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Abstract

Markov chain Monte Carlo methods have revolutionized mathematical com-
putation and enabled statistical inference within many previously intractable
models. In this context, Hamiltonian dynamics have been proposed as an effi-
cient way of building chains that can explore probability densities efficiently.
The method emerges from physics and geometry, and these links have been
extensively studied over the past thirty years. The aim of this review is to
provide a comprehensive introduction to the geometric tools used in Hamil-
tonian Monte Carlo at a level accessible to statisticians, machine learners, and
other users of the methodology with only a basic understanding of Monte
Carlo methods. This will be complemented with some discussion of the
most recent advances in the field, which we believe will become increasingly
relevant to scientists.
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1. INTRODUCTION

1.1. Markov Chain Monte Carlo

One aim of Monte Carlo methods is to sample from a target distribution, that is, to generate
a set of independent and identically distributed (i.i.d.) samples x(i ) with respect to the density
π of this distribution. Sampling from such a distribution enables the estimation of the integral
Eπ [ f ] = ∫X f d� of a function f : X → R with respect to its corresponding probability measure
� by 1

m

∑m
i f

(
x(i )
)
. Formally, the target density is a nonnegative (almost everywhere) measurable

function π : X → R
+, where X ⊂ R

d is the sample space of a measurable space with Lebesgue
measure μ, corresponding to the probability measure �(A) = ∫A πdμ.

Often we only know π up to a multiplicative constant, that is, we are able to evaluate π̃

where π = π̃/Z for some Z ∈ R
+. For example, this is the case in Bayesian statistics, where the

normalization constant Z is the model evidence, which is itself a complicated integral not always
available in closed form. Even when we know the value of Z, sampling from π is challenging,
particularly in high dimensions where high-probability regions are usually concentrated on small
subsets of the sample space (MacKay 2003). There are only a few densities for which we can easily
generate samples.

The first Markov chain Monte Carlo (MCMC) algorithm appeared in physics (Metropolis et al.
1953) as a way of tackling these issues. The problem investigated was a large system of particles,
and the aim was to compute the expected value of physical quantities. The high dimension of
the system made it impossible to use numerical methods or standard Monte Carlo to compute
the integral. Instead, they proposed a method based on generating samples from an arbitrary
random walk and adding an accept/reject step to ensure these samples originate from the correct
distribution. Despite extensive use in statistical mechanics and spatial statistics, MCMC remained
unknown to the mainstream statistical literature during the following twenty years (Hastings 1970).
Gelfand & Smith (1990) made the connection to more classical problems and brought MCMC to a
wider public, thus marking the beginning of the MCMC revolution in statistics (Robert & Casella
2011).

The idea behind MCMC methods (Meyn & Tweedie 1993, Robert & Casella 2004) is to
generate approximately i.i.d. samples from the target π by constructing a Markov chain whose
stationary density is π and using samples from its path. Recall that a Markov chain is a sequence
of random variables (X 0, X1, . . .) such that the distribution of Xr depends only on Xr−1. A Markov
chain may be specified by an initial density h0(x) for X0 and a density T(x′ ← x) from which we
can sample. The density of Xr is then defined by hr (x′) = ∫

T(x′ ← x)hr−1(x)dx. The density
π is called a stationary density of the Markov chain if, whenever Xr ∼ π , then Xr+1 ∼ π , or in
other words, π (x′) = ∫ T(x′ ← x)π (x)dx. If the Markov chain is ergodic, it will converge to its
stationary distribution independently of its initial distribution. A common way to guarantee that
π is indeed the invariant density of the chain (which then asymptotically generates samples from
π ) is to demand that it satisfies the detailed balance condition π (x)T(x′ ← x) = π (x′)T(x ← x′).
Intuitively, this condition requires that the probabilities of moving from state x to x′ and from
x′ to x are equal. Detailed balance is sufficient but not necessary for invariance with respect to π

(Diaconis et al. 2000).
The Metropolis–Hastings algorithm constructs a Markov chain converging to the desired

target π by the means of a proposal kernel P , where for each x ∈ X , P (·, x) is a density on the
state space from which we can sample. Given the current state xr ,

1. Propose a new state y ∼ P (·, xr ).

2. Accept y with probability A(y |xr ) := min
{

1, π (y)P (xr ,y)
π (xr )P (y ,xr )

}
, else set xr+1 = xr .
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This induces a transition density T(y ← x) := P (y , x)A(y |xr ) + 1{y=xr }(1 − A(y |xr )), where
1{y=xr } : X → {0, 1} takes value 1 when y = xr and 0 otherwise. This quantity does not rely on
the normalization constant Z, which cancels out in the ratio.

1.2. Motivation for the Use of Geometry

In principle, there are only mild requirements on the proposal P to obtain an asymptotically
correct algorithm; however, the choice of P will be very significant for the performance of the
algorithm. Intuitively, the aim is to choose a proposal that will favor values with a high probability
of acceptance while also exploring the state space well (i.e., have small correlations with the current
state). A common choice is a symmetric density (e.g., Gaussian) centered on the current state of
the chain, leading to the random-walk Metropolis (RWM) algorithm. A more advanced algorithm
is the Metropolis-adjusted Langevin algorithm (MALA) (Rossky et al. 1978, Scalettar et al. 1986,
Roberts & Rosenthal 1998), which uses the path of a diffusion that is invariant to the target
distribution.

Concentration of measure is a well-known phenomenon in high dimensions (Ledoux 2001) and
is linked to concentration of volume (also commonly referred to as the curse of dimensionality).
An intuitive example, often used to describe this phenomenon, is that of a sphere Sd embedded in
the unit cube. Most of the volume of the cube lies outside the sphere, and this is increasingly the
case for higher d . Similarly, probability measures will tend to concentrate around their mean in
high dimensions (MacKay 2003, Betancourt 2017), making the use of RWM inefficient, since it
does not adapt to the target distribution.

To avoid issues with high curvature and concentration of measure, Duane et al. (1987) pro-
posed a method based on approximate simulation of a Hamiltonian dynamical system with po-
tential energy given by the log-target density. Informally, this has the advantage of directing the
Markov chain toward areas of high probability and hence providing more efficient proposals (see
Figure 1a). This method was originally named hybrid Monte Carlo, as it was a hybrid of molec-
ular dynamics (microcanonical) and momentum heat bath (Gibbs sampler). The method is now
also commonly known as Hamiltonian Monte Carlo (HMC) (Neal 2011).

HMC has been used throughout statistics but has also spanned a wide range of fields including
biology (Berne & Straub 1997, Hansmann & Okamoto 1999, Kramer et al. 2014), medicine
(Konukoglu et al. 2011, Schroeder et al. 2013), computer vision (Choo & Fleet 2001), chemistry
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Figure 1
(a) Comparison of random-walk Metropolis (red ) against hybrid Monte Carlo (blue). Thirty samples from a peaked Gaussian
distribution were plotted for each method. The use of geometry clearly benefits Hamiltonian Monte Carlo. (b) Motion of a particle
(red ) over our sample space X .
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(Ajay et al. 1998, Fredrickson et al. 2002, Fernández-Pendás et al. 2014), physics (Duane et al.
1987, Mehlig et al. 1992, Landau & Binder 2009, Sen & Biswas 2017), and engineering (Cheung
& Beck 2009, Bui-Thanh & Girolami 2014, Lan et al. 2016, Beskos et al. 2016). The extent of the
use of HMC is also illustrated by the long list of users of the Stan language (Carpenter et al. 2016;
see, e.g., http://mc-stan.org/citations for a full list of publications referencing this software).
The above is, of course, a far-from-exhaustive list, but it helps illustrate the relevance of HMC in
modern computational sciences.

1.3. Outline

The remainder of this article reviews the use of Hamiltonian dynamics in the context of MCMC.
Previous reviews of this methodology were provided by Neal (2011) and Betancourt (2017), who
focused mainly on the intuition and algorithmic aspects behind the basic version of HMC. Our
aim here is somewhat different and complementary: We focus on formalizing the geometrical and
physical foundations of the method (see Sections 2 and 3). This deeper theoretical understand-
ing has provided insight into the development of many extensions of HMC (Betancourt et al.
2016). These include Riemannian manifold Hamiltonian Monte Carlo (RMHMC) (Girolami
& Calderhead 2011), introduced in Section 4, and shadow Hamiltonian Monte Carlo (SHMC)
(Izaguirre & Hampton 2004), discussed in Section 5. We conclude this review with an outline of
the most recent research directions in Section 6, including stochastic gradient methods and HMC
in infinite-dimensional spaces.

2. GEOMETRY AND PHYSICS

In HMC, the sample space X is viewed as a (possibly high-dimensional) space called a manifold,
over which a motion is imposed. The reader should keep in mind the idea of a fluid particle
moving on the sample space (here, the manifold—see Figure 1b); the algorithm proposes new
states by following the trajectory of this particle for a fixed amount of time. By coupling the choice
of Hamiltonian dynamics to the target density, the new proposals will allow us to explore the
density more efficiently by reducing the correlation between samples, and hence make MCMC
more efficient. This article seeks to explain why this is the case.

In this section, we provide an accessible introduction to notions of geometry that are required
to define Hamiltonian mechanics. Our hope is to provide the bare minimum of geometry in
order to provide some insight into the behavior of the Markov chains obtained. The avid reader
is referred to Arnold (1989) and Frankel (2012) for a more thorough introduction to geometry
and physics, and to Amari (1987) and Murray & Rice (1993) for the interplay of geometry and
statistics. In particular, some of the concepts presented here also have a role in the study of
statistical estimation, shape analysis, probability distributions on manifolds, and point processes
(Kass & Vos 1997, Dryden & Mardia 1998, Chiu et al. 2013, Dryden & Kent 2015).

2.1. Manifolds and Differential Forms

Manifolds generalize the notions of smooth curves and surfaces to higher dimensions and are
at the core of modern mathematics and physics. Simple examples include planes, spheres, and
cylinders, but more abstract examples include parametric families of statistical models. Manifolds
arise by noticing that smooth geometrical shapes and physical systems are coordinate-independent
concepts, so their definitions should not rely on any particular coordinate system. Coordinate
patches (defined below) assign coordinates to subsets of the manifold and allow us to turn geometric
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Figure 2
The coordinate patch x attaches coordinates (x1, . . . , xd ) to points in the neighborhood V ⊆M.

questions into algebraic ones. In particular, coordinate patches allow us to transfer the calculus of
R

d to the manifold. It is rarely possible to define a single coordinate patch over the entire manifold,
except for the simplest manifolds.

A d-dimensional manifold is a set M such that every point q ∈ M has a neighborhood
V ⊆ M that can be described by d-coordinate functions (x1, . . . , xd ).1 This means that there
exists a bijection xV : V → xV (V ) ⊆ R

d , called a coordinate patch, which assigns the coordinates
xV (q ) = (

x1(q ), . . . , xd (q )
)

to q . The functions x j : V → R are called local coordinates, which
we view as being imprinted on the manifold itself (see Figure 2). Whenever two patches xV , xW

overlap, V
⋂

W 	= ∅, any point q in the overlap is assigned two coordinates xW (q ), xV (q ); in this
case, we require the patches to be compatible, i.e., the map xV ◦ x−1

W , which is just the map that
relates the coordinates, should be smooth (C∞).

For example, two possible patches for the (1-dimensional) semicircle x2 + y2 = 1, y > 0 in
a neighborhood of (0, 1) are xV ((x, y)) = x, and θV ((x, y)) = θ , where θ satisfies (cos θ , sin θ ) =
(x, y). The smoothness of xV ◦ θ−1

V = x(θ ) = cos θ and θV ◦ x−1
V = θ (x) = cos−1 x implies the

patches are compatible (see Figure 3a). The sphere S2 is a 2-(sub)manifold in R
3. In a neigh-

borhood of the north pole, points are specified by their x, y coordinates, since we can write

xV

xV °θV = x(θ )

∂θ

∂φ

U = c 1

U = c 3

Tq
vq

q

q

θV

θ
x

–1

a b c d

Figure 3
Manifolds and differential forms. (a) Patches xV , θV on the upper hemisphere assign different real numbers to points on the circle
M = S1. (b) Tangent vectors at q belong to the tangent space TqM. (c) On a sphere with coordinates (θ , ϕ), θ ∈ (0, 2π ), ϕ ∈ (0, π ), the
vector field ∂θ (red ) is tangent to the θ-coordinate lines (lines of constant ϕ). ∂ϕ (blue) is tangent to the ϕ-coordinate lines. (d ) The
1-form dq U when applied to vq tells us how much potential U is gained along the vector vq .

1Technically, for M to be a manifold, we further require that the topology generated by the differential structure consisting
of all compatible patches be Hausdorff and have a countable base; see Arnold (1989) for more details.
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Leibniz’s rule: given a
vector vq at some point
q ∈M, vq ( f h) =
f (q )vq (h)+ h(q )vq ( f )

z as the graph z = z(x, y) =
√

1− x2 − y2. These points may be written as (x, y , z(x, y)), and we
can define a patch x (x, y , z(x, y)) = (x, y). We could have also used the spherical coordinates (θ , ϕ)
on the upper half of S2.

A more interesting example is the statistical manifold of Gaussian distributions M =
{N ( · | μ, σ 2) : μ ∈ R, σ 2 ∈ R+}, which is a manifold endowed with global coordinates
xM

(N ( · | μ, σ 2)
) = (μ, σ 2).

A function f : M→ R on the manifold is said to be smooth at a point q ∈M if there exists
a coordinate patch xV around q such that fV := f ◦ x−1

V : xV (V )→ R is smooth. The map fV is
just the coordinate expression of f . Since the coordinate patches are compatible, this definition
of smoothness is independent of the choice of patches. The space of smooth functions on M is
denoted C∞(M).

Example 1. Smooth function on the circle: If f : S1 → R, locally around (0, 1), f ◦ x−1
V =

f (x) and f ◦ θ−1
V = f (θ ).

To define Hamiltonian dynamics, we now introduce the concept of velocity of the flow of a
particle on M (i.e., our sample space) defined by tangent vectors to the manifold. Recall that in
R

d , any vector v = (v1, . . . , vd ) defines a directional derivative that acts on functions f ∈ C∞(Rd ),
by v( f ) := ∇v f = v · ∇ f = ∑d

j=1 v j ∂j f , where ∂i := ∂

∂xi . We can thus think of the vector
v as a first-order differential operator v =∑d

j=1 v j ∂j : C∞(Rd )→ R (which is linear and satisfies
Leibniz’s rule). We now generalize this to manifolds: If f , h ∈ C∞(M), we define a tangent vector
vq : C∞(M)→ R at q ∈M to be a linear map satisfying Leibniz’s rule.

Defining a linear combination of tangent vectors by (auq + bvq ) f := auq ( f ) + bvq ( f ) turns
the set of tangent vectors at q ∈M into a vector space denoted TqM, called the tangent space at
q (see Figure 3b). Consider a local coordinate patch (V , φV ) around q . The coordinate functions
x j define tangent vectors ∂j |q at q by

∂j |q ( f ) := ∂ fV

∂x j

∣∣∣∣
x(q )

.

These tangent vectors form a basis of TqM; any tangent vector at a point q is of the form∑d
j=1 v j ∂j |q , where v j ∈ R. A vector field v is a smooth map that assigns, at each point q , a

tangent vector vq . Locally any vector field can be written as v = ∑d
j=1 v j (x)∂j |x , where ∂j is the

(local) vector field ∂j : q → ∂j |q . See Figure 3c for an example on the sphere.
The objects d f and dx are often introduced as being mysterious infinitesimal vectors/quantities

that give a real number when integrated. These objects are, in fact, special cases of differential
forms, which we now formally introduce; they play a central role in Hamiltonian mechanics.

A 1-form at a point q ∈ M is a linear functional on the tangent space, i.e., a linear map
αq : TqM → R. The simplest example is the differential of a function, dq f , which maps a
vector vq to the rate of change of f in direction vq : dq f (vq ) := vq ( f ). In a coordinate patch,
we can consider the differential of the coordinate function xi . Taking vq = ∂j |q , we see that
dq xi (∂j |q ) = ∂j |q (xi ) = δi

j , where δi
j is 1 if i = j and 0 otherwise.

Example 2. Example of a differential: Let (θ , z) be coordinates on a cylinder. Suppose
fV (θ , z) := z2 − θ , then d f = 2zdz− dθ . At q = (1, 3), dq f = 6dq z− dq θ . The rate of
change of f along vq = −2∂z|q is dq f (vq ) = −12.

Hence, (dq x j ) is the dual basis to (∂j |q ) and a basis of T∗q M, the vector space of 1-forms at
q . A 1-form α is a smooth map that assigns at each point q a 1-form αq . Locally (i.e., in a given
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Length of curves: the
inner product defines a
norm ||v||2 = g(v, v);
the length of a curve γ

is given by integrating
its tangent vector∫
γ
||γ̇ ||

coordinate patch), any differential 1-form may be written as α = ∑d
j=1 αj (x)dx j , where dx j is

the (local) differential 1-form dx j : q → dq x j . For example, the differential of the function f is
d f = ∂ fV

∂x1 dx1 + · · · + ∂ fV
∂xd dxd .

A physical example of a 1-form is the force F acting on a particle, which is given by the
differential of a potential energy function F = −dU . In HMC, the potential energy U is related
to the target unnormalized density by U := − log(π̃ ). Given a vector, the force measures the rate
at which potential energy is gained by moving in that direction (see Figure 3d ). Directions of
increasing U correspond to directions of decreasing probability.

Finally, to define the notions of volume, curvature, and of length of curves on a manifold, it
suffices to define the length of tangent vectors. A Riemannian metric2 g is a smooth assignment
of an inner product gq : TqM × TqM → R at each point q ∈ M. The pair (M, g) is called a
Riemannian manifold. Sub-manifolds of R

d have a natural Riemannian metric which arises by
simply restricting the standard inner product of R

d to the submanifold. In local coordinates, we
can define at each point q a symmetric matrix G such that Gij := gq (∂i |q , ∂j |q ). We then recover
the usual inner product space result gq (v, u) = vT G (x(q )) u, where u is the array (u1, . . . , ud ) of
coefficients of the vector u in the local coordinate basis u = u1∂1 + · · · + ud ∂d .

The tools developed above allow us to formalize Hamiltonian dynamics on manifolds, which
will be used to create efficient proposals for MCMC.

2.2. Hamiltonian Mechanics

Consider a particle moving on M from initial position q ∈ M. We call M the configuration
manifold (or configuration space). The particle could, for example, be a mass attached at the end
of a plane pendulum (so M = S1) or a fluid particle flowing along a river. The deterministic
motion followed by the particle is governed by the laws of physics. Let �t(q ) be its position at
time t, so �0(q ) = q , and the trajectory followed by the particle is given by the curve γ : t → �t(q ).
The curve γ generates a vector field γ̇ over the range of γ representing the velocity of the particle;
the tangent vector at the point γ (a) = r is defined, for any function f , by

γ̇r ( f ) := df (γ (t))
dt

∣∣∣∣
t=a
= ( f ◦ γ )′(a).

Since the laws of physics are the same at all times, �t ◦�s (q ) = �t+s (q ). We call � the flow and
γ̇ the velocity field (see Figure 4a).

The particle has a kinetic energy K that measures the energy carried by its speed and mass. If
no forces are acting, the particle’s kinetic energy (and speed) will be constant; otherwise, the force
F will increase/decrease the particle’s kinetic energy. Since energy is conserved, the particle must
be losing/gaining some other type of energy introduced by the force field, which we call potential
energy U (see Figure 4b for an example on the pendulum). It can be shown that F = −dU , so
the force is caused by variations in potential energy.

A Riemannian metric provides an identification between vector fields and differential 1-forms
by associating the vector field v to the 1-form α(·) := g(v, ·), and the inner product on vectors
g(u, v) = uT Gv induces an inner product on the associated 1-forms (if and only if det G 	= 0) by
g−1(p , α) := pT G−1α. In particular each velocity field γ̇ induced by a curve γ has an associated
momentum field defined by p := g(γ̇ , ·) which represents the “quantity of motion” in direction γ̇ .

2Riemannian geometry was introduced in statistics by Rao, who noted the Fisher-Rao metric defined a useful notion of
distance between populations.
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Trajectory
Velocity field

a b c

q

p

θ
θ

2π–2π

–π π

Figure 4
(a) The particle initially at q follows the trajectory γ = �(q ) (red ). Its velocity field γ̇ is in blue. (b) A mass (blue) attached to a pendulum
has M = S1. As the mass moves from θ = 0 to θ = π , its kinetic energy is transformed into potential energy. (c) Possible trajectories in
phase space N for the mass pendulum. The red/blue/orange trajectories represent respectively the cases when there is not
enough/exactly enough/more than enough energy to do a full turn.

Bundle: locally a
Cartesian product of
manifolds, but globally
may be twisted like a
Möbius strip

Symplectic 2-form:
the symplectic 2-form
ω turns dH into a
trajectory γ through
ω(γ̇ , ·) = dH ; the
properties of ω ensure
γ is compatible with
physics

Writing p = ∑d
j=1 pj (x)dx j makes it clear that to define p (i.e., to specify each 1-form pq ,

called momentum, defined by p at q ∈ M) we need to specify the 2d-tuple: (x(q ), p(q )) :=(
x1(q ), . . . , xd (q ), p1(q ), . . . , pd (q )

)
, i.e., the position x(q ) of pq and the momentum components

at p(q ).3

Example 3. Example of a momentum field: Suppose a particle in a plane has momentum
field p = ye xdx − xdy . Then z = (x, y , ye x ,−x). At q = (1, 3) its momentum is pq =
3edq x − dq y and its phase is (1, 3, 3e ,−1).

Thus, the set of momenta (or equivalently the set of 1-forms) T∗M = ⋃
q T∗q M is a 2d-

dimensional manifold, called the cotangent bundle, on which z := (x, p) = (x1, . . . , xd , p1, . . . , pd )
are coordinates.

At any given time t, the 2d-tuple z(γ (t)), consisting of the position x (γ (t)) of the particle and
its momentum p (γ (t)), is called the phase and fully specifies the physical system, i.e., it encodes
all the information about the system and determines its future dynamics. The space of all possible
phases is called phase space or the cotangent bundle T∗M (see Figure 4c for the phase space of
the pendulum example).

Forces acting on the system may be accounted by defining how the energy transfers between
potential and kinetic (since F = −dU ). Hence, if we define the Hamiltonian function H to be
the total energy H = K + U , we expect its differential dH to fully determine the dynamics of
the system (from now on, K is viewed as a function of the momentum rather than the velocity);
see Figure 5a. We now construct Hamiltonian mechanics, in which the trajectory of the particle
on M is described by a trajectory in phase space N := T∗M defining how the phase of the
system evolves. From here on, � is a flow on N and γ a curve t → �t(z0) on N for some initial
phase z0 [locally, γ (t) is now described by coordinates z(t) := (x(γ (t)), p(γ (t))) and x (γ (t)) are
the coordinates of the physical trajectory in M]. To do so we will need a map that turns dH into
a trajectory γ that is consistent with the laws of physics. This map is called a symplectic 2-form,
and we now describe it.

3In general, p := ∂L/∂v where L(x, v) is the Lagrangian (see the Supplemental Appendix). If L = K − U with K =
g(v, v)/2 = g(γ̇ , γ̇ )/2 and if g is constant then p = g(γ̇ , ·); but this is not true in general.
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Figure 5
(a) Surface plot of a Hamiltonian with contour lines. (b) Time-reversibility of Hamiltonian mechanics. (c) Hamiltonian vector field for
the system shown in panel a.

Bilinear map: a map
that is linear in each of
its arguments

We need at each phase z ∈ N an invertible linear map (since Newton’s equations are linear)
S−1

z : T∗zN → TzN to turn the differential form dH into the vector field γ̇ generated by the
trajectory in phase space γ (this vector field yields the velocity field when projected to the con-
figuration space M). Its inverse, Sz : TzN → T∗zN , maps linearly vectors into 1-forms and fully
determines Hamiltonian dynamics. Any such linear map Sz may be identified with a bilinear map
ωz : TzN × TzN → R where ωz(u, v) = (Sz(u)) (v). Letting ω be the smooth map z → ωz, note
that since S(γ̇ ) = dH , then ω(γ̇ , ·) = dH (·), i.e., ω(γ̇ , ·) maps a vector field to the rate of change
of H along it. A differential 2-form β is a smooth map that assigns to each z ∈ N a bilinear,
antisymmetric map βz : TzN × TzN → R. We now show that ω is a symplectic 2-form (also
called a symplectic structure), i.e., it satisfies the following:

1. Nondegenerate differential 2-form: By the law of conservation of energy, the total energy
of the system must be constant, d

dt (H ◦ γ (t)) = 0, or equivalently, dH (γ̇ ) = 0. Thus, for
all flows, we have ω(γ̇ , γ̇ ) = 0, which implies that ω is antisymmetric and thus a differential
2-form. Moreover ω is nondegenerate, which means the velocity field γ̇ exists globally.

2. Closed: The laws of physics must be conserved in time, which means that ω is conserved
along the flow and is ensured by demanding that its differential vanishes, i.e., dω = 0 (the
differential of a 2-form is formally defined in the Supplemental Appendix). This gives rise
to conservation of volume: If particles are initially occupying a region U in phase space
with volume vol(U), this volume will be preserved as they follow the flow, i.e., vol(�t(U )) =
vol(U ).

When M = R
d , the phase space N = R

2d has a natural symplectic structure, which in (global)
coordinates (x1, . . . , xd , p1, . . . , pd ) is given by

ω := dx1 ∧ dp1 + · · · + dxd ∧ dpd .

Here, dzxi ∧ dz pj : TzN × TzN → R is the 2-form constructed using the wedge product that,
given a pair of vectors, gives the signed area of the parallelogram spanned by their projection to
the xi –pj plane (see the Supplemental Appendix).

Example 4. Example of wedge product: In R
3, dy ∧ dz applied to (3, 2,−5) and (1, 7, 4)

gives the signed area of parallelogram spanned by (2,−5) and (7, 4).
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The condition ω(γ̇ , ·) = dH (·) implies that the coordinate expression of γ , (x1(t), . . . ,
xd (t), p1(t), . . . , pd (t)), satisfies Hamilton’s equations,

dxi

dt
= ∂H

∂pi
,

dpi

dt
= −∂H

∂xi
, 1.

i.e., the velocity field is orthogonal to the gradient of H. These can be rewritten as a single equation,

dz
dt
= J

∂H
∂z

,

where J is the canonical symplectic matrix given by

J =
(

0 Id×d

−Id×d 0

)
.

Finally, notice Hamiltonian mechanics is time reversible, i.e., Equation 1 is preserved under
the transformation t → −t, x → x, p → − p. This means the following: Consider a system,
say a pendulum, with initial state (x1, p1). After a time t it will have a state (x2, p2) = �t(x1, p1).
If we reverse its momentum, (x2, p2) → (x2,− p2), then after another time t it will be at its
initial position with opposite momentum, i.e., �t (x2,− p2) = (x1,− p1) (see Figure 5b). Time-
reversibility is necessary for detailed balance to hold in MCMC.

We have now defined the basic notions necessary to define Hamiltonian dynamics. More
precisely, we have explained how the motion of a fluid particle on the manifold M is described by
a curve in phase space N = T∗M. For this curve to represent a physical path, we have shown it
must be related to the differential of the Hamiltonian dH through a symplectic form ω.

3. HAMILTONIAN MONTE CARLO

3.1. Hamiltonian Dynamics

In practice, Hamilton’s equations (see the sidebar Hamiltonian Mechanics) cannot be solved
exactly, and we must employ numerical methods that approximate the flow in Equation 1
(Leimkuhler & Reich 2004, Hairer et al. 2006). Let z(t0) := (x(t0), p(t0)) be the initial phase
of a Hamiltonian system H.

If we fix a time-step τ , we can obtain a sequence of points along the trajectory that describe
how the phase evolves:

z(t0) → z(t1) := �τ (z(t0)) → z(t2) := �τ (z(t1)) = �2
τ (z(t0)) → · · ·

A numerical one-step method is a map �τ that approximates this trajectory

z(t0) → z1 := �τ (z(t0)) → z2 := �τ (z1) = �2
τ (z(t0)) → . . .

HAMILTONIAN MECHANICS

William Rowan Hamilton developed Hamiltonian mechanics as a generalization of classical dynamics by applying
ideas from optics and by reformulating Lagrangian mechanics. A more general introduction to Hamiltonian and
Lagrangian dynamics presented in the Supplemental Appendix may be of interest to readers interested in gaining
a deeper understanding of some of the more advanced Hamiltonian Monte Carlo methods.
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Symplectic map:
symplectic map
S : M→M is one for
which the induced map
on 2-forms preserves
ω, S∗ : ω → ω

where zk = (xk, pk) approximates z(tk). The numerical method will introduce an error at each
step, defined as the difference between the application of �τ and �τ to a phase z.

Such errors will accumulate over time, and the approximated trajectory will gradually deviate
from the exact one. To partially remedy this, we make use of geometric integrators, which are
numerical methods that exactly preserve some fundamental properties of the dynamics they sim-
ulate, and hence ensure that the approximated trajectory retains some key features. In particular,
symplectic integrators are geometric integrators that preserve the symplectic structure ω and thus
the volume in phase space.

Any smooth map S : R
2d → R

2d has a Jacobian matrix Sz at each phase z = (x, p), which is
a linear map TzR

2d → TzR
2d . We say S is a symplectic map if ST

z J−1 Sz = J−1, where J is the
canonical symplectic matrix. The method �τ is called a symplectic integrator if it is a symplectic
map. Writing zk+1 = �τ (zk), this is equivalent to requiring that it preserves the symplectic structure
for each step k:

dxk+1 ∧ d pk+1 = dxk ∧ d pk.

A useful technique to build symplectic integrators uses Hamiltonian splitting.
Suppose our Hamiltonian is of the form H = H1+ · · · +H�, where Hamilton’s equations may

be solved explicitly for each Hamiltonian Hi . If we denote by �Hk
τ the exact flow of Hk, we can

define a numerical method for H by

�τ := �H1
τ ◦ · · · ◦ �H�

τ .

The composition of these exact flows may not give the exact flow of H. However, since each flow
�Hk

τ is symplectic, and the composition of symplectic maps is symplectic, �τ will be a symplectic
integrator. The most popular symplectic integrator is the Störmer–Verlet or leapfrog integrator
(see Figure 6a), which is derived through the splitting (see Figure 6b) H1 = 1

2 U (x), H2 = K ( p)
and H3 = 1

2 U (x), which gives

pk+ 1
2 = pk − τ

2
∂U
∂x

(
xk) ,

xk+1 = xk + τ
∂K
∂p

(
pk+ 1

2

)
, and

pk+1 = pk+ 1
2 − τ

2
∂U
∂x

(
xk+1) .

b ca
p

z(t1)
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Figure 6
(a) Exact evolution of the phase z(t) ( gray curve) and numerical one-step method (red dashed curve). (b–c) Hamiltonian vector fields for K
and U of the system in Figure 5a, respectively, both of which can be integrated exactly.
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It is easy to verify that the leapfrog integrator is reversible, i.e., we can invert the leapfrog trajectory
by simply negating the momentum, applying the leapfrog algorithm, and negating the momentum
again. It is also symmetric: �−1

−τ = �τ . Reversibility and conservation of volume of the integrator
are required to prove detailed balance when we apply it in HMC. However, the energy is only
approximately conserved along a leapfrog trajectory.

The leapfrog integrator is an integrator of order 2, which means that its global error is of order
τ 3, where τ is the step size. In situations in which very high accuracy is needed, it may be necessary
to turn to higher-order integrators to obtain better approximations of the exact trajectory over a
short time interval (Campostrini & Rossi 1990, Yoshida 1990, Leimkuhler & Reich 2004). The
improved accuracy must, however, be balanced with the increased computational cost. Other
integrators have also been proposed; see, for example, Blanes et al. (2014).

3.2. The Hamiltonian Monte Carlo Algorithm

Suppose we want to sample from a probability density πx : X → R, which we only know up
to multiplicative constant: πx = π̃x/Z. The differential of U (x) := − log πx(x), if it is known,
informs us what directions lead to regions of higher probability. It can also be computed without
knowledge of Z. In HMC, we view U (x) as being a potential energy (Duane et al. 1987), which
enables us to rewrite the target density as

πx(x) = 1
Z

exp (−U (x)) .

We then interpret regions of higher potential energy as regions of lower probability. The state
space X plays the role of the configuration manifold M on which the dynamics are defined.
We define Hamiltonian dynamics on X by introducing a kinetic energy K ( p) = 1

2 g−1( p, p) =
1
2 pT G−1 p, and thus a Hamiltonian H(x, p) = K + U . We view the d × d matrix G as a
covariance matrix and assume that the momentum variables have the multivariate Gaussian
density

π p( p) = N ( p; 0, G) = ((2π )d |G|)− 1
2 exp (−K ( p)) ,

where |G| denotes the determinant of G. The choice of the matrix G is critical for the performance
of the algorithm, yet there is no general principle guiding its tuning, so it is often set to be the
identity matrix. In Section 4, we will see how the local structure of the target density may be used
to choose a position-dependent G. Define a joint density by

π (x, p) = Z−1 ((2π )d | G |)− 1
2 exp (−H(x, p)) = πx(x)π p( p).

The HMC algorithm (see the sidebar Hamiltonian Monte Carlo Steps) generates samples from
this joint density. Since the total energy H is preserved along the flow, the joint probability π (x, p)
is constant along Hamiltonian trajectories. Here the Hamiltonian splitting H = K +U is clearly

HAMILTONIAN MONTE CARLO STEPS

Step 1 of the algorithm is a momentum heat bath (Gibbs sampler). Step 2 is a molecular dynamics step (2a) followed
by a Markov chain Monte Carlo (MC) rejection step (2b). This is sometimes called the Metropolis–Hastings step,
although neither of them had much to do with it!
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applicable and we can hence use the leapfrog integrator. In practice, the simulation will not be
exact since the leapfrog integrator is only approximately energy-preserving, and a Metropolis step
will be necessary to ensure that we sample from the correct joint density. Given a current phase
(xk, pk) ∈ T∗X , the algorithm at iteration k is:

1. Draw a momentum variable pk′ using π p( p) i.e., pk′ ∼ N (0, G).
2a. Simulate dynamics with initial phase (xk, pk′ ) using the leapfrog integrator with fixed step-

size τ for L leapfrog steps, and flip (i.e., negate) the momentum of the resulting phase. This
yields a proposal phase (x∗, p∗).

2b. Accept the phase (x∗, p∗) using a Metropolis step with probability

min[1, exp(−H(x∗, p∗)+H(xk, pk′ ))],

else keep the current phase: (xk+1, pk+1) = (xk, pk′ ).

This algorithm simulates a Markov chain which, if ergodic, converges to the unique stationary
density π (x, p). The Markov chain can be shown to be geometrically ergodic under regularity
assumptions (Livingstone et al. 2015). As πx(x) is a marginal density of our target density π (x, p),
we can simply discard the auxiliary momentum samples to obtain samples of πx(x).

Two parameters need to be tuned in order to apply HMC: the time-step τ and the trajectory
length L. This tuning is often performed by running a few preliminary runs. On the one hand, small
time-steps will waste computational resources and slow down the exploration of the sample space,
while large values of τ can lead to bad approximations of the trajectory that dramatically reduce
the acceptance probability. On the other hand, L needs to be large enough to permit efficient
explorations that avoid random walks and generate distant proposals; however, long trajectories
may contain points in which the momentum sign flips, which can lead to poor exploration (think
of a pendulum) (Neal 2011). Several approaches to tuning have been proposed, the most popular
of which appears in Beskos et al. (2013), which proposes to tune parameters to maximize the
computational efficiency as d → ∞. Other approaches include the no U-turn sampler (NUTS)
algorithm (Hoffman & Gelman 2014), currently in use in the Stan programming software, and the
use of Bayesian optimization (Wang et al. 2013). Finally, the shadow HMC algorithm, introduced
in Section 5, has also been used to this effect (Kennedy et al. 2012).

3.3. Relations to Stochastic Differential Equations

More information about the dynamics can be preserved (thus making the trajectory more physical)
if the full momentum resampling (the first step of HMC) is replaced by a partial momentum
replacement (Horowitz 1991, Campos & Sanz-Serna 2015). This enables us to sample more often,
as the trajectory length may be reduced to a single time-step without performing a random walk.
Let ξ ∼ N (0, G) be Gaussian noise. The generalized HMC algorithm is given by the following
steps at each iteration k:

1. Rotate ( pk, ξ k) by an angle φ.
2a. Perform step 2 of the HMC algorithm to reach phase (x∗, p∗).
2b. Flip the momentum, F : p∗ → − p∗.
2c. Apply a Metropolis accept/reject step.
3. Flip the momentum, F : pk+1 → − pk+1.

When φ = π/2, we recover HMC. The first momentum flip is required to satisfy detailed
balance, but it means that momentum is reversed in case of rejection, which slows down the
exploration if the rejection probability is nonnegligible.
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Christoffel symbols:
give information about
the curvature of the
manifold and are
defined by
�k

ij =
∑

r
1
2 gkr (∂j gir +

∂i gr j − ∂r gij)

We now briefly mention links between HMC and algorithms based on stochastic differential
equations (SDEs). If we consider the HMC algorithm in the special case of a single step of leapfrog
integrator (i.e., L = 1) with K ( p) = 1

2 pT p and drop the acceptance step, then each iteration k is
equivalent to

xk+1 = xk + τ pk+1 − 1
2

∂U
∂x

τ 2.

Defining ε to be the square of the step size τ and the initial momentum to be Gaussian noise ξ , we
end up with a discretization of the overdamped Langevin equation: x(

√
ε) = x(0)+√εξ− 1

2
∂U
∂x ε. If

we add a Metropolis–Hastings step, this algorithm corresponds to the MALA previously discussed,
which is an exact version of the Langevin algorithm (in the sense that there is no discretization
error).

HMC can also be related to higher-order SDEs: Consider the following second-order Langevin
dynamics defined on a Riemannian manifold (with diffusion defined by a vector field v),

dx = vdt, dv = −γ (x, v)dt − G−1(x)
∂U
∂x

dt − vdt +
√

2G−1(x)dW .

Here, W is a standard Wiener process and dv + γ dt is the covariant time derivative (physically,
the acceleration) of the velocity and thus γ has kth component

∑
ij �

k
ijv

iv j , where �k
ij are the

Christoffel symbols. The SDE represents the acceleration of a particle on a manifold under the
influence of a noisy potential and subject to a friction term v dt. The SDE may be transferred to
phase space using p = G(x)v. The invariant distribution of this diffusion may be easily shown to be
π (x, p) ∝ |G(x)|−1 exp(− 1

2 pT G−1(x) p −U (x)). Thus, setting U (x) = − log πx(x)− 1
2 log |G(x)|

gives πx(x) as the marginal distribution.
To simulate from the SDEs above, it is convenient to use schemes that rely on Lie–Trotter

splitting (Abdulle et al. 2015), in which the numerical method is an integrator of the form �τ ◦�τ ,
where �τ is an integrator for the deterministic part and �τ for the stochastic part. The stochastic
part is a conditioned Ornstein–Uhlenbeck process and corresponds to partial momentum refresh-
ment. We can then use a symplectic integrator to sample from π (x, p) via RMHMC, which we
introduce below.

4. RIEMANNIAN MANIFOLD HAMILTONIAN MONTE CARLO

We have seen how HMC uses gradient information from the target density to improve the explo-
ration of the state space. Girolami & Calderhead (2011) introduced the RMHMC method, which
uses higher-order information so that the transition density adapts to the local geometry of the
target density (see also Livingstone & Girolami 2014). A notion of distance is defined between
points in state space, so that smaller steps are performed in directions in which the target density
changes rapidly. This method hence borrows tools from information geometry (Amari 1987).

In the original version of this algorithm, Girolami & Calderhead (2011) considered sampling
from a Bayesian posterior density: After observations y = (y1, . . . , yn) have been made, the target
density πx(·) may be updated to a posterior π (·|y) through a likelihood functionL(·|x) by the means
of Bayes’ theorem, π (x|y) ∝ L(y|x)πx(x). They took advantage of the fact that the likelihood
function defines a statistical model with parameters x, that is, for each x, L(·|x) is a density. Under
mild conditions (Amari 1987), the statistical model S := {L(·|x) : x ∈ X } is a manifold with global
coordinates x. Hence, each point on the original manifoldX is now associated to the densityL(·|x).

On the statistical manifold S, it is common to identify a vector v = ∑d
j=1 v j ∂ j at x with

the random variable (i.e., the function) v(1)(·) = ∑d
j=1 v j ∂l(·|x)

∂x j , where l(·|x) := logL(·|x) is the
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log-likelihood. This is called the 1-representation of the tangent space. We can define a natural
inner product on the tangent spaces of S called the Fisher metric, by defining an inner product
on the corresponding 1-representations: gx(u, v) := El(·|x)[u(1)v(1)]. As a result, the configuration
manifold X acquires the Riemannian metric g and thus a natural concept of distance between
densities associated to x ∈ X .

To tailor the metric to Bayesian problems, which are common in MCMC, Girolami &
Calderhead (2011) proposed a variant of the Fisher metric, which adds the negative Hessian
of the log-prior:

Gij(x) = F ij(x)− ∂2

∂xi∂x j
log π0(x),

where π0(x) is the prior density and F is the Fisher metric. The kinetic energy is defined using this
metric G(x), so the momentum variable is now Gaussian with a position-dependent covariance
matrix π ( p|x) = N (0, G(x)), which can help mitigate some of the scaling and tuning issues
associated with HMC. The Hamiltonian on the Riemannian manifold is

H(x, p) = U (x)+ 1
2

log
(
(2π )d |G(x)|)+ 1

2
pT G−1(x) p.

The joint density π (x, p) := exp (−H (x, p)) = πx(x)π ( p|x) still has the desired target πx(x) as
marginal density, but the Hamiltonian is no longer separable. Thus, the leapfrog integrator is
no longer symplectic and reversible; instead, we use a generalized leapfrog algorithm. At each
iteration k, the algorithm is

pk+ 1
2 = pk − τ

2
∂H
∂x

(
xk, pk+ 1

2

)
,

xk+1 = xk + τ

2

(
∂H
∂ p

(
xk, pk+ 1

2

)
+ ∂H

∂ p

(
xk+1, pk+ 1

2

))
,

pk+1 = pk+ 1
2 − τ

2
∂H
∂x

(
xk+1, pk+ 1

2

)
.

As these equations are implicit, we must resort to fixed-point iterations. The additional information
provided by the local geometry of the statistical manifold can lower the correlation between
samples and increase the acceptance rate. Such an advantage will be particularly useful in high
dimensions, where concentration of measure makes sampling very challenging [even though the
computational cost of RMHMC will also increase as O(d 3)].

Recent advances have included replacing the underlying Lebesgue measure by the Hausdorff
measure; as a result, H becomes H(x, p) = UH(x)+ 1

2 pT G−1(x) p, where UH(x) := − log πH(x) is
the potential energy of the target density πH with respect to the Hausdorff measure. This has the
advantage that the method of Hamiltonian splitting (defined in Section 3.1) can then be used to
construct a geodesic integrator (Byrne & Girolami 2013). The use of Lagrangian dynamics (Fang
et al. 2014, Lan et al. 2015) has also been proposed to obtain integrators that are not volume-
preserving but have lower computational costs. Finally, other Riemannian metrics that do not
rely on a Bayesian setting have been studied, often with the aim of improving the sampling of
multimodal densities (Lan et al. 2014, Nishimura & Dunson 2016).

5. SHADOW HAMILTONIANS

We now discuss a remarkable property of symplectic integrators: the existence of a shadow Hamil-
tonian that is exactly conserved by the symplectic integrator (in the sense of an asymptotic expan-
sion). The study of this quantity was inspired by backward-error analysis of differential equations
and is used in molecular dynamics but is mostly unknown in the statistics literature. This is partly
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Figure 7
Shadow Hamiltonian Monte Carlo—the blue line gives the exact trajectory. The dotted green line is the
numerical method and exactly follows the shadow trajectory (red ). The orange line is the approximate
shadow trajectory.

due to the geometric notions required to define it, in particular the Poisson bracket and its Lie al-
gebra structure. In this section, we provide an intuitive introduction to the shadow Hamiltonian.
This is complemented by a section in the Supplemental Appendix, in which we define those
advanced notions more carefully.

We have seen that the leapfrog integrator and other symplectic integrators do not exactly
preserve the Hamiltonian H. Over noninfinitesimal times this causes the simulated trajectory to
diverge from the exact Hamiltonian trajectory. We might expect the energy along the approximate
trajectory to diverge linearly with the trajectory length (number of steps). However, in practice,
the energy does not diverge but merely oscillates around the correct energy even for very long
trajectory lengths. The reason for this is that there is a nearby Hamiltonian that is exactly conserved
by the discrete integrator. That is, we can find a shadow Hamiltonian H̃τ that is constant along
the simulated trajectory (see Figure 7). The shadow Hamiltonian is defined as an asymptotic
expansion in the step-size that is exponentially accurate (for a small enough step-size). The aim of
SHMC (Izaguirre & Hampton 2004) is to sample from a distribution with density close to e−H̃ τ

in order to improve the acceptance rate, and then correct for the fact that we are not sampling
from the desired target density by reweighting.

Using the Baker–Campbell–Hausdorff formula, it is possible to build Hamiltonians that are
arbitrarily close to the shadow Hamiltonian (Skeel & Hardy 2001), i.e., they satisfy H̃ [2d ] =
H̃ τ + O(τ 2d ) (the square bracket notation indicates the order of the approximation). A difficulty
is that the shadow Hamiltonian is not a sum of a kinetic and a potential term, and therefore
the momentum refreshment step no longer just involves sampling from a Gaussian distribution.
The SHMC algorithm instead samples from the new target density ρM (x, p) := (1/Zρ )e−HM (x, p),
defined by the Hamiltonian HM (x, p) := max{H (x, p), H̃ [2d ](x, p) − a} where a is a constant
parameter that bounds the allowed difference between H̃ τ and H̃ (x, p) and must be tuned. The
purpose of introducing this maximum is that it is bounded below by H. We can therefore generate
Gaussian samples from H and then use rejection sampling [also called von Neumann’s rejection
method (Robert & Casella 2004)] to convert these into samples from ρM . When a is large and
positive, HM is essentially the same as H and we will achieve a high acceptance rate for the rejection
sampler, while when a is large and negative we will approximate well the shadow but will have
a low acceptance rate. Hence the tuning of a is critical. Given a current state (x, p) ∈ T∗X , the
algorithm proceeds as follows:

1. Draw a new momentum p′ from N (0, I ) and accept it with probability

e−HM (x, p′)

e−H (x, p′) = min

[
1,

exp
(
a − H̃ [2d ](x, p′)

)
exp (−H (x, p′))

]
.

Repeat until a p′ is accepted. This is simply rejection sampling.
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2. Simulate Hamiltonian mechanics with initial phase (x, p′) ∈ T∗M and Hamiltonian H using
a symplectic time-reversible integrator. This yields a proposed configuration (x∗, p∗), which
we accept with probability min

{
1, ρ(x∗ , p∗)

ρ(x, p′)

}
, else keep the old phase (x, p).

As before, step 1 is a momentum heat bath (Gibbs sampler) and step 2 is a molecular dynamics–MC
step.

To calculate the sample average, reweighting is necessary to compensate for the fact that we
are sampling from the wrong distribution. To do this, we reweight the generated samples by a
factor ck := exp(H̃ (xl , pl )−H(xl , pl )). The main advantage of this method is that the Metropolis
acceptance rate will be much closer to one. However, the momentum refreshment step can become
expensive and the variance of the sample average will be large if the factors ck are not close to one.

There are, however, several issues surrounding SHMC. While the acceptance rate is greatly
improved in the Metropolis step, SHMC samples from distributions with nonseparable Hamil-
tonians, so momentum sampling is more expensive. Moreover, it introduces a new parameter
a to balance the acceptance rates of the two steps. Sweet et al. (2009) built a variant in which
a canonical transformation (symplectomorphism) is used to change coordinates in order to get
a separable Hamiltonian. Alternatively, a generalized SHMC algorithm has also been proposed
(Akhmatskaya & Reich 2008).

The shadow Hamiltonian can be used to tune the parameters of HMC (Kennedy et al. 2012).
The variance Var(H − H̃ ) may be expressed as a function of Poisson brackets and integrator
parameters, and it turns out that for extensive systems the Poisson brackets are almost constant.
It follows that we can tune the parameters of complicated symmetric symplectic integrators and
minimize this variance by simply measuring the appropriate Poisson brackets.

6. RECENT RESEARCH DIRECTIONS

6.1. Stochastic Gradient Markov Chain Monte Carlo

One of the major issues in the use of MCMC methods in a Bayesian context is the size of datasets.
Imagine that we have i.i.d. observations y = (y1, . . . , yn) and are interested in the posterior
density over some parameter x ∈ X ⊆ R

d (here, we assume we have predefined some prior π0):
π (x|y) ∝ π0(x)

∏n
j=1 L(yj |x). Clearly, if n is very large, then the posterior π (x|y) and the score

functions ∂i log π (x|y) will be computationally expensive to evaluate, rendering MCMC costly.
To tackle this issue, Welling & Teh (2011) suggested making use of small subsets of the entire
dataset (called mini-batches) to compute the score functions, making this inference tractable once
again. Although this methodology was originally developed for MALA, it was later extended to
HMC algorithms (Chen et al. 2014, 2015; Ma et al. 2015). It is, however, important to note that
these algorithms are not exact (in the sense that they only target an approximate target density),
and the bias could be large and very difficult to assess a priori (Teh et al. 2014, Vollmer et al. 2015,
Betancourt 2015).

6.2. Infinite-Dimensional Hamiltonian Monte Carlo

Recently, Beskos et al. (2011) and Cotter et al. (2013) proposed to deal with the deteriorat-
ing performance of HMC in very high dimensions by building a HMC algorithm that samples
from a measure μ on an infinite-dimensional Hilbert space, such that our target measure π is a
finite-dimensional projection of μ. Informally, we can think of infinite-dimensional probability
distributions as being a distribution on functions (e.g., Gaussian processes or Dirichlet processes).
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Measures of this form appear in a wide range of applications, from fluid dynamics to computational
tomography; and more generally in Bayesian inverse problems (Stuart 2010, Beskos et al. 2016).

The algorithm samples from a measure μ on a separable Hilbert space H, which is defined by
its Radon–Nikodym derivative with respect to a dominating Gaussian measure μ0, as given by
dμ

dμ0
(x) ∝ exp (−�(x)) for some potential function � : H→ R. Looking at HMC this way removes

the dependence on the dimension d of the projection, as the algorithm is defined directly over an
infinite-dimensional space. Specifically, it allows for efficient sampling from target measures in
very large dimensions and the acceptance rate does not tend to 0 as d →∞, since the algorithm
is well-defined in that limit.

7. CONCLUSIONS

The use of differential geometry in statistical science dates back to Rao (1945), who sought to assess
the natural distance between population distributions. The Fisher–Rao metric tensor defined the
Riemannian manifold structure of probability measures, and from this local manifold, geodesic
distances between measures could be properly defined. This early work was then taken up by
many authors, with an emphasis on studying the efficiency of statistical estimators (Efron 1982,
Barndorff-Nielsen et al. 1986, Amari 1987, Critchley et al. 1993, Murray & Rice 1993). Geometry
has since developed substantially and has had major impact in areas of applied statistics such as
machine learning and statistical signal processing (Amari 1987).

This review has provided an accessible introduction to the necessary differential geometry,
with a focus on the elements required to formally describe HMC. This should also be of interest
to readers interested in the development of new methods that seek to address the growing list
of challenges modern day statistical science is being called upon to address. More generally, we
believe the use of geometry is essential to gain insights into more advanced methods, including
shadow Hamiltonian and Riemann manifold Hamiltonian methods, and to tackle sampling issues
related to the curse of dimensionality and concentration of measure in, for example, deep learning.
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