation 4 leads to the surrogate function

g(β|βn) = 1
2

m∑
i=1

(yi − βi )2 + ρ1

2

m∑
i=1

β2
i

||βni ||2,ε

+ ρ2

2

n∑
i=2

(βi − βi−1)2

||βni − βn,i−1||2,ε

+ c n

depending on an irrelevant constant cn. The surrogate can be written as the quadratic function

g(β|βn) = 1
2
βtAnβ − bt

nβ + c n,

where An is a tridiagonal positive definite matrix. The minimum occurs at the point β = A−1
n bn.

The Thomas algorithm (also known as the tridiagonal matrix algorithm) solves the linear system
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Anβ = bn in just O(m) operations. Overall, the MM algorithm with this surrogate converges
rapidly for tens of thousands of SNPs (Zhang et al. 2010).

This application of the MM algorithm develops three key ideas (Zhang et al. 2012). The first is
to pose the estimation problem in terms of penalized least squares. The second is to approximate
the absolute value function by a smooth function that can be majorized by a quadratic. The third
is to recognize the importance of the Thomas algorithm. In practice, the tuning constants ρ1 and
ρ2 are chosen by a judicious combination of statistical theory and cross validation. Readers are
referred to Zhang et al. (2012) for elaborations of this model and alternative treatments.

3.4. Haplotyping

Haplotyping goes beyond genotype matrix completion and delivers the maternal and paternal
phase of each observed or imputed genotype. Two key ideas dominate the literature on haplotyp-
ing (Ayers & Lange 2008, Browning & Browning 2007, Chen et al. 2012b, Howie et al. 2012, Li
et al. 2010, Scheet & Stephens 2006, Stephens et al. 2001, Williams et al. 2012). Foremost is the
notion of LD. Nature and population history strictly limit the number of possible haplotypes in
a short genomic region. The resulting LD represents a failure of the product rule for indepen-
dent events in computing haplotype frequencies from allele frequencies. Consequently, imposing
parsimony is absolutely crucial in haplotyping. Most current haplotyping methods achieve parsi-
mony indirectly through hidden Markov models. Here we briefly explore direct penalization. The
second key idea, the application of guide haplotypes, is also critically important. The accumulated
data from the HapMap Project (Int. HapMap Consort. 2003) and the 1000 Genomes Consor-
tium (1000 Genomes Proj. Consort. 2010) contain haplotypes for literally thousands of ethnically
diverse people. Thus, in each short genomic region, the universe of possible haplotypes is well
known.

The traditional EM algorithm for haplotype frequency estimation (Excoffier & Slatkin 1995,
Long et al. 1995) is an MM algorithm that operates over a narrow genomic window. If q is the
vector of haplotype frequencies and Hi is the set of ordered haplotype pairs (k, l ) consistent with
subject i’s observed multilocus genotype, then i’s likelihood can be written as

�i (q) =
∑

(k,l)∈H i

qkql .

The full log likelihood across all independent samples equals

L(q) =
∑

i

ln �i (q).

One can encourage parsimony by subtracting from L(q) a penalty that tends to eliminate haplotypes
with low explanatory power (Ayers & Lange 2008). The penalty is defined by a threshold δ, a tuning
constant ρ that scales the strength of the penalty, and the penalty function

p(q ) =
{

q q ≤ δ

δ q > δ.

In the penalized MM algorithm, one estimates the parameter vector q by maximizing the objective
function

f (q) = L(q) − ρ
∑

j

p(q j ). 5.
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The concavity of the logarithm function leads to the minorization

L(q) ≥
∑

i

∑
(k,l)∈H i

qnkqnl

�i (qn)
ln

[
�i (qn)
qnkqnl

qkql

]

=
∑

k

c nk ln qk + c n0

invoking the constants

c nk =
∑

i

∑
l

[
1(k,l)∈H i + 1(l,k)∈H i

] qnkqnl

�i (qn)
,

c n0 =
∑

i

∑
(k,l)∈H i

qnkqnl

�i (qn)
ln

[
�i (qn)
qnkqnl

]
.

The penalty p(q j ) is majorized by the linear function qj when qnj ≤ δ and by the constant δ when
qnj > δ. Multiplying the penalty majorization by −ρ gives a minorization −ρp(q j ). Overall, we
derive the minorization

f (q) ≥
∑

j

c nj ln q j + c n0 − ρ

⎛
⎝ ∑

j :qnj <δ

q j +
∑

j :qnj ≥δ

δ

⎞
⎠

of the objective function given by Equation 5. The maximization step of the MM algorithm involves
solving a sequence of quadratic equations that respect the constraints q j ≥ 0 and

∑
j q j = 1.

Details appear in Ayers & Lange (2008). Notably, the explicit MM updates are only slightly more
complicated than the standard EM updates.

Haplotyping relies on Bayes’ rule and the estimated frequencies of the reference haplotypes.
Suppose (km, lm) is the ordered genotype at SNP m derived from the haplotype pair (k, l ). The
posterior probability of i having the ordered genotype (s, t) at m is just the ratio

1
�i (q)

∑
(k,l):(km,lm)=(s ,t)

qkql .

If hard imputations are desired, then the unordered genotype with the maximum posterior prob-
ability is pertinent. In practice, it is convenient to impute haplotypes in the middle third of the
current window. Advancing to the next window requires deleting the left third and adding a new
right third so that the former right third occupies the middle of the current window. The process
is highly parallel and can be accomplished by the simple numerical processors of the graphics
processing unit (GPU) in most modern desktop and laptop computers (Chen et al. 2012b). Com-
putations that once took months can now be done in hours on a typical computer. The value of
the tuning constant ρ is adapted to the local level of LD by applying cross validation to randomly
deleted entries in the two extreme thirds of a window. This calibration step makes penalized
haplotyping comparable in accuracy to hidden Markov haplotyping.

4. GENE MAPPING VIA PEDIGREES

4.1. Estimation of Relatedness

Traditionally, degrees of relatedness between pairs of individuals have been deduced from pedigree
graphs ( Jacquard 1970, Lange 2002). As stated in Section 1, it is desirable to estimate the various
coefficients of relatedness empirically from dense genotyping data. Figure 1 depicts the nine
condensed identity states established by Jacquard (1970). In the figure, two genes (dots) at the
same locus are connected by a line if they are identical by descent (IBD), meaning both are physical
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S1 S2 S3

i’s genes
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S4 S5 S6
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j’s genes

S7 S8 S9

Figure 1
The nine condensed identity states presented in Jacquard (1970) illustrate the possible relationships between
two individuals, i and j. For each individual, the two genes at an arbitrary locus are depicted by dots: blue for
i and red for j. Lines connecting two dots indicate genes that are identical by descent; that is, both genes are
inherited copies of the same ancestral gene. In the absence of inbreeding, only the last three states (S7, S8,
and S9) are possible.

copies of the same ancestral gene. Relatedness is quantified by the probabilities �1 through �9 of
the nine states at a randomly chosen locus. The first six states are impossible unless one or both
individuals are inbred. Although graph-traversing algorithms for computing the �i values exist,
these algorithms are complicated to program and rely on the fidelity of recorded pedigrees (Lange
2002).

The kinship coefficient

�i j = �1 + 1
2

(�3 + �5 + �7) + 1
4
�8

between two individuals i and j is the single most valuable coefficient of relatedness. It can be in-
terpreted as the probability that a randomly sampled gene from individual i is IBD to a randomly
sampled gene from individual j at the same locus. When i = j, the sampling is done with replace-
ment. Thus, in the absence of inbreeding, �i i = 1

2 , and �i j = 1
4 for a sibling or parent-offspring

pair.
Condensed identity coefficients can be estimated in several ways (Boehnke & Cox 1997; Day-

Williams et al. 2011; Thompson 1974, 1975). One of the simplest ways of estimating kinship
coefficients minimizes the expected number of identical by state (IBS) matches between individuals
i and j under random gene sampling. If m SNPs are sampled and the frequency of the reference
allele for SNP k is pk, then the expected number of IBS matches equals

ei j =
m∑

k=1

{�i j + (1 − �i j )[p2
k + (1 − pk)2]}.

The first term in the summation accounts for matches that are IBD at SNP k, whereas the second
term accounts for matches that are IBS but not IBD. Solving for �i j gives

�i j = ei j − ∑m
k=1 [p2

k + (1 − pk)2]
m − ∑m

k=1 [p2
k + (1 − pk)2]

. 6.
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In practice, the method of moments formula given by Equation 6 is implemented by equating eij

to the expected number of IBS matches over all m SNPs conditional on observed genotypes (see
Day-Williams et al. 2011 for details). Yang et al. (2010) independently pursued a similar problem.

Dense SNP genotyping raises the possibility of estimating identity coefficients from inferred
haplotypes. If one accepts the premise that haplotype identity is equivalent to being IBD, then
locally along the genome one can immediately deduce the condensed identity state of a pair of
individuals i and j. Suppose in a narrow window surrounding a designated SNP there are h possible
haplotypes labeled 1, . . . , h. For example, if h = 10, i has haplotype pair (7, 2), and j has haplotype
pair (7, 7), then inspection of Figure 1 shows that i and j can be assigned to identity state S5.
Globally, �i can reasonably be set to the fraction of the surveyed SNPs that are locally in state Si.

4.2. Variance Components Models

Association testing is much simpler with case-control or random sample data than with pedi-
gree data. From its inception, linkage analysis has been forced to confront the complications of
pedigrees (Elston & Stewart 1971). Fortunately, Gaussian pedigree models combine some of the
best features of linkage analysis and association testing for quantitative traits. These mixed-effects
models properly account for polygenic background and correlated environments, and they en-
courage the analysis of multivariate traits. If score tests are substituted for likelihood ratio tests,
then hundreds of thousands of SNPs can be processed in a short amount of time (Lange et al.
2013). Association testing focuses on mean effects; linkage analysis focuses on random effects.
Despite the complications of pedigree data, there are two compelling reasons for analyzing pedi-
grees. First, many pedigrees were collected in the linkage era of gene mapping. For instance, twin
registries are full of simple pedigree data. Second, pedigrees tend to concentrate rare variants with
major phenotypic effects. The same is true for population isolates in which almost all individuals
are related.

The Gaussian pedigree model invokes a multivariate Gaussian distribution to model the vector
of observed trait values y from a pedigree. Under the standard model (Lange 2002), the log
likelihood of a pedigree reduces to

L = −1
2

ln det� − 1
2

(y − ν)t�−1(y − ν),

where ν is the vector of trait means, and � is the matrix of trait covariances. The trait in question
can be univariate or multivariate. Pedigrees are considered independent observational units. For
a univariate trait, the covariance matrix is typically parameterized as

� = 2σ 2
a � + σ 2

d �7 + σ 2
e I, 7.

where � is the global kinship coefficient matrix capturing additive polygenic effects, and �7 is
a condensed identity coefficient matrix capturing genetic dominance effects. Individual environ-
mental contributions and trait measurement errors are incorporated via the identity matrix I.
Other random effects, such as household effects, can be added as needed. When all individuals are
definitely unrelated, the covariance matrix reduces to � = σ 2

e I. In addition, if a pedigree structure
is unknown or dubious, � can be accurately estimated from dense markers via the method of
moments discussed in the previous section. Pedigree clusters can then be constructed from � as
connected components of a relationship graph (Day-Williams et al. 2011).

A linear model assumes that ν = Aβ for a design matrix A and vector β of regression coef-
ficients. In SNP association testing, one of the predictors is the dosage level of a SNP, namely
the imputed count of the number of reference alleles. This count may be fractional. A likelihood
ratio or score test is conducted to decide whether the coefficient corresponding to that predictor
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is significantly different from 0. The test statistic asymptotically follows a χ2
1 distribution. Alter-

natively, one can assign a regression coefficient to each haplotype in a short genomic region and
use the haplotype counts as predictors. In this strategy, haplotypes serve as surrogates for un-
typed causative SNPs in this region. A possible drawback is that an excess of haplotypes obscures
inference and leads to tests with too many degrees of freedom.

Quantitative trait locus (QTL) mapping exploits random effects and avoids the degrees of
freedom dilemma (Almasy & Blangero 1998, Haseman & Elston 1972, Hopper & Mathews
1982, Williams & Blangero 1999). One can modify the variance matrix in Equation 7 by
adding another term, σ 2

loc�loc, which captures local IBD sharing at the current point along
the genome. In practice, �loc can be computed as the sum 1

4

∑
j h j ht

j of the outer products
of imputed haplotype vectors. The entry hjk of hj is 0, 1, or 2, depending on the number
of copies of haplotype j carried by individual k. The fact that �loc may no longer be block
diagonal in the pedigrees of a study complicates both likelihood ratio testing and score testing.
However, this numerical objection is balanced by the added power to exploit cryptic relatedness
in mapping. This method of QTL mapping via a variance components model also has the
advantage that the single parameter alternative hypothesis σ 2

loc > 0 parsimoniously flags the
presence of linkage or association. Overall, tying imputation of �loc to haplotyping is a promising
strategy, even if software to do so is not yet available. Other extensions to QTL mapping have
been recently developed to account for population structure, inbred strains, and additional
computational efficiencies (Aulchenko et al. 2007; Blangero et al. 2013; Broman & Sen 2009;
Kang et al. 2010; Laird & Lange 2011; Lee et al. 2011; Yang et al. 2010, 2011; Zhou et al.
2012).

5. ASSOCIATION AND RARE VARIANTS

Finally, let us discuss association testing with rare variants. To improve the power to detect rare
variant effects in a gene, genomic region, or pathway, statisticians have proposed a number of
lumping strategies (Asimit & Zeggini 2010, Asimit et al. 2012b, Bacanu et al. 2012, Bansal et al.
2010, Kiezun et al. 2012). Despite the advantages of aggregation, it is important to realize that
a large number of genomic regions will still be tested, and the effect sizes for complex traits are
apt to be small. Hence, the multiple testing problem of GWAS remains in play, requiring large
sample sizes to reach genomewide significance (Kiezun et al. 2012).

The first rare variant tests simply collapsed all variants within a region (Li & Leal 2008,
Morgenthaler & Thilly 2007); later extensions allowed variants to be weighted in accordance
with their prior probabilities of being deleterious (Madsen & Browning 2009, Price et al. 2010).
These approaches have the drawback of assuming that all rare variants within a region act in
the same direction on trait values or disease risks. Consequently, naive collapsing methods lose
power in the presence of protective variants (Asimit et al. 2012b). In contrast, overdispersion tests
properly account for both protective and deleterious variants (Ionita-Laza et al. 2011, Neale et al.
2011).

The C-alpha test (Neale et al. 2011) compares the observed variance in the dispersion of rare
variants between cases and controls to the expected variance under the null hypothesis of no associ-
ation. Suppose there are m1 case chromosomes and m2 control chromosomes with nk1 case variants
and nk2 control variants at site k. Under the null hypothesis of no association, the number of rare
variants observed within the cases follows a hypergeometric distribution with success probability
p = m1/(m1 + m2) and total trials nk = nk1 + nk2. The test statistic is Z = T /

√
var(T ), where

T =
∑

k

[(nk1 − nk p)2 − nk p(1 − p)].
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Significance is assessed either by permuting the case and control labels or by noting that Z
is asymptotically normal with mean 0 and variance 1 given linkage equilibrium. This test is
one-sided because dispersion increases under the alternative hypothesis of association.

We can also construct a likelihood ratio test that is comparable to the C-alpha test. If we assume
that the number of variants is binomially distributed, then at locus k, the likelihoods of pk1 and
pk2, the frequencies of the case and control variants, respectively, are

Lki (pki ) =
(

mi

nki

)
pnki

ki (1 − pki )mi −nki

for i = 1 and 2. The maximum likelihood estimate of pki is p̂ki = nki/mi in each instance. The
likelihood Lk(pk) and estimate p̂k for the combined sample are similar. The obvious test statistic∑

k

wk
[
ln Lk1( p̂k1) + ln Lk2( p̂k2) − ln Lk( p̂k)

]

invokes weights such as wk = 1/
√

4pk(1 − pk) that emphasize rare variants. Given the small counts
of some variants, it would be prudent to assess significance by permutation of case-control labels.
One can construct a similar weighted score test that conditions on the number of variants nk1 +nk2

at each site k by substituting the hypergeometric distribution for the binomial distribution.
The most general rare variant tests rely on mixed-effects regression models (Liu & Leal 2012,

Wu et al. 2011). This framework includes linear regression, logistic regression, and indeed any
generalized linear model. Mixed-effects models make it easy to adjust for the effects of confounders
such as population stratification. The SKAT software (Wu et al. 2011) implements a computa-
tionally efficient score test. If yi denotes the trait value of subject i, then the predicted value of yi is
α0 +xt

i α+Gt
iβ, where xi collects the nongenetic predictors and Gi collects the minor allele counts

in the genomic region under consideration. The components of β are treated as random effects
rather than as fixed effects. SKAT further assumes that βk ∼ N (0, wkτ ), where wk is a locus specific
weight and τ is a positive scalar. Finally, the weight wk is sampled as

√
wk ∼ beta(pk, a1, a2), where

pk is the minor allele frequency at locus k, a1 ≤ 1, and a2 ≥ 1. These assumptions weight rare
variants more heavily than common variants (Wu et al. 2011). When there are no covariates and
the weights are all set to 1, SKAT and the C-alpha test are equivalent. Significance is assessed using
a score test with a kernel that measures the genetic similarity among individuals. By modifying
the kernel to allow for covariances among loci, SKAT can be used to test for epistasis.

6. CONCLUSION

Genetics is a rich vein for statistical application and inspiration. The high-dimensional problems
encountered in genetics have spurred critical thinking about data mining (Dziuda 2010, Shah
& Kusiak 2004), false discovery rates (Efron 2010, Storey & Tibshirani 2003), network analysis
(Horvath 2011), and many other subjects. The trendy but nebulous term “big data” conveys
some of the fear of being buried under the crush of genomics data. We have outlined a few novel
computational tools that undergird genomic data analysis. As whole-genome sequence, expression,
and methylation data become more widely available, statisticians will have ample opportunities to
apply these tools and to devise new ones. The scale and complexity of genetic studies have reached
the point at which data storage and retrieval are impeding progress. Authorship lists for statistical
genetics articles rival in length those for particle physics articles. Nevertheless, opportunities
abound for creativity in statistical inference and algorithm construction. Finding the right balance
between model accuracy and computational feasibility has been and will continue to be the primary
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challenge facing statisticians. A false dichotomy between theory and application should be avoided
here, as elsewhere, at all costs.

Let us venture a few guesses about the future of the intertwined fields of statistics and genetics.
The trends in modeling, penalization, and optimization featured in this review will continue to
unfold. More ambitious network models that reflect both dynamics and connectivity will appear.
The quality, extent, and number of genomic databases will increase. Thorough catalogs of the
mutations that occur in Mendelian disease genes will be built, and the extent of gene regulation
will be revealed. Statistics will see a steady progression toward nonconvex penalties, online algo-
rithms, and a more productive merger of the frequentist and Bayesian paradigms. Unless quantum
computing becomes practical, parallel processing remains our best hope for handling big data. Al-
gorithm development must keep in mind hardware limitations and opportunities. The pressure
to translate genetic discoveries into pharmaceuticals and personalized medicine will persist. All of
these trends create enormous opportunities for statisticians. Communities that nurture statistics,
computing, and basic biological research will thrive. Although many basic scientific principles un-
derlying genetics have been discovered, translating these principles into action will easily occupy
science, medicine, and humankind for the next century.
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