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Abstract

We provide a statistical interpretation of current practice in climate model-
ing. In this review, we define weather and climate, clarify the relationship be-
tween simulator output and simulator climate, distinguish between a climate
simulator and a statistical climate model, provide a statistical interpretation
of the ubiquitous practice of anomaly correction along with a substantial
generalization (the best-parameter approach), and interpret simulator/data
comparisons as posterior predictive checking, including a simple adjustment
to allow for double counting. We also discuss statistical approaches to simu-
lator tuning, assessing parametric uncertainty, and responding to unrealistic
outputs. We finish with a more general discussion of larger themes.

103



ST01CH06-Rougier ARI 29 November 2013 14:8

Climate:
your distribution of
weather, represented
as a multivariate
spatiotemporal process
(inherently subjective)

Weather: measurable
aspects of the ambient
atmosphere, notably
temperature,
precipitation, and
wind speed

1. INTRODUCTION

Our purpose in this review is to interpret current practice in climate modeling in the light of
statistical inferences about past and future weather. In this way, we hope to emphasize the com-
mon ground between our two communities and to clarify climate modeling practices that may
not, at first sight, seem particularly statistical. From this starting point, we can then suggest
some relatively simple enhancements and identify some larger issues. Naturally, we have had to
simplify many practices in climate modeling, but not—we hope—to the extent of making them
unrecognizable.

1.1. Weather and Climate

We define weather to be measurable aspects of our ambient atmosphere, notably temperature,
precipitation, and wind speed. Hence, weather is an objective property of the world. We define
a climate to be a subjective distribution of weather, represented as a multivariate space-time
stochastic process. The phrase “distribution of weather” is uncontentious, but we believe that
much confusion has arisen from attempts to treat climate as an objective property of the world,
rather than something associated with individuals that reflects their disposition to make bets—to
adopt a simple operationalization of subjective probability, which we shall use throughout this
review to treat all of the uncertainties within a common framework. Thus we write “your climate”
rather than “the climate”; this specification seems to be the minimal change that is effective in
emphasizing the subjective viewpoint.

This subjective definition of climate is not one that many climate scientists will recognize, and
so we take a moment to evaluate it. First, one standard definition of climate is average weather,
often represented as a 30-year arithmetic mean. Under this type of definition (which may be
extended to a much richer summary), climate is an objective property of the world, being simply
a known function of weather. Thus one could bet on climate, rather than, as we would have it,
climate being the bet one makes on weather. We would then need a word for “distribution of
climate” because climate has become synonymous with summaries of weather, so we have chosen
to identify weather with its summaries and reserve climate for “distribution of weather.”

What about the subjective element? Climate modelers may not be happy about statisti-
cians telling them that the distribution of weather is subjective. They may, for example, point
to the histogram of recent past weather as an objective distribution of weather, but a his-
togram is not a distribution. If you make the subjective judgment of temporal exchangeabil-
ity, then the histogram of, e.g., 1980–2009 weather approximates your distribution of 2010
weather, albeit in a rather lumpy fashion. This approximation is because probabilistic updat-
ing of an exchangeable sequence implies convergence to the histogram. So climate modelers who
share the judgment of exchangeability would roughly agree on the distribution of weather in
2010. But this argument is self-defeating because subjectivity is necessary to turn the histogram
into a distribution. It also highlights a common mistake, which is to confuse agreement with
nonsubjectivity.

The key point is that any probability for a unique event is unavoidably subjective (see, e.g.,
Hacking 2001). The weather event of at least one year of severe drought in England during
2020–2029 is unique: It cannot be embedded in a long sequence of similar but not identical
events. At the moment, you may describe your assessment of this event probabilistically (it is
an implication of your climate), but there is no reason to expect you to agree with anyone else.
Your information, knowledge, and disposition are yours alone. Of course, a shared judgment of
temporal exchangeability extending from 1980 to 2029 would be sufficient for agreement, but this
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Climate simulator:
computer code that
maps forcing into
weather, given also an
initial condition and
parameter values

Forcing: boundary
conditions for the
simulator, usually
implemented in terms
of radiation (solar
forcing and
greenhouse gas
forcing) and optical
depth (aerosol forcing)

Statistical climate
model: a statistical
framework designed to
simplify the process of
specifying your climate

judgment is not defensible for a well-informed climate modeler, who is aware of the changes that
are currently occurring in the earth system.1

Finally, our definition of climate seems to be consistent with current practice in climate mod-
eling, as we describe in more detail in the following sections. A climate simulator is just that, a
device for generating a family of distributions of weather. Insofar as the simulator is the outcome
of many judgments, its distribution is subjective. Climate modelers do not accept one of the simu-
lator’s climates as their own but make a subjective adjustment reflecting their judgment about the
simulator’s limitations. So we find that the practice of climate modelers is inherently subjective,
and that defining climate to be a subjective distribution of weather is reasonable not just from a
foundational point of view but also from a naturalistic one.

Just to be absolutely clear, we use the word “subjective” solely to indicate that, by our definition,
climate may vary from one person to another. When judgments are subjective, policymakers and
the general public should exercise care when selecting their experts to ensure that these experts are
qualified and representative. In the case of future weather, climate scientists are the experts, not
statisticians like ourselves and not journalists or bloggers. A huge body of climate science is widely
accepted within the climate science community, including that the net effect of human activity
since 1750 has been one of warming (Solomon et al. 2007, Summary for Policymakers). These
conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment
Report will shortly be reaffirmed in the Fifth Assessment Report (to be finalized in 2014).

1.2. Climate Simulators and Their Uses

The earth can be represented as a forced system, driven by variations in isolation, by volcanism
and other tectonic processes, and by human activity (Peixoto & Oort 1992). A climate simulator
in its most primitive form is a function that maps forcings into weather, after which statistical
postprocessing of the weather can be used to produce a climate; we discuss climate simulators
in more detail in Section 2.1. We prefer the term “climate simulator” for the function that does
the mapping, reserving “model” for its use (in the statistical sense) as a framework designed to
simplify the process of specifying your climate (Rougier et al. 2013). But because the word “model”
is heavily overloaded, we write either statistical climate model or XXX model, where XXX is the
name we give to a particular statistical model.2

In our sense, statistical climate models will typically encompass climate simulators because the
effect of forcing on the earth system has strong constraints that are induced by basic physical prin-
ciples such as conservation and continuity. We can infer the qualitative effects of these constraints
for a simplified earth; an example is the large-scale atmospheric organization known as Hadley
cells (see, e.g., Ahrens 2000, chapter 11). However, a quantitative description on a realistic earth
is less amenable to intuition and must be computed. Thus, quantitative statistical climate mod-
els are constructed in two stages: (a) develop a climate simulator that represents the physics and
(b) propose a statistical model that represents your assessment of the simulator’s limitations. Cli-
mate simulators are discussed in Section 2 and statistical climate models in Section 3.

1Exactly the same considerations apply to the weather of the past. Agreement about the climate of the recent past follows from
the convergence of exchangeable judgments on the histogram. But where there is no histogram, for example for paleoweather,
there is no particular reason for agreement.
2The term statistical climate model is also used for a class of statistical-dynamical simulators, in which a separation of scale
argument is used to model the large-scale effects directly and to relegate the small-scale effects to a statistical ensemble (see
Hasselmann 1976 for an outline of this approach and Petoukhov et al. 2000 for a description of the CLIMBER-2 statistical-
dynamical simulator). We do not consider this type of simulator here.
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Detection and
attribution (D&A):
examining the role of
anthropogenic effects
in 20th century
weather patterns

Scenario: a future
described by specified
forcing, representative
of trends in
population,
economics,
technology, and policy
interventions

Our distinction between “climate simulator” and “statistical climate model” is not widely made
in climate science, but it exists implicitly because climate modelers use statistical models to ad-
just a simulator’s climate. The ubiquitous model is that, for a quantity such as temperature, the
simulator’s climate is acceptable only up to an unknown fixed offset (the simulator bias), which in
practice is estimated and plugged in. This is the statistical interpretation of anomaly correcting, in
which, as a matter of course, a simulator’s temperatures are vertically shifted so that the simulator
mean temperatures during the period 1980–1999 exactly match the mean of observed tempera-
tures during the same period (see the figures in Guttorp 2014). Statisticians will immediately see
the opportunities for generalizing such a model. For example, the offset might be a spatiotemporal
process; offsets from different types of output might be correlated; and rather than plugging in,
the offset field might be integrated out.

We make this point right at the start of this review to stress that encompassing a climate
simulator within a statistical climate model is not simply a statistician’s conceit. Rather, it is
something that already happens, but which, with statistical insight, could be generalized rather
easily. Importantly, statistical judgments are necessary to move from climate simulator output to
your climate, and these judgments must change as climate simulators evolve.

One role for climate simulators is hypothesis testing and predicting. Hypothesis testing is
well illustrated by detection and attribution (D&A). In D&A, hypotheses compete to explain
features such as the spatiotemporal structure of the warming trend in 20th century weather.
Hypothesis A is that this trend is simply a realization of the weather’s natural variability. Hypothesis
B adds solar fluctuations and volcanism. Hypothesis C adds human activities. These hypotheses
are statements about the forcing. To compute your likelihood ratio for, e.g., B versus C, you
require your climate for a hypothetical earth without humans as well as your climate for the actual
earth. An earth without humans can be implemented in a simulator by fixing the forcing from
atmospheric greenhouse gases in the industrial period to be the same as that before the industrial
period. Hypothesis tests for D&A are discussed in Rougier (2008a) and reviewed in Hegerl &
Zwiers (2011); for reasons of space, they are not further covered here.

For predicting, policy interest is in future weather. In current practice, the future is represented
in terms of scenarios for future forcing, which themselves arise from scenarios for population,
economics, technology, and policy interventions.3 Again, climate simulators provide the means
of considering and comparing various hypothetical futures. They provide a platform for what-if
intervention studies, such as geoengineering (e.g., Irvine et al. 2011), and for driving regional
simulations for climate impact studies (Parry et al. 2007). Climate prediction is the main focus of
this review, discussed in Sections 3 and 4.

2. CLIMATE SIMULATORS

In this review, we focus on large climate simulators, the state-of-the-art simulators that are run at
the main climate research centers. The earth system comprises many interacting subsystems, most
notably the atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere, and the same is true
of large climate simulators. Ahrens (2000) provides an introduction to weather (the companion
volume, Stull 2000, is also helpful), whereas Peixoto & Oort (1992) provide a more mathematical
treatment. McGuffie & Henderson-Sellers (2005) introduce climate modeling; Arakawa (1997)
gives a technical treatment, outlining the mathematical issues involved in solving the underlying

3Williamson & Goldstein (2012) describe an adaptive approach to simulator-based policy assessment that avoids the use of
scenarios.
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Parameters:
adjustable coefficients
in the simulator that
represent sub–grid
scale processes and
incompletely
understood processes

Sub–grid scale
processes: processes
in the mathematical
model with length
scales comparable to
or smaller than the
solver of the simulator

Control run: a long
time-slice experiment,
typically with
preindustrial forcing

Spin-up: a time-slice
experiment in which
the simulator forgets
its initial condition

equations; and Watanabe et al. (2010) describe some of the pragmatic choices that were made in
constructing the MIROC5 simulator.

2.1. The Simulator as a Dynamical System

We do not consider the precise form of the laws governing the behavior and interactions of the
simulator modules, beyond observing that the laws of the earth’s subsystems are not all known and
that they are not currently solvable at a scale sufficient to resolve all of the interesting processes.
Instead, we focus on the nature of a climate simulator, which is a forced nonlinear dynamical
system (see, e.g., McWilliams 2007, who also provides a useful overview of the challenges of
climate modeling). Therefore, for a particular set of forcings (suppressed in the notation), we
consider a climate simulator to be a deterministic function of time:

xt = ϕ(t; x0, θ), such that ϕ(t0; x0,θ) = x0 for all θ,

where x0 is the initial climate state at time t0.4 The parameters θ represent coefficients within
the simulator code that are imperfectly known or that are too abstract to have an operational
meaning; some parameters stand in for processes that are filtered out by the solver (sub–grid
scale processes). Murphy et al. (2004) provide a list of approximately 30 such parameters, remark-
ing that more than 100 are present in a typical large-scale simulator; we return to this idea in
Sections 2.2 and 2.3.

The initial value, x0, must be supplied for the simulator to run, but that value presents a
major problem in practice, being very high-dimensional and largely unknown even in the case
in which the initial time, t0, is contemporary. The difficulty is compounded if t0 represents a
historical initialization date such as 1850. The tendency in climate science has been to not specify
x0 directly. Instead, the simulator, whose trajectories are chaotic, is treated as ergodic. A very long
control run is made from a specified x̂0 at a preferred set of parameter values (which we denote as
θ̃ below) and with constant or periodic forcing; for example, the forcing of the year 1850 might
be repeated again and again. For an ergodic simulator, time averages converge to the stationary
measure, and hence an x0 for 1850, or a sequence of them, can be sampled from the control run
after an interval of spin-up to forget x̂0.

In this review, we do not consider x0 any further but focus instead on the role of θ, the
simulator parameters. For simplicity, we focus on the expectation and variance of the simulator’s
climate, although other features (e.g., skewness and extremes) are also important for climate impact
assessment. Figure 1 summarizes the exposition of the next few paragraphs. These paragraphs
represent a somewhat idealized interpretation of current practice, suggesting an opportunity for
increased statistical sophistication, should climate modelers desire.

We write the simulator output at time t as xt = ϕ(t; θ) and the full set of simulator outputs
as x := (x1, x2, . . .); xt might itself represent a large collection of quantities, such as surface
temperature, precipitation, and wind speed at every location on a 2◦ grid. The physics in the
simulator suggests that, for each t, there will be strong relationships among the components of
xt, and that these relationships will be somewhat consistent across t. The chaotic nature of the
simulator suggests that x will look like a realization of a multivariate stochastic process, even
when the forcing is smooth in time. For these two reasons, working directly with x is uncommon.
Instead, a dimensionally reduced summary is used.

4Here, we are simplifying by not distinguishing between the full state vector and the function of the state vector of interest
to us, which would usually be a lower-dimensional summary. Once we dispense with the initial condition, treating xt as the
summary is sufficient.
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Figure 1
Schematic of a climate simulator. The inputs are forcing, f := (f1, f2, . . .); parameter values θ; and an initial
value x0. The simulator is run to produce outputs, x := (x1, x2, . . .). Using statistical time-series modeling,
these inputs are summarized in terms of an expectation and a variance, which together represent the
simulator’s climate, collectively denoted K(θ) := 〈μ(θ), �(θ)〉. The forcing should be included in the
arguments of K but is suppressed for simplicity. The argument x0 is also suppressed, but in fact K should be
nearly invariant to perturbations in x0, if the simulator is ergodic.

Let x be arranged as a matrix,

X =

⎡
⎢⎢⎣

xT
1

xT
2
...

⎤
⎥⎥⎦ ,

with singular value decomposition (SVD),

X − 1x̄T = UDVT
,

where 1 is the vector of ones and x̄ is the vector of column means (Golub & Van Loan 1996 describe
the SVD and its properties in chapter 2). In climate modeling, the columns of W: = UD are known
as the empirical orthogonal functions (EOFs) (see, e.g., von Storch & Zwiers 1999, chapter 13);
they are a bit like principal components, except that the rows of X are not exchangeable. For that
reason, one should not confuse them. In this form, the simulator output can be written as

xt = x̄ + Vwt t = 1, 2, . . . , 1.

where wT
t is one row of W. In practice, both V and wt would be reduced from their full size to

just the first k components, where k is determined empirically. In this case, it would be sensible
to rescale the columns of X to be dimensionless before taking its decomposition, or else to apply
dimensional reduction separately to each type of output.

Following dimensional reduction, the second step is to fit a time-series model to
w := (w1, w2 . . .). A simple choice would be to model the components of wt independently, given
that UT U = I and that D is diagonal, and to use a trend-plus-ARIMA (autoregressive integrated
moving-average) residual model for each component (see, e.g., Chatfield 2004, chapter 4), includ-
ing a seasonal component if the frequency is higher than annual. Including current and historical
values of the forcing as covariates would also be legitimate and helpful, in which case the trend
may be unnecessary. The time-series model for w can then be used to infer the second-order
structure of x for a given θ from Equation 1. We write the model here as

x ∼ 〈μ(θ), �(θ)〉,
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Figure 2
The set of simulator trajectories and the tube that summarizes the simulator’s climate at parameter value θ.

Internal variability:
the inherent variability
of the weather within a
climate simulator

Time-slice
experiment:
experiment in which
the simulator is given
constant or periodic
forcing and run at least
until its output
stabilizes

Tuning: choosing a
preferred value for the
simulator’s parameters

where μt(θ) := E(xt ; θ) and �tt′ (θ) := Cov(xt, xt′ ; θ). Technically, both μ and � should have hats
to indicate that the parameters of the process for w have been estimated and then plugged in.
Additional simulator runs with the same θ but different initial conditions can be used to improve
the estimates of μ(θ) and �(θ).

The tuple K(θ) := 〈μ(θ), �(θ)〉 is synonymous with the climate of the simulator ϕ(·; θ), at
least to second order. K(θ) describes an ellipse in the product space of time and the state, but
for visualization purposes, we gain much by simplifying it to an elliptical tube in time, i.e., as a
sequence {μt(θ), �tt(θ)}, which suppresses the temporal properties encoded in the covariances
�tt′ (θ) (see Figure 2). The mean function, μt(θ), can be used where a deterministic treatment
of the simulator is required; typically it would be similar to a spatially and temporally smoothed
version of the raw output. �tt(θ) is termed the internal variability of the simulator output at time
t. If the time-series model for the residual of w is stationary, then �tt(θ) is invariant to t, and the
tube has the same shape all the way along.

In the special case of a time-slice experiment, the forcing is constant or periodic, and the
simulator is run until its output stabilizes. Typically, the mean of the final 30 years of the run
is used, suppressing the internal variability to the point at which it can be ignored. Time-slice
experiments are used to summarize the climate of different epochs (e.g., the preindustrial era,
the Last Glacial Maximum) and to compute hypothetical quantities such as equilibrium climate
sensitivity. They are also used for tuning (see Sections 2.2 and 2.3).

For reasons of computational scale, it is sensible to perform inferences in the feature space,
W = (X − 1x̄T )V, rather than in the original space, but in this article we stay with the original
space for simplicity. Rather than take x̄ and V from the actual run, one may instead take them
from the control run; in this case, w might be modeled with a multivariate time-series model.

2.2. Tuning

Tuning is the activity of choosing a preferred value for θ, which we denote as θ̃. The major
constraint of tuning is the slow integration time of the simulator. Large-scale simulators can
typically compute approximately 100 simulator years per calendar month. To tune to a long time
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Overtuning: tuning
that emphasizes a
match with the
histogram of 20th
century weather

series, such as a century of regional temperature and precipitation, would additionally require a
spin-up for each new choice of parameter values, involving at least another 100 simulator years.
And so an iterative process with this target would move at approximately one cycle for every two
calendar months, which is hopeless when there are hundreds of uncertain parameters. Therefore
climate simulators are, in general, not extensively tuned to reproduce the large-scale features of
20th century weather, especially as tuning generally happens in the shadow of a looming IPCC
deadline. As a result, 20th century weather can be used to assess climate model adequacy (see
Section 4).

This observation should be tempered, though, in the light of the sequential development
of simulators within a research group. Many of the decisions made when upgrading a climate
simulator are based on increased computer power or better physical understanding, but some are
based on the failure of the current version of the simulator to reproduce 20th century weather.5

Valdes (2011) notes that climate simulators are currently too stable to replicate historical abrupt
weather transitions. This problem might be symptomatic of overtuning, with the Holocene (our
current epoch) being unusually stable. One solution is also to tune on previous epochs with different
forcing. The difficulty here is that the forcings are much more uncertain and the histogram of
weather must be inferred from proxy measurements (see, e.g., Jones et al. 2009).

Two camps exist regarding tuning strategies: (a) that the modules of the climate simulator
should be tuned separately, so as to avoid compensatory mistuning and (b) that climate is an
emergent property of the interactions of its subprocesses, and so tuning should happen jointly.
Typically, the camps reach something of a compromise. Gent et al. (2011, section 3) summarize the
procedure for CCSM4 (Community Climate System Model).6 First, the modules of the simulator
(atmosphere, ocean, land, sea ice) were each separately tuned to reproduce current behavior.
Danabasoglu et al. (2008) illustrate the combination of physical and empirical reasoning that is
used to tune one aspect of the ocean module.7 Module tuning uses both time-slice experiments (to
check for long-run stability) and also transient runs, during which observations replace the fluxes
from the other modules.

Module tuning takes care of most of the parameters. Then Gent et al. (2011) coupled the
modules together into a climate simulator, and the simulator as a whole was tuned on a few
parameters and a few targets. A cloud parameter was adjusted to achieve a satisfactory radiation
balance at the top of the atmosphere (TOA), and sea-ice albedo parameters were adjusted to give
satisfactory sea-ice thicknesses in the Arctic.

Gent et al. (2011) also summarize the diagnostic evaluation of CCSM4 at the tuned value θ̃,
using observed 20th century weather. Crucially, this evaluation is not just in terms of mean fields,
e.g., for temperature and precipitation, although those get checked first, but also in terms of the
statistical properties of variability (e.g., the histogram of precipitation) and recurrent events [e.g.,
the El Niño–Southern Oscillation (ENSO)]. In other words, the purpose of tuning the simulator
is not simply to get μ(θ̃) approximately right but also to get key features of �(θ̃) approximately
right.

In our experience, the procedure for CCSM4 is unusually ascetic, with most modeling groups
tuning jointly on a larger set of parameters and a larger set of targets. Mauritsen (2012) provides a
detailed description of the process of tuning the MPI-ESM (Max Planck Institute–Earth System

5The genealogy of climate simulators is highly instructive (see Knutti et al. 2013 and Masson & Knutti 2011).
6This is an open-source climate simulator, which makes it rather unusual, as climate simulators are typically proprietary to cli-
mate modeling groups. CCSM4 has now been subsumed under CESM1 (see http://www.cesm.ucar.edu/models/ccsm4.0/).
7Tuning involves much more than just adjusting parameters; often the parameter set itself is changed as chunks of code are
swapped.
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History matching
(HM): statistical
approach for ruling
out poor choices of the
simulator parameters

Projection: a climate
prediction along a
specified scenario

Emulator: statistical
model for a simulator,
allowing prediction of
the simulator output at
untried values of the
parameters

Model) simulator. Public descriptions of the practice of tuning a large climate simulator are a
recent phenomenon.

2.3. History Matching

Statisticians have lots of tools to help with the process of tuning a climate simulator. Here we
outline an exploratory approach termed history matching (HM), which demands much less expert
judgment than does fully probabilistic conditioning.8 HM is designed to rule out bad choices for
the parameter values. Not-ruled-out values—for which the simulator outputs are consistent with
historical observations—do not necessarily have similar simulator outputs under different forcings
(such as in future projections). The intention of HM, in contrast to tuning, is to preserve this source
of climate uncertainty. HM originated in hydrocarbon reservoir modeling and is used extensively
in commercial settings. Its original statistical formulation appeared in Craig et al. (1997). Vernon
et al. (2010) provide a detailed description of HM for a galaxy simulator, Gladstone et al. (2012)
for the Pine Island Glacier, Edwards et al. (2011) (termed precalibration) for an intermediate-
complexity climate simulator, and McNeall et al. (2013) for an ice-sheet simulator.

As an illustration, we take just a single target for tuning, the TOA mean radiation balance
in an 1850 time-slice experiment, with any value θ with an imbalance outside the range (−0.1,
0.1) W/m2 being deemed unacceptable as a candidate for the preferred value (see, e.g., Gent et al.
2011, p. 4,977). The width of this target interval should include a component for tolerability (large
discrepancies being tolerable for some targets but not for others) and also for measurement error
(see, e.g., Vernon et al. 2010, section 3.5). HM inverts this constraint to rule out regions of the
parameter space. To proceed efficiently, it exploits the property that the simulator output for the
target is a smooth deterministic function of the parameters. So in this case, the simulator output
would be, e.g., a 30-year mean of the radiation imbalance from the end of the run, denoted μ̄(θ),
and internal variability can be neglected.

The simulator is treated as an unknown smooth deterministic function of the parameters
(or a subset of them), represented by a statistical model termed an emulator.9 An emulator is
a sophisticated response surface, typically containing both regressors for global effects and a
stochastic process for local effects. A catalog of carefully chosen runs at different points in the
parameter space is used to update the emulator, and the result is an expectation and a standard
deviation for μ̄(θ) at any θ. Note that μ̄(θ) is a random quantity even though θ is specified,
if the simulator has not been run at θ. In the special case in which the simulator has been run
at θ, to give, e.g., a value v, then the smoothness of the emulator ensures that E{μ̄(θ)} = v and
SD{μ̄(θ)}= 0. Various strategies exist for choosing the set of runs, but a popular initial choice
is a Latin hypercube. Santner et al. (2003) and Forrester et al. (2008) provide more details about
emulation and experimental design. Rougier (2008b) develops an emulator for multivariate
outputs, such as a spatial field (see Rougier et al. 2009a for an illustration).

Based on the emulator, any point in the parameter space can be scored according to whether
the predicted value overlaps with the target. Thus, a particular choice θ might be deemed un-
acceptable as a candidate for the preferred value if the intersection between (−0.1, 0.1) and
E{μ̄(θ)} ± 3×SD{μ̄(θ)} is not empty.

Any θ for which the intersection is empty is not ruled out yet (NROY). Vernon et al. (2010) give
a detailed description of the process of HM with an emulator and how it can proceed in successive

8Sansó et al. (2008) and Tokmakian & Challenor (2013) provide examples of fully probabilistic calibration.
9Emulators are required only for expensive simulators. Gladstone et al. (2012), for example, use the simulator directly in the
HM procedure.
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Anomaly model:
a statistical climate
model in which the
dominant limitation of
the simulator is
mislocation of your
climate

Best-parameter
model:
a generalization of the
anomaly model, in
which the limitations
of the simulator
involve the location,
size, and shape of your
climate

waves, allowing more and more of the parameter space to be ruled out through additional runs of
the simulator and refittings of the emulator. Vernon et al. (2010) also discuss HM with multiple
targets and low-dimensional visualizations of an implausibility measure defined on the parameter
space.

2.3.1. Fast approximate simulators. The emulation approach is particularly powerful for simu-
lators for which fast approximations exist. For climate simulators, these simulators would typically
have lower resolution, with prognostic variables replaced by diagnostic variables (i.e., removing
feedback from some of the state variables) or with shorter spin-ups. For this approach to be effec-
tive, running the simulator in fast mode must be relatively easy, and this mode must be designed
in from the start.

For example, emulators can include arbitrary smooth functions of the parameters as regressors,
and the fast approximate simulators (FASs) could be one such. In this way, one can think of an
emulator as a statistical approach to correcting an FAS. After the emulator is built, which requires
paired runs of both the full simulator and the FAS, the parameter space can then be explored at the
speed of the FAS. Intuitively, if the FAS is a poor approximation that is difficult to correct, then not
much of the parameter space will be ruled out because SD{μ̄(θ)} will tend to be large. In practice,
a more sophisticated use of emulators is possible, linking simulators through the coefficients in
their emulators (see Cumming & Goldstein 2009). In climate science, Rougier et al. (2009b) use a
FAS to provide prior information for the HadSM3 climate simulator, and Williamson et al. (2012)
link the low-resolution FAMOUS (FAst Met Office UK Universities Simulator) climate simulator
with the high-resolution HadCM3 (Hadley Centre Coupled Model, version 3) simulator.

3. STATISTICAL CLIMATE MODELS

In this section, we make an important transition from the climate simulator, thought of as a
function of the parameters θ, to your climate. In moving from one to the other, we pass into the
realm of subjective judgments, as explained in Section 1.1. If this subjectivity is not obvious in
current practice, it must be concealed in the widespread acceptance of conventional judgments.
And, indeed, the anomaly model described in Section 3.1 is exactly this: a conventional judgment
for passing from a simulator’s climate to your climate, thus concealing the essential subjectivity
of this step.

Conventions can be supremely useful, of course. One example is the symmetry-breaking con-
vention of agreeing to drive on the left-hand side of the road (in the United Kingdom). Con-
ventional simplifications, however, must continually be reappraised as our understanding and our
tools develop. Thus, many of the conventional simplifications in climate modeling have now been
relaxed, and parts of the earth system previously ignored or treated as diagnostic have become
prognostic (e.g., the sulfur cycle, vegetation). The anomaly model is a conventional simplification
of judgments that goes back to the very start of climate modeling, and the time has come to relax
it, too. For example, the so-called best-parameter model that we discuss in Section 3.2 is a useful
first step in this direction.

In this section, we contrast two different approaches to inferences about future weather under
particular future forcings, termed climate projections. The time domain is divided into the past
(t ∈ P), for which observations exist, and the future (t ∈ F ), for which we would like to make
a projection. For the time being, we treat the past forcing as known (but see Section 4.2); the
future forcing is specified by the projection scenario. For concreteness, P might be the period
1850–2013 and F the period 2014–2100, and the simulator output might be annual global mean
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temperature. The time period P does not have to be contiguous with that of F , and for simplicity,
we take �PF (θ) = 0 for each θ.10

Let Y = [YP , YF ] be the weather, and let

zobs = YP ⊕ e

be the statistical model for past weather observations, where e is the measurement error with
expectation zero and known variance matrix E, and ⊕ indicates the addition of uncorrelated
components.11 Then the objective is to make inferences about YF based on zobs and on runs of
the simulator. We restrict ourselves to the single simulator run at the preferred parameter value,
θ̃, represented in terms of the simulator’s climate K(θ̃) = 〈μ(θ̃), �(θ̃)〉. Section 3.3 discusses the
important issue of alternative choices for θ.

3.1. The Anomaly Model

Our statistical interpretation of climate modelers’ current behavior is that they take a classically
frequentist approach to climate inference, proposing a strongly parametric statistical model linking
the climate simulator and their climate, estimating the parameters of this statistical model, and then
plugging in the estimated values to make probabilistic projections. We term the climate modelers’
current statistical model the anomaly model. It asserts the existence of parameters (θ∗, α∗) with
the property that

Y|θ∗, α∗ ∼ 〈
μ(θ∗) + α∗1, �(θ∗)

〉
, 2.

where α∗ is a scalar anomaly correction. This statistical model asserts that K(θ∗) adequately
represents your climate, except for an unknown translation. Equation 2 is the simplest version and
can be easily generalized to allow the anomaly correction to have multiple components, which
depend on the type of weather output and possibly the spatial location. Some outputs may need
to be transformed so that an additive shift is appropriate (e.g., precipitation, which is nonnegative
on its natural scale).

The tuned value θ̃ is taken to be an estimate of θ∗, and α∗ is then estimated as

α̃ = (np )−1
∑
t∈P

(
zobs

t − μt(θ̃)
)

3.

in the simplest version, where np is the number of time points in the period P . Thus the anomaly
correction is a function of zobs, even if θ̃ is not. One then finds the projection by plugging in the
estimate (θ̃, α̃) for the unknown (θ∗, α∗) to give

YF ∼
〈
μF (θ̃) + α̃1, �FF (θ̃)

〉
. 4.

The preceding discussion is a rather long-winded way of saying, “Having found, by other means,
a preferred value for θ, translate the simulator climate so that it matches, on average, the

10In practice, a much more detailed set of outputs would be used—generalizing the approach described below is straightfor-
ward. Where P and F are contiguous, �PF (θ) ≈ 0 is implied by short (e.g., not more than a decade) correlation lengths in
the residual component of the time-series model for w. Again, generalizing is straightforward.
11We are skipping over the nature of these observations. Many weather observations start out as indirect measurements,
e.g., from weather satellites, which measure radiances at different wavelengths that are then processed (“inverted”) to give
temperatures. Common sources of uncertainty in the forward relationship from temperature to radiance would induce sys-
tematic errors in the observations (see Section 4.2), but it would be unusual for the weather and the measurement error to be
correlated.
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Discrepancy: in the
best-parameter model,
the uncertain additive
difference between the
simulator output at its
best parameterization
and your climate

historical observations.”12 But we emphasize that the parametric model in Equation 2 is a subjective
assessment of the relationship between the simulator’s climate and your climate, notwithstand-
ing the aura of objectivity that arises from the apparent absence of any explicit quantification of
uncertainty. We return to this idea in Section 3.2.

3.2. The Best-Parameter Model

The anomaly model of Section 3.1 is rather simple. The statistical field of computer experiments
has developed a richer set of models for simulator-based inference for complex systems (see, e.g.,
Craig et al. 2001; Goldstein & Rougier 2004, 2006; Kennedy & O’Hagan 2001); Rougier (2007)
provides a climate science illustration. The approach in computer experiments is based around a
so-called best-parameter statistical model, which in this context asserts that there exists a θ∗ such
that K(θ∗) is second-order sufficient for your climate. This model can be written as

Y|θ∗, ε ∼ 〈
μ(θ∗) + ε, �(θ∗)

〉
,

where ε is an additive discrepancy, probabilistically independent of θ∗, with E(ε) = m and
Var(ε) = T and with both m and T being specified. We write “discrepancy” instead of “anomaly
correction” because ε is a random vector, not a scalar shift. Taking m = 0 is common because
known translations can be incorporated directly into the simulator, and we follow this practice
from now on. Integrating out ε gives

Y|θ∗ ∼ 〈
μ(θ∗), �(θ∗) + T

〉
.

The discrepancy variance T would capture your remaining uncertainty about climate, were you
able to run the simulator at its best parameter. First, you would not expect K(θ∗) to be in quite the
right place, and so there should be a term that allows for translations, like the anomaly correction.
Second, K(θ∗) is typically underdispersive with respect to your climate, owing to the limited
resolution of the solver, which acts as a filter.13 Thus, in the simplest version of the best-parameter
model,

ε = α∗1 ⊕ ε2, implying T = σ 2
1 11T + T2, 5.

where α∗ ∼ 〈
0, σ 2

1

〉
, and T2 := Var(ε2) might be as simple as the diagonal matrix, σ 2

2 I. But T also
has the capacity to encode changes in the shape of K(θ∗) to give a richer and more appropriate
description of the simulator’s discrepancies at different time points.

In this model, the projection is made by updating using the historical observations, giving

YF |θ∗, zobs ∼ 〈
μF |P (θ∗),�F |P (θ∗)

〉
,

where, taking �PF = 0 and suppressing θ∗ (which is an argument for all terms of the form μ or �),

μF |P := μF + TFP (�PP + TPP + E)†(zobs − μP )
�F |P := �FF + TFF − TFP (�PP + TPP + E)†TPF .

These are the usual second-order updating equations (Goldstein & Wooff 2007, Rougier et al.
2013), where † denotes the Moore–Penrose inverse.14 For a plug-in projection, θ∗ can be replaced
by its estimate, θ̃.

12In fact, as mentioned in Section 1, the convention is to match the means over the period 1980–1999 rather than the whole
of P , as P might differ from one experiment to another.
13This is not the only source of underdispersion: Simplifications are also present in the modeling of processes such as sea ice
and vegetation, reflecting both computational constraints and lack of knowledge.
14They are also the conditioning expressions for the multivariate Gaussian distribution.
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Overfitting:
a consequence of using
the anomaly model,
resulting in too-small
projection
uncertainties

Interestingly, this best-parameter model includes the anomaly model as a special case. We
illustrate in the simplest version, given in Equation 5. If

σ 2
1 11T 
 T2 and σ 2

1 11T 
 �PP + E, 6.

then (�PP + TPP + E)† ≈ T†
PP = n−2

p σ−2
1 11T . Simple arithmetic then shows that the projection

is the same as in the anomaly model: μF |P = μF + α̃1 and �F |P = �FF , where α̃ was defined
in Equation 3. The assertions in Equation 6 state that your concern for the mislocation of the
simulator’s climate dominates all other uncertainties. A climate modeler who does not believe
Equation 6 would regard the anomaly-corrected projection Equation 4 as overfitted. This modeler
would attribute part of the systematic difference between zobs and μP (θ∗) to internal variability
and so adjust the location of the simulator climate by less and decrease the projection uncertainty
by less.

Compared with the anomaly model, the best-parameter model allows much more flexibility
for the discrepancy, including that it is a stochastic process. For example, α∗

t = ρα∗
t−1 + ηt , with

α∗
0 ∼ 〈

0, σ 2
1

〉
and η a sequence of uncorrelated innovations with ηt ∼ 〈0, (1 − ρ2)σ 2

1 〉, for which the
anomaly model is the special case of ρ = 1. This stochastic process for α∗

t allows the anomaly to be
both uncertain and time varying, with the value ρ controlling the temporal correlation length. The
main difficulty for climate modelers is that it seems more acceptable to specify ρ = 1 rather than
choose a value for ρ that is less than one. Likewise, specifying σ2 = 0 after Equation 5 seems more
acceptable than choosing a value greater than zero.15 Although many more detailed judgments
can be represented in T, if the starting point is the anomaly model, then ρ < 1 and σ2 > 0 are
very simple extensions.

Sexton et al. (2012) is the one study in climate modeling that has explicitly included a full dis-
crepancy variance. The authors use an approach based on an ensemble of simulators from different
modeling groups, generating one realization of the discrepancy per simulator and estimating T
from the result. The few simulators in their ensemble would produce a severely rank-deficient
value for T, but Sexton et al. perform the entire inference in the much lower-dimensional feature
space (see Section 2.1). Although we are hesitant to endorse this particular approach, our view
is that any approach that helps climate modelers propose a T that adjusts both the location and
the dispersion of the simulator’s climate is welcome, provided that the results are not inconsistent
with the modelers’ judgments.

3.3. Uncertainty About the Best Parameter

The projections in Sections 3.1 and 3.2 were made for a specific parameter value, the preferred
value θ̃, thought of as a plug-in point estimate for θ∗. That θ̃ is not θ∗, and that θ∗ remains
uncertain, is a concern in climate modeling, and several experiments have assessed the sensitivity
of simulator output to parameter perturbations (reviewed by Murphy et al. 2011). So far, though,
we have seen no attempt to quantify the effect of parameter uncertainty on climate projections for
the current generation of climate simulators.

Formally, this quantification is straightforward: K(θ) denotes the expectation and variance
conditional on θ∗ = θ, and so integrating out θ∗ gives

K∗ = 〈
E[μ(θ∗)], E[�(θ∗)] + Var[μ(θ∗)]

〉
. 7.

15Boundary values such as ρ = 1 and σ2 = 0 give the appearance of objectivity but are of course just as subjective as any other
values and less defensible than many. Box (1980, p. 384) commented on “the curious idea that an outright assumption does
not count as a prior belief.”

www.annualreviews.org • Climate Simulators and Projections 115



ST01CH06-Rougier ARI 29 November 2013 14:8

Finite approximations can replace the expectations and variance. In the simplest case, these ap-
proximations would be from an ensemble of runs sampled from the prior distribution for θ∗

(Rougier 2007), but more sophisticated approaches are possible using emulators (Craig et al.
2001, Rougier & Sexton 2007, Rougier et al. 2009b). The expectation in K∗ will not be equal
to μ(θ̃), even in the case where θ̃ is the prior expectation of θ∗, because μ is a nonlin-
ear function, perhaps extremely so in some parts of the parameter space (McWilliams 2007).
And �(θ̃) will typically understate the variance in K∗ because of its missing the Var[μ(θ∗)]
term.

However, exploring the effect of uncertainty in θ∗ comes with a computational price because
today’s climate simulators are approximately as large as computing resources will allow, and there
are no spare CPU cycles for replication. So running different candidate values for θ∗ is possible
only by reducing the simulator’s resolution.16 Halving the resolution of today’s simulators would
allow approximately ten low-resolution simulator runs instead of one high-resolution simulator
run, putting aside concerns about spinning up.

In their choices, climate modelers currently reveal a strong preference for one high-resolution
run, rather than, e.g., ten low-resolution runs.17 This reluctance to use low-resolution runs
for assessing projection uncertainty has implications for the statistical model. The replace-
ment of θ∗ by the plug-in point estimate θ̃ could be compensated by increasing the vari-
ance of the discrepancy in the best-parameter model, i.e., letting T2 in Equation 5 repre-
sent Var[μ(θ∗)]. But this compensation would require an explicit departure from the anomaly
model, for which T2 ≈ 0, and so climate modelers find themselves at a statistical impasse.
As we perceive it, the choice to do one high-resolution run instead of a set of low-resolution
runs is incompatible with the use of the anomaly model to link the climate simulator and
actual climate, unless one is prepared to defend the judgment that Var[μ(θ∗)] ≈ 0, i.e.,
that perturbing the parameters has a negligible effect on the expectation of the simulator’s
climate.

We also believe that the reluctance to perform low-resolution runs is misplaced. Crudely,
today’s low-resolution simulator ϕlow is the previous IPCC report’s state-of-the-art simulator. At
the time of the previous report, perturbations of ϕlow were thought to be informative about your
climate. Today, perturbations of ϕhigh are thought to be informative about your climate. Accepting
the premise—which is not disputed—that climate simulators are currently much more like one
another than any one climate simulator is like your climate, you must accept that perturbations
in ϕlow are informative about perturbations in ϕhigh. Goldstein & Rougier (2009) discuss statistical
models for sequences of simulators, and Rougier et al. (2013) discuss statistical models for a
collection of climate simulators of roughly equal fidelity.

We hope that by the time of the sixth IPCC report, climate modelers will be exploring the
limitations of the tuning process and quantifying the effect of parametric uncertainty. Ideally, this
exploration would take the form of carefully designed experiments combining runs of low- and
high-resolution simulators, which we believe represents the most efficient way to exploit a fixed
budget of CPU cycles (Cumming & Goldstein 2009).

16Or by other approaches to speeding up the simulator, as discussed in Section 2.3, but here we focus on resolution.
17We will not speculate on why this is so. But as (statistical) modelers ourselves, we are familiar with the vexed issue of
realism. After a successful upgrade, today’s climate simulator looks appreciably more realistic than before. For example, Gent
et al. (2011, section 5d) document the improvement of CCSM4 over CCSM3 in representing ENSO. ENSO is an important
feature of the earth system and a milestone for climate simulation, and it must be painful for climate modelers who have finally
achieved this milestone to then reduce resolution and lose it again. Salt (2008) provides an interesting reflection on modeling
culture.
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4. MODEL CRITICISM

4.1. Computing Residuals

Model criticism, also termed “model validation” by engineers, attempts to evaluate whether the
statistical climate model is adequate for its purpose. There is a lot of informal model criticism
in current climate modeling, but, at first glance, very little formal statistical model criticism.
Informal model criticism tends to proceed by comparing zobs with the anomaly-corrected simulator
output μP (θ̃) + α̃1 and seeing whether the differences are large relative to the standard deviations
in �PP (θ̃) + E (see the statement in Randall et al. 2007, section 8.1.2.3). Interestingly, under
the anomaly model, this approach is precisely the posterior predictive checking (PPC) approach
originally proposed by Rubin (1984) and advocated by Gelman et al. (2003, chapter 6).

In the PPC approach, one notionally replicates the observations, in our case giving rise to the
second-order Directed Acyclic Graph

φ(P : θ∗) −→ yP−→zobs

↘
zrep,

where zrep are the notionally replicated observations. Then zobs is evaluated with respect to the
expectation and variance of zrep|zobs. Under the anomaly model, now thought of as a special case
of the best-parameter model as discussed in Section 3.2,

yP |θ∗, zobs ∼ 〈
μP (θ∗) + α̃1, �PP (θ∗)

〉
,

and the result then follows by taking zrep = yP ⊕ erep, where erep is uncorrelated with e but has
the same expectation and variance, and by plugging in θ̃ for θ∗.

Gelman et al. (2003) advocate using graphical summaries of zobs in the distribution of zrep|zobs;
in climate, these might be plots of rescaled prediction errors,

rt := zobs
t − (μt(θ̃) + α̃)√

�tt(θ̃) + Ett

t ∈ P, 8.

which can also be very effective if zobs is a spatial map. These residuals are not standardized to have
variance one when the model is adequate because of the double counting of zobs, which is used
to estimate α̃. The adjustment is straightforward. If H := I − (np )−111T (the centering matrix;
Mardia et al. 1979, chapter 1), then

zobs − (μP (θ̃) + α̃1) = H(zobs − μP (θ̃)),

and so, letting V := �PP (θ̃)+E, the denominator of the residuals in Equation 8 should be not
√

V tt

but
√

(HVH)tt . Slight modifications to H would be required for different anomaly conventions (see
Footnote 12). Multivariate information including covariances can be harder to visualize. Bastos
& O’Hagan (2009) give a simple approach based on the pivoted Cholesky decomposition of the
predictive variance.

4.2. Diagnostic Warnings

How should the climate modeler respond to a subset of diagnostics that are large in absolute size?18

Suppose, for example, that many of the standardized precipitation residuals are larger than three

18We can also imagine situations in which some linear combinations of the residuals are surprisingly small because the climate
model has failed to respect physical constraints. However, at the moment, climate modelers are mainly concerned with
residuals that are too large.
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in absolute size in a region such as western Europe, where precipitation changes are an important
feature of climate change impact. Several options exist:

1. Acknowledge that the simulator does not yet “do” precipitation and request a more powerful
computer, hoping that higher resolution will reduce the residuals;

2. Acknowledge that the simulator has been badly tuned and restart the tuning process, hoping
that a better choice for θ̃ will reduce the residuals;

3. Acknowledge that the anomaly model is a rather simplistic representation of judgments
about the simulator and your climate, hoping that a better specification for the discrepancy
variance T will reduce the residuals.19

In all three options, climate modelers should decline to make projections for precipitation, given
the failure of the model. Instead, they should wait for a new computer, or for the simulator to be
retuned, or while they refine their judgments about T.

We would strongly recommend exploring option 3 first. Once T is explicitly specified, the
climate modeler can compute prior predictive residuals

r ′
t := zobs

t − μt(θ̃)√
�tt(θ̃) + Ttt + Ett

t ∈ P 9.

(Box 1980). These are standardized to have expectation zero and variance one when the model is
adequate.

The idea that T might be adjusted retrospectively to improve the residuals r′ needs to be clearly
motivated. First, at a pragmatic level, the climate modeler might have decided to use the anomaly
model if possible, despite it not being a defensible representation of the modeler’s judgments.
Thus, large residuals under the anomaly model indicate that T is an area of the inference in which
the modeler must make an additional effort.

Second, the modeler’s adjustment should be to the whole of T, not just to the submatrix TPP .
The modeler might, for example, reflect on whether ρ = 1 and σ2 = 0 were really appropriate
choices (see Section 3.2). Setting ρ < 1 and/or σ2 > 0 will increase both the historical uncertainty
about z and the projection uncertainty about YF . It is self-evident that a failure of the simulator to
match historical observations increases uncertainty about climate projections. Adjusting the whole
of T to improve the residuals in P is a simple implementation that has the effect of increasing
prediction uncertainty to reflect a poor fit to observations.

Third, from its position in Equation 9, T can clearly take on some of the burden of specifying
�PP (θ̃) and E. Both of these terms are challenging. �PP (θ̃) is expressed for a specified forcing, yet
20th century forcing is not well known (Forster et al. 2007). So some of the increase in T might
reflect the modeler’s assessment of uncertainty in the forcing. For E, Guttorp (2014) describes
some of the issues with climate observations. Statisticians will appreciate that common uncon-
trolled sources of variation in the collection and processing of instrumental readings introduce
nonzero off-diagonal elements into the observation error variance, E; no attempt has been made,
so far, to tackle this challenge. So, again, some of the covariances in T might reflect common
sources of variation in the observations.

Finally, conceptual difficulties exist in the best-parameter model, particularly in specifying
judgments that are coherent for a sequence of simulators. Goldstein & Rougier (2009) introduce
a more general approach, termed reified modeling. Thus, although modifying T might be the

19A more sophisticated variant of this option is to use statistical downscaling to adjust the simulator climate (see Maraun et al.
2010).
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incremental response to poor residuals, the reified modeling approach might turn out to be a
better representation of a climate modeler’s actual judgments.

5. SUMMARY AND PROSPECTS

Two issues should engage statisticians working in climate research. First, given where we are, what
is the pragmatic statistical analysis that will best complement/enhance current climate practice?
Second, given an ideal position, what is the analysis that we would like to carry out to best inform
us about future weather?

This review is largely concerned with aspects of the first issue. We briefly summarize the main
sources of uncertainty that we have identified for a given climate projection:

1. Input uncertainty, which is not knowing the historical and future boundary conditions;
2. Parametric and structural uncertainty, which arise from limitations in the climate simulator

(and subsume other uncertainties such as the effect of code errors and numerical noise);
3. Observational error, including common components that induce covariances in the obser-

vation error variance;
4. Code uncertainty, which is being unable to run the simulator at every desired parameter

setting.

These sources of uncertainty are all familiar to statisticians but not routinely addressed in climate
projections. We hope that our review has identified some simple extensions of current practice
and also the opportunity for more detailed treatment, where judgments allow.

We now turn to the second issue. Changes in weather over the present century have the
capacity to threaten literally hundreds of millions of people. To note just one peril, Nicholls (2011)
discusses the effect of sea-level rise: Currently, more than 200 million people are vulnerable to
flooding during extreme storms, and the probability of a catastrophe will increase as sea levels
continue to rise through the century. Among the huge uncertainties affecting the risk of flooding
are the behavior of the Greenland and West Antarctic ice sheets, the intensification of tropical
and extratropical storms, and changes to surge propagation (ibid., pp. 147–148). Our society’s
response to this peril and others like it might come to be seen as one of the defining features of
political and social activity for the current century.

Addressing the original four uncertainties is clearly already a large challenge for climate model-
ers. But when we consider the impact of the weather, we have to allow for additional uncertainties,
principally:

5. Downscaling uncertainty, which maps from the large grid cell of global climate simulators
to the small grid cell that is necessary to evaluate losses, taking account of local topography
and bathymetry;

6. Loss uncertainty, which is valuing the harm and damage caused by climate-related hazards;
7. Decision uncertainty, which is the uncertain consequence of an intervention, which in turn

depends on social and economic factors.

All of these items are single-simulator concerns, so we must add the following:

8. Multisimulator uncertainty, accounting for the sequence of simulators within each research
group and the different simulators across research groups.

Now a full uncertainty assessment for climate policy appears doubly daunting. However, that
is the wrong way to look at the problem. The really daunting task is to make and successfully
implement a climate policy without doing a careful uncertainty analysis.

Although these sources of uncertainty are challenging to assess, they are no more challenging
than other parts of climate modeling (e.g., doing the basic science, formulating mathematical
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models, constructing simulators that run efficiently on supercomputers, and designing satellite
missions to collect observations). The difference is that the climate modeling challenges are ad-
dressed by well-established communities. If climate policy is a genuine concern, then scientifically
leading countries such as the United Kingdom need to develop a similar community of climate
statisticians, working alongside the other communities and funded at a sufficient level, with the
same access to computing facilities.

In this case, we would hope to see rapid development along the lines outlined in this review.
This development would include the replacement of tuning with history matching, the incorpo-
ration of parametric uncertainty into projections, and the use of FASs in experimental design and
emulation. In a few years, we would hope to see a gradual acceptance among climate modelers
that the distribution of weather is subjective, and that current approaches based on suppressing
that subjectivity using boundary choices for statistical parameters, as in the anomaly model, are
indefensible. We will need creative approaches for specifying the discrepancy variance matrix.
Accordingly, we hope for the development of more powerful statistical modeling approaches for
linking multiple simulators to put climate policy at the heart of the inference (our own suggestion
is reified modeling; see Goldstein & Rougier 2009).

Within the decade, we would look for the development of new statistical techniques that
modularize inference for future weather impacts in the same way that climate modeling itself is
modularized. We would expect these techniques to be based on dynamical graphical models, for
which the main challenge is the very high level of interconnectivity among the vertices. These
developments in statistical methodology would be widely applicable, and useful for any complex
systems in which uncertainty about real-world consequences is informed by families of computer
simulators.

Finally, we address the political dimension of the issues that we have discussed. If we knew
precisely what the future had in store, then considering what perils we should protect against,
and to what degree, would be relatively easy. However, our world is far too complex to offer
such certainty. A common line of argument is that the element of subjectivity involved in climate
projections justifies taking a wait-and-see attitude toward actions for climate change mitigation and
adaptation. This argument has a potentially paralyzing effect on informed discussion over climate
policy, and scientists, understandably concerned that such arguments will be used to discount
the utility of their assessment, may be tempted to downplay the uncertainty associated with their
projections.

This temptation is doubly unfortunate. First, downplaying or objectifying uncertainty makes
much valuable and informative work in climate science an easy target for groups with a vested
interest in preserving the status quo (see, e.g., Oreskes & Conway 2010). Second, this suppression
of uncertainty masks much of the case for taking action now because climate projections are by no
means worst-case scenarios. Rather, they are located near the center of a range of possible future
climates, all of which should be considered to develop appropriate climate policies. Such policies
will, inevitably, be constructed in a context of uncertainty, and this uncertainty can be assessed
only in terms of expert judgments, based on a synthesis of all the available evidence.

That some disagreement exists among scientists studying climate is natural and inevitable.
However, as mentioned in the Introduction, the broad lines of the argument for human-induced
climate change are clear (and we should not forget that this peril is just one of many we face; see
Rockström et al. 2009). Rational choice of action in complex problems requires careful consid-
eration of both uncertainties and consequences. Analysis of the most careful and detailed climate
projections that are possible within current computational constraints consistently suggests the
potential for human activity to lead to disastrous real-world consequences. A plurality of expert
judgments about probabilities and consequences does not diminish the case for acting now.
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