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Abstract

For a statistician, climate is the distribution of weather and other variables
that are part of the climate system. This distribution changes over time. This
review considers some aspects of climate data, climate model assessment,
and uncertainty estimation pertinent to climate issues, focusing mainly on
temperatures. Some interesting methodological needs that arise from these
issues are also considered.
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1. INTRODUCTION

This review contains a statistician’s take on some issues in climate research. The point of view is
that of a statistician versed in multidisciplinary research; the review itself is not multidisciplinary.
In other words, this review could not reasonably be expected to be publishable in a climate journal.
Instead, it contains a point of view on research problems dealing with some climate issues, problems
amenable to sophisticated statistical methods and ways of thinking. Often such methods are not
current practice in climate science, so great opportunities exist for interested statisticians.

Guttorp (2011) gives some of the background as to why the field of statistics was not involved
in the early development of the Intergovernmental Panel on Climate Change (IPCC). Basically,
members of the International Statistical Institute (ISI) working in spatial statistics did not consider
the field of climate change sufficiently exciting to be worth the bureaucratic effort needed to
involve ISI. An increasing number of statisticians are now working on climate problems, but the
number participating in writing IPCC reports is not growing. A drastic example is the recent
IPCC report on extremes (Field et al. 2012), in which four out of approximately 750 authors and
reviewers are statisticians (Georg Lindgren of Sweden, Sylvie Parey of France, David Stephenson
of the United Kingdom, and Francis Zwiers of Canada). Extreme value theory is mentioned
in just one place in 542 pages of text, whereas 35 out of more than 500 references deal with
statistics or probability in any form. Rick Katz at the National Center for Atmospheric Research
(NCAR) maintains a website of references to papers on statistics of extremes in climate change
(http://www.isse.ucar.edu/extremevalues/spellbib.html). Out of 64 papers, 53 are in climate,
geophysics, or hydrology journals. According to climate scientists, the reason that more statisticians
are not involved in the IPCC reports is that statisticians do not tend to publish in climate science
journals, but this claim is not believable.

To discuss climate issues, one should first answer the question, “What is climate?” In the
preface to Peixoto & Oort (1992, p. xvii), Edward Lorentz writes,

Early in the present century a local climate was often considered to be little more than the annual
course of the long-term averages of temperature and precipitation. The existence of extensive regions
of the globe with reasonably uniform local climates led to the concept of climatic zones. . . .

By the middle of the century some meteorologists had extended the scope of climate to include not
simply temperature and precipitation but virtually all atmospheric properties, at upper levels as well as
near the earth’s surface. To these investigators, climate consisted of the set of all long-term atmospheric
statistics, and thus was almost synonymous with the general circulation of the atmosphere. . . .

Within more recent years the concept of a climate system has become firmly established. The basis for
this view is the realization that the underlying ocean and land surfaces (and the ice, snow, lakes, rivers,
and living things that are often found between these surfaces and the atmosphere) are not mere inert
boundary conditions, to be taken for granted in seeking explanations for the atmosphere’s behavior.
On the contrary, they possess their own internal dynamics, and for them the atmosphere is one of the
boundary conditions. Together with the atmosphere they form a larger system that may logically be
studied as a single entity.

From a statistical point of view, it is appropriate to view the climate as the distribution (changing
over time) of climate variables. These include, but as the quotation from Lorentz points out
above, are not limited to, weather variables such as temperature and precipitation. The view of
the climate as a distribution (and the weather as a random draw from this distribution) allows
a statistician to utilize a substantial body of methodology and also indicates some directions of
theoretical investigation (of empirical processes of multivariate nonstationary and temporally
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dependent observations). I take this point of view throughout this review. It is not one with which
my climatology colleagues necessarily agree, as they tend to be empiricists and use definitions
such as “climate is . . . the statistical description in terms of the mean and variability of relevant
quantities over a period of time” (Solomon et al. 2007, p. 943).

This review discusses data issues, model assessment, and propagation of uncertainty, mainly in
the context of temperature data. In the final discussion section, some other problems in climate
science that could benefit from statistical work are considered. In another article in this volume,
Rougier & Goldstein (2014) discuss climate models.

2. DATA

2.1. Homogenization

Data used in climate research have usually not been collected for climate purposes. Rather, they
are intended for weather forecasting, air or sea vessel support, etc. However, using high-quality
data to assess changes in climate is important. One would not want to have climate policy decisions
seriously affected by nonclimatic circumstances, such as changes in the surroundings of a weather
station, changes in instrumentation, changes in instrument location, and urban heat island effects
(cf. Trewin 2010).

In the climate community, the approach to dealing with nonclimatic data issues has been to
homogenize data sets. For example, if a station has changed site, one estimates a location change
(typically a step change) and adjusts the data for this change. The reason for doing so is that
climate is thought to be essentially local, so even a moved station would be measuring the same
local climate. The intent is to obtain a series of data that is as long and as homogeneous as possible
at each site. Homogenization of variance is not generally performed in the climate context. From
a statistical point of view, if the intent is to use the data to estimate quantities such as global
or regional average temperature, combining many data series, all of different lengths, will be
necessary, so having two station locations, one collecting the data until the change and the other
the data after the change, is just as reasonable. In fact, this method may provide a better sense of the
smoothness of the spatial field. Similarly, if the station has changed instrumentation, the statistical
approach would be to change the measurement characteristics associated with the station, rather
than trying to homogenize the data. So far, to my knowledge, the only group performing global
temperature analysis that has taken this approach is the Berkeley Earth group (Rohde et al. 2013).
Such a practice is, however, not uncommon in statistical paleoclimatology (e.g., Li et al. 2010,
Tingley et al. 2012), which uses various proxies for, e.g., temperature and greenhouse gases to
study the natural variability of climate in the past.

Lund et al. (2007) demonstrate the dangers of using change point methods based on inde-
pendent and identically distributed (i.i.d.) data when the data are actually autocorrelated. False
detection is common, indicating the importance of accepting only shifts that are documented in
the station metadata. Unpublished simulation studies indicate that the consequences of long-term
memory are even worse, in that the proper critical value for a test for a shift in a time series with
moderate long-term memory is an order of magnitude larger than for i.i.d. data.

2.2. Comparison of Databases

The core measurement used to illustrate global warming is the mean daily temperature. The
Berkeley Earth data set (http://berkeleyearth.org/dataset/) contains measurements from some
36,000 stations, gathered from 16 different databases (see Table 1 for the main ones). There
are three main global average temperature series, each calculated somewhat differently and using
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Table 1 Climate databases

Database Acronym Source Number of stations
Colonial Era Weather Archive CA US National Climatic Data Center 1,243
Global Historical Climatology Network:
Daily

GHCN US National Climatic Data Center 15,069

Global Historical Climatology Network:
Monthly

GHCN US National Climatic Data Center 7,280

Global Climate Observing System
(GCOS) Surface Network

GSN US National Oceanic and Atmospheric
Administration

1,018

Global Summary of the Day CLIMVIS US National Oceanic and Atmospheric
Administration

20,000

Hadley Centre Climate Research Unit HadCRU UK Met Office 5,583
Monthly Climate Data for the World MCDW US National Oceanic and Atmospheric

Administration
2,646

Scientific Committee on Antarctic
Research

SCAR British Antarctic Survey 46

US Cooperative Summary of the Day UCSD US National Climatic Data Center 8,500
US Cooperative Summary of the Month UCSM US National Climatic Data Center 23,000
US First Order Summary of the Day N/A US National Climatic Data Center 1,200
US Historical Climatology Network USHCN US National Center for Atmospheric

Research
1,218

World Monthly Surface Station
Climatology

WMSSC US National Center for Atmospheric
Research

4,700

World Weather Records WWR US National Climatic Data Center 1,930

Abbreviation: N/A, not available.

different sets of stations. The current series are HadCRUT4 from the UK Met Office Hadley
Centre and the University of East Anglia Climate Research Unit, covering 1850 to the present;
the Goddard Institute for Space Studies (GISS) surface temperature analysis (GISTEMP) version
3 series, covering 1880 to the present; and the National Climatic Data Center (NCDC) global
annual anomalies, also covering 1880 to the present. Each of these analyses uses ad hoc approaches
to estimate global averages and somewhat dubious approaches (if any) to estimate the uncertainty of
the global mean estimates. The Berkeley Earth project produces only a land average temperature
series, covering 1753–2011, using spatial statistics and unhomogenized data, and the group’s
estimates of uncertainty are by far the best from a statistical point of view.

Some of these stations have measured minimum and maximum temperature, whereas others
have measured hourly temperature (sometimes taking three measurements per day) or used alter-
native observational schemes. Somehow, these measurements will need to be combined into an
estimate of mean daily temperature at the site. The World Meteorological Organization (WMO
2010) suggests averaging the minimum and maximum daily temperature, if available. If a continu-
ous record of daily temperature were well described by a shifted sine curve [which is an approximate
model of the solar radiation that reaches the surface on a cloud-free day (Sampson & Guttorp
1992)], the average of the minimum and the maximum would indeed be the daily mean, modulo
measurement error. But as Figure 1 shows, a sine curve is not a particularly good description of
the monthly average of one-minute-resolution temperature measurements taken at the air traffic
control tower at Visby airport, Sweden, in January 2010.

Different countries use different approaches to estimate daily mean temperature from observed
data, usually taken more than once a day. Sweden, for example, uses a weighted average of
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Figure 1
Average temperature by minute of the day for the Visby air traffic control tower. Data are taken from the
Swedish Meteorological and Hydrological Institute.

observations taken at three hours during the day, as well as the minimum and the maximum.
The weights depend on longitude and month. The other Nordic countries use other linear
combinations of measurements, sometimes including the minimum and maximum. The United
States, the United Kingdom, and Australia are among the countries reporting the average of the
minimum and maximum. There are issues with what hours are used to define a climate day. This
definition varies from country to country, and sometimes within a country. Ma & Guttorp (2013)
make some uncertainty comparisons among different methods. Perhaps databases should contain
estimates of uncertainty for each measurement (so to speak) of daily mean temperature. At the
very least, the databases should indicate what method of estimation has been used.

The International Surface Temperature Initiative (http://www.surfacetemperatures.org/)
is a WMO-sponsored project aiming to produce a transparent data bank in which the raw data
and every modification of the data, as well as all available metadata, are clearly documented.
In addition, the project aims to benchmark and assess methods of, e.g., homogenization and
spatial estimation. The initiative involves statisticians, metrologists, and climate scientists. The
first issue of the database, published in May 2013, contains only unhomogenized temperature
data, but the plan is to extend the database to other climate variables, such as precipitation and
sea level pressure. The intent is to produce a common high-quality database that everyone will
use.

The ongoing refinement of climate data procedures (e.g., cleaning and homogenization) leads
to changes in databases, which in turn yield changes in often-used products. For example, the
NCDC database US Historical Climatology Network (USHCN) used to estimate monthly mean
temperature for the continental United States (CONUS) was updated in October 2012. Figure 2
shows the difference (color coded by month) between the mean monthly continental temperature
estimates based on version 2.5 compared with version 2.0 of the USHCN data set. This difference
emphasizes the importance of being careful in stating which version of the data is used in an
analysis. To make research reproducible, keeping previous versions of data sets available for users
is also important.
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Figure 2
Differences between two versions of US Historical Climatology Network data on continental US monthly
mean temperature, color coded by month. The later version (2.5) tends to be colder than the earlier
version (2.0).

3. UNCERTAINTY

3.1. Ranking

The idea of ranking years based on temperature is quite common, particularly in the press. The
uncertainty of ranks, however, is rarely mentioned. But if we rank years on their annual global
average temperature, we must take into account the uncertainty in the estimate of global average
temperature used in the ranking. How can we do that? The International Surface Temperature
Initiative suggested that a reasonable way of describing uncertainty in data products such as
global average temperature is to somehow generate an ensemble of possible realizations of these
estimates. Users can then utilize these realizations to estimate, for example, the rank in each path.
The spread in the distribution of ranks (over the realizations in the ensemble) is then a way to
describe the uncertainty in these ranks.

For a statistician, simulation is an easy way to generate this ensemble. The simplest approach is
to generate paths with annual means equal to the estimated values and standard deviations equal to
the standard error of the estimate. Of course, temporal dependence likely exists in the temperature
series, and one can model that before simulating the ensemble. In Guttorp & Kim (2013), this kind
of modeling is done for CONUS annual mean temperature, using uncertainty estimates and data
from Shen et al. (2012) for 1897–2008 (based on the USHCN database). Figure 3 shows the re-
sults for 1993–2000: 1996 and 1997 have very uncertain ranks, whereas 1993 is among the bottom
third, and 1998 is one of the warmest years, with a 0.6 probability of being the warmest. Most years
have a very low probability of being the warmest. The time series is simulated using a permutation
bootstrap of the estimated innovations from an ARMA(3,1) (autoregressive moving-average)
model.

3.2. Trends

Changes in the mean climate are generally described using trend lines. Although fitting a straight
line to the data (the thick black line in Figure 5) may be a somewhat dubious exercise because of the
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Figure 3
Rank distribution (in which a higher rank means warmer temperatures) by year from 100,000 simulations of a time series model
estimated from the Shen et al. (2012) data and standard errors for continental US annual average temperatures. The numbers in the
headings are the year followed by the frequency of the highest rank.

apparent nonlinearity, a fitted slope has the advantage that it can be described in observation units
per century (or whatever time period is of interest). However, the statistical significance of the
slope is often a quantity of discussion. For example, in a live interview, a climate scientist was asked
if the slope of a line to the HadCRUT3 annual global temperature series for the period 1995–2009
significantly differed from zero. The answer was no (in fact, this particular time period was the
longest for which this lack of significant difference was the case). Some interpreted this finding
to mean that global warming was no longer taking place [the prosecutor’s fallacy (Thompson
& Schumann 1987)]. Of course, fitting a line to 16 data points is a rather uncertain enterprise.
Furthermore, if one accepts a linear fit but attempts it for a longer time period, one still has to take
account of the temporal dependence in the series as well as the varying uncertainty (which partly
depends on how many weather stations, ships, buoys, and sensor floats are available to estimate
the global average temperature). Thus, ordinary least squares should be replaced by generalized
least squares, typically yielding a higher uncertainty of the slope estimate. As an example, fitting
a trend to the CONUS annual average temperature for 1897–2008 (using the same data as in the
previous subsection) yields the results in Table 2. As the modeling becomes more sophisticated,
the significance of the trend decreases. Commonly, climate scientists model dependence using an

Table 2 Regression slopes

Method Slope (◦C/year) Standard error Sign
OLS 0.0055 0.0012 ∗∗∗

WLS 0.0048 0.0014 ∗∗∗

GLS (AR1) 0.0048 0.0018 ∗

GLS [ARMA(3,1)] 0.0059 0.0032 −

Abbreviations: AR, autoregressive; ARMA, autoregressive moving-average; GLS, generalized least squares; OLS, ordinary
least squares; WLS, weighted least squares.
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AR(1) model. In this case, an ARMA(3,1) model is a substantially better fit according to Akaike
information criterion (AIC) and residual white-noise tests, at the cost of no longer having a
significant trend (Guttorp & Kim 2013).

Temperature data tend to have a rather complicated correlation structure, owing to a variety of
influences ranging from the short-term influence of cold fronts and warm fronts, to the multiannual
influence of the El Niño–Southern Oscillation (ENSO), to the decadal influences of the Pacific
Decadal Oscillation and the North Atlantic Oscillation, to the slow centennial-scale movement of
water masses from the deep ocean to the surface. Smith (1993) notes that a time series with long-
term memory can exhibit long stretches of increasing data without having an actual trend. He fits a
regression model in which the noise exhibits long-term memory to a global temperature series and
finds that the slope is still significant, indicating that the observed increase in global temperature
cannot be explained simply as a spurious trend due to the long-term memory character of the data.
Foster & Rahmstorf (2011) use ENSO, volcanic eruptions, and solar variability as covariates to
explain part of the variability of a global monthly time series, thereby getting stronger evidence
of trends. The covariates do not explain all the temporal dependence, as some correlation still
remains in the residuals, which the authors describe with an ARMA(1,1) model.

When looking at a network of temperature stations, a common approach is to fit each station
separately, either using ordinary least squares or employing a correction for first-order auto-
correlation. The estimate, normalized by its estimated standard error, is then compared to a
t-distribution to assess significance. A few researchers have realized the need to model the spatial
correlation and to consider the multiple comparison problem. Sometimes data are put on a grid,
and trend estimates for each grid square are used separately to assess the spatial coherence of the
test statistics. A more natural approach is to use a hierarchical model that simultaneously estimates
trend and seasonality and allows for complex spatiotemporal correlation structures. One example
is Craigmile & Guttorp (2011), in which a combination of short- and long-term memory is used,
and nonlinear trends are estimated in wavelet space.

3.3. Comparing Models with Data

An atmospheric climate model is a numerical solution of a set of coupled partial differential
equations, describing the fluid dynamics of the atmosphere (Peixoto & Oort 1992). In addition,
the model may be coupled to a similar description of oceans, land use, and the cryosphere (ice and
snow). One can compare climate models with data in many ways. One approach, which is popular
in the atmospheric science community, is to do a principal component analysis of both climate
model fields and data fields and try to regress one on the other. In this section, I stick to the
simpler problem of looking just at global mean temperature (not the most sensitive indicator of
climate change, but one that is used a lot). Climate models are not trying to recreate weather data,
although one might get that impression from the literature. In fact, Figure 4 shows the actual
output of 38 climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5)
experiment (Taylor et al. 2012). The models simulated the historical record (up until 2000), all
using the same set of historical forcings from, e.g., solar radiation, greenhouse gases, and volcanic
eruption. The CMIP5 models also run simulations for the time after the year 2000 (up to 2100
or, in some cases, 2300), using a set of scenarios called representative concentration pathways to
produce projections of future values of climate variables (estimates of future values are conditional
on such scenarios of the future behavior of Earth’s population and are therefore called projections
instead of predictions). This review does not consider projections.

The different models in Figure 4 do not yield the same temperatures for any given year. This
discrepancy has to do with how the model runs are initiated, how long they run in prehistorical
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Figure 4
Global average temperatures for 1850–1999 from 38 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5).

mode, and how precisely they model the interaction of the atmosphere with oceans. To make
them more comparable, researchers commonly calculate anomalies, i.e., residuals compared with
some fixed time period (here 1951–1980). Figure 5 shows anomalies of the same 38 models, as
well as the GISTEMP version 3 observed global annual mean temperature anomalies as estimated
by GISS (Hansen et al. 2010), using the same baseline period as for the models. The vertical lines
correspond to the two time periods used in Figure 6 to compare distributions.

Based on the idea of using the distribution of weather data as an estimate of climate, a natural
alternative would be to compare reasonably long stretches of the distribution of the two types of
data, instead of comparing time series of anomalies. The WMO generally suggests that 30 years is
reasonable, so I do comparisons on that timescale. Figure 6 shows quantile-quantile (Q-Q) plots
(Wilk & Gnanadesikan 1968) for two 30-year periods (1930–1959, during which temperatures
were reasonably stable, and 1970–1999, during which they were increasing). The 95% confidence
intervals are obtained from the asymptotic distribution of the Kolmogorov–Smirnov statistic and
are simultaneous under the (dubious) assumption of independence in time. In the left column, the
entire ensemble of model values is used. In the middle and right columns, two particular models,
the CCSM4 model from NCAR in the United States (Gent et al. 2011) and the HadCM3 model
from the Hadley Centre in the United Kingdom (Gordon et al. 2000), are chosen because the
former seemed to fit the middle two quartiles of the data best in the earlier period (before substantial
warming had started to appear), whereas the latter was one of the worst fits. Interestingly, the roles
of the models are reversed in the second period, after substantial warming appeared in the data (cf.
Figure 7). Both models overestimate the warming compared with the observations, whereas the
whole ensemble of climate models seems to agree well with the data, although the entire range of
their output values exceeds the range of the data (which should not be surprising, as the sample
size is 39 times larger).

Can we see a change in climate between the two time periods? Figure 7 uses Doksum’s (1974)
shift function to investigate this issue, both in the models and in the data. If the horizontal line
at level 0 falls entirely within the confidence bands (Doksum & Sievers 1976), then no significant
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Figure 5
Global average temperature anomalies (colored paths) for 1880–1999 relative to the reference period 1951–1980 from 38 models in the
Coupled Model Intercomparison Project Phase 5 (CMIP5). The thick black line is the Goddard Institute for Space Studies estimate of
global mean temperature. The dashed vertical lines are time periods used in Figure 6 to compare distributions of models and data.
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(Left column) Quantile-quantile (Q-Q) plots of Goddard Institute for Space Studies (GISS) data against the ensemble of the Coupled
Model Intercomparison Project Phase 5 (CMIP5) simulations for 1930–1959 (top row) and 1970–1999 (bottom row). (Middle and right
columns) Q-Q plots of the data against particular models: CCSM4 from the National Center for Atmospheric Research (NCAR) and
HadCM3 from the Hadley Centre. The red lines are lines of equal distribution.
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Shift function estimates with 95% simultaneous confidence bands under the assumption of independence in
time and independence between models for data (left) and the ensemble of the Coupled Model
Intercomparison Project Phase 5 (CMIP5) models (right) between the time periods 1930–1959 and
1970–1999. The horizontal red line corresponds to equal distribution for the two time periods.
Abbreviation: GISS, Goddard Institute for Space Studies.

difference exists between the sets of data. A nonzero horizontal line that fits in the band indicates
a location shift, whereas a nonhorizontal line that fits indicates location-scale change. Nonlinear
curves correspond to more complicated location-dependent shifts. The figure clearly indicates
location-scale changes between the two time periods for the data as well as for the ensemble of
models. In both cases, part of the horizontal line at level 0 falls outside of the confidence band,
indicating a significant change between the periods.

The confidence bands in the Q-Q and shift function plots above are asymptotic bands based
on the Kolmogorov–Smirnov distribution for i.i.d. data. Because many climate series have serial
dependence and are nonstationary (in fact, this defines climate change from a probabilistic point
of view), developing tools that deal with empirical processes of nonstationary dependent data is
necessary. Although the asymptotics for i.i.d. data lead to a Brownian bridge process, dependent
data can result in other Gaussian (Bachmann & Dette 2005, Dehling et al. 2009) or non-Gaussian
processes (Ould Haye & Philippe 2011), depending on whether the dependence is short- or long-
term. When the data are not stationary, work going at least as far back as Shorack (1973) indicates
that the appropriate quantity of interest, estimated by the empirical distribution function, is the
average distribution function over time. In the context of climate data, this average distribution
becomes our statistical estimate of climate. Developing simultaneous confidence bands for the
average distribution function or for the marginal density of time series data entails finding com-
putational approaches to suprema for Gaussian processes [using tools such as in Cierco-Aroylle
et al. (2003) and Åberg & Guttorp (2008)] or Rosenblatt processes (Veillette & Taqqu 2010,
Taqqu 2011), depending on the degree of dependence in the data. For multivariate extensions,
the standard theory leads to approximations by a Kiefer process (Philipp & Pinzur 1980), and
extensions of this theory to dependent situations exist (e.g., Rüschendorf 1974).

3.4. Uncertainty Propagation

Consider a city council in a coastal city, trying to determine if sea level change is going to affect
its planning policies. It will need a local projection of the future sea level. What it needs to do is
the following:
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� Relate global mean sea level change to global mean temperature and temperature change
(Vermeer & Rahmstorf 2009).

� Relate global sea level change to local sea level change using data from tide gauges, correcting
for land surface changes due to, e.g., glacial rebound and tectonic activity (Tebaldi et al.
2012).

� Look at temperature projections under different scenarios (Taylor et al. 2012) to project
global sea level rise.

� Apply the local relationship to the projected global sea level rise.

This process is sometimes called statistical downscaling. Of course, each step in this chain of
calculations has uncertainties associated with it. Thus, although many regional projections (e.g.,
Mote et al. 2008) simply give a single number for a particular location and scenario, a statisti-
cian would prefer to carry the uncertainty all the way through the calculations, using perhaps an
ensemble of different projections for each scenario combined with random draws from the two
regression models (global and local) to create a likely range of possible sea level rise outcomes
in the given location. That this procedure is not generally carried out can have serious conse-
quences for local planning efforts. An example of such a propagation of uncertainty can be found
at http://courses.washington.edu/statclim/what.html.

4. DISCUSSION

One aspect of statistics that has found surprisingly little application in climate science is the
design of experiments. Most scientific simulation studies use a wasteful full factorial design. In
climate science, an exception is the North American Regional Climate Change Assessment Pro-
gram (NARCCAP) experiment (http://www.narccap.ucar.edu/index.html), intended to study
differences between regional climate models (climate models run on fine resolution on a bounded
region such as North America) and the global models that provide boundary conditions for the
regional models. Video 1 shows the global model outside the North American domain and the
regional model inside it. The experiment uses eight regional models and four global models,
employing a fractional factorial design, which reduces the necessary runs by a factor of two or
doubles the number of models that can be considered. The main project runs 30 years using
historical simulations and 30 years of future projections for each design combination of regional
and global models. The design enables estimation of the interaction between regional and global
models, which is often the quantity that carries the most information (see Sain et al. 2011 for an
ANOVA-type analysis of this kind of experiment).

In an important work, Lindgren et al. (2011) suggest using a Markov random field approach
to estimate global temperature. This approach would enable a proper spatial estimation of a
nonstationary field on the globe, an estimation that no global temperature group has done so
far. An advantage of the approach would be the ease of generating ensembles of temperature
reconstructions (not only for the global average). Because of the speed of the INLA software (Rue
et al. 2009) used to fit the models in this approach, carrying out experiments with various subsets
of temperature stations and ocean data would also be straightforward. Inclusion of satellite data
into the analysis is (at least in principle) simple as well.

Of course, many other aspects of climate science could benefit from additional statistical input.
For a closing example, consider the definition of a season. First of all, not all parts of the world
have four distinct seasons. The simple division of a year into groups of three months is commonly
used when looking at seasonal aspects of model fit. But the method is of no use if the interest
is in studying changes in seasons (Alpert et al. 2004, Trenberth 1983). Different meteorological
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Video  CLICK TO VIEW

Video 1
A global climate model (left) and a regional model (right) using precipitation output with boundary conditions from the global model.
The data are taken from the North American Regional Climate Change Assessment Program (NARCCAP) experiment. Movie created
by Douglas Nychka and Stephan Sain of the National Center for Atmospheric Research (NCAR). To view the video, access this article
on the Annual Reviews website at http://www.annualreviews.org.

services have their own definition of seasons. For example, in Sweden, the definition (translated
from http://www.smhi.se/kunskapsbanken/meteorologi/arstider-1.1082) is the following:

Winter is the period when the daily mean temperature permanently is below 0◦C, and summer when
it is permanently above 10◦C. By studying means over several years one gets a smoothed temperature
curve, and it is then not hard to find dates when the different temperature limits are passed.

But for a particular year it may be debatable as to what constitutes “permanently.” The present rule
is seven days for spring, and five for other seasons. The season is said to begin at the first of these days.
However, spring cannot start before February 15, and autumn must end by February 14. The earliest
possible autumn is August 1, and the latest possible spring is July 31.

Thus, based on this definition, one can have years with no winter or no summer. The statistical
issue here is one of constrained clustering. Seeing what answers different clustering techniques
yield would be interesting.

Many issues exist in addition to those raised in this review. Statisticians should be able to
contribute considerably to issues such as the visual comparison of spatial fields, nonparametric
estimation of nonlinear trends in data with multiple scales of dependence, stochastic models for
downscaling climate models to regional and local scales, treatment of spatiotemporal extremes in
data and in climate models, studies of public health and ecological effects of a changing climate,
and much more. This scientific endeavor can benefit considerably from statistical contributions
because data are abundant and the potential societal impact is great.
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