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Abstract

Statistical models that involve a two-part mixture distribution are applicable
in a variety of situations. Frequently, the two parts are a model for the binary
response variable and a model for the outcome variable that is conditioned
on the binary response. Two common examples are zero-inflated or hurdle
models for count data and two-part models for semicontinuous data. Re-
cently, there has been particular interest in the use of these models for the
analysis of repeated measures of an outcome variable over time. The aim of
this review is to consider motivations for the use of such models in this con-
text and to highlight the central issues that arise with their use. We examine
two-part models for semicontinuous and zero-heavy count data, and we also
consider models for count data with a two-part random effects distribution.
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1. INTRODUCTION

Statistical analysis based on two-part models arises in a variety of contexts. A simple, but common
and useful, version of such models involves a model for a binary indicator variable and a model for
another response variable given that the binary indicator takes one of the indicator’s two values. In
this article we focus on this specific type of two-part models, as well as models with a comparable
two-part structure for a random effects distribution in longitudinal settings.

An early technical discussion of this type of two-part model was given by Aitchison (1955) for
modeling a nonnegative variable with a probability mass at zero and a continuous distribution for
values greater than zero. It is common now to refer to such data as semicontinuous.

Another variant of this two-part model structure is often used for the analysis of zero-heavy
count data. The structure was introduced by Cohen (1963) and given by Johnson & Kotz (1969),
but was particularly popularized by Lambert (1992), who provided an excellent introduction with
regression formulations. These models, the so-called zero-inflated Poisson (ZIP) models and their
variants, combine a Poisson (or other distributions for count data) variable with a binary indicator
variable for outcome, taking the value zero to accommodate the excess zeros that cannot be
captured by the Poisson distribution. The departure from the models mentioned earlier is that the
Poisson distribution also includes a probability mass for a zero observation, hence the model for
the binary indicator variable is seen as inflating the probability of zero relative to the Poisson. In
contrast, hurdle models (Cragg 1971) for counts or other types of data have a Bernoulli distribution
for all the zero values and a separate distribution for nonzero observations. For count data, one of
these is the zero-altered Poisson model, which differs from the ZIP model by having a Bernoulli
distribution for a zero observation, and a truncated Poisson distribution with no probability mass
assigned to zero for nonzero observations.

In the context of survival data, two-part models have been considered to capture the possibility
of a cured fraction of patients, or long-term survivors, existing as a separate population. Early work
was done by Boag (1949) and Berkson & Gage (1952). Subsequent work focused on regression
settings (e.g., Farewell 1977, 1986) and more general time-to-event models, including semipara-
metric approaches (e.g., Taylor 1995). More information can be found in the book by Maller &
Zhou (1996) and a recent review by Taweab & Ibrahim (2014). We do not deal with this particular
application of two-part models. However, it is important to note that the plausibility of separate
populations is essential to the use of two-part models in this context and is often important in
other applications of such models.

There is a very large literature on the various types of two-part models with a correspondingly
large number of areas of applications. These include machine failures, sexual behavior, nutrition,
fertility, ecology, manufacturing, agriculture, and various economic datasets, including health
care costs. This article does not aim to survey this literature. Our focus will be on the particular
application of these two-part models in longitudinal settings when there are repeated measures
over time from the same subject. With such longitudinal data, adapting these two-part models to
account for within-subject correlation raises particular issues. In addition, other issues with two-
part models, such as the interpretation of regression coefficients, may be even more problematic
in the longitudinal settings. We address these issues and some approaches to dealing with them,
predominately in the context of specific two-part models described in this article, but also for
other similar models.

We primarily focus on likelihood-based approaches to two-part models with random effects
for longitudinal semicontinuous (Sections 3, 4) and zero-heavy count (Section 5) data, and we
also discuss counting process models with a two-part structure in the random effects distributions
(Section 6). After describing the formulation and estimation of these likelihood-based models,
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we briefly comment on Bayesian and generalized estimating equations (GEE) approaches to the
use of two-part models (Section 7). Then some important issues in the use of two-part models in
longitudinal settings are highlighted and discussed (Section 8), and two primary examples from
studies on psoriatic arthritis (PsA) (Sections 9, 10) and risky sexual behavior among HIV-positive
individuals (Section 10) are presented to illustrate the use of the two-part models with particular
emphasis on the issues raised.

2. ILLUSTRATIVE EXAMPLES

2.1. Quality of Life in Patients with Psoriatic Arthritis

PsA is a chronic inflammatory arthritis associated with psoriasis. The University of Toronto
Psoriatic Arthritis (PsA) Clinic has been developing a prospective longitudinal observational cohort
of patients with PsA since 1978 (Gladman et al. 1987). In a 2007 study, investigators were interested
in examining whether there were differential effects of disease activity and damage on physical
functioning as measured by the Health Assessment Questionnaire (HAQ) over the duration of PsA
(Husted et al. 2007). In addition, there was a particular interest in genetics and the role of alleles
that code for human leukocyte antigens (HLA) on disease progression and physical functioning
in PsA patients (Gladman et al. 1998, Su et al. 2015).

The HAQ is a widely used self-reported functional status (disability) measure (Bruce & Fries
2003). The HAQ assesses physical function over the previous week and consists of 20 questions
that cover 8 categories of daily living (i.e., dressing and grooming, arising, eating, walking, hygiene,
reach, grip, and activities, including errands and chores). Patients rate their ability to perform a
particular task within a category on a scale from 0 (no difficulty) to 3 (unable to do), with the
highest score for any task within a category determining the score for that category. The scores
for all 8 categories are then averaged to obtain an overall score on a scale from 0 (no disability) to
3 (severe disability) (Husted et al. 2005, 2007). Although discrete in nature (i.e., scores range from
0 to 3 in steps of 0.125), the overall HAQ score is generally treated as continuous when analyzed.

Since June 1993, the HAQ has been administered annually to patients in the PsA Clinic, and
as of March 2005, 440 patients had completed at least one HAQ, with 382 (87%) completing two
HAQs (Husted et al. 2007) and comprising the study group. In addition, at clinic visits, scheduled
at 6–12 month intervals, demographic and other clinical information was obtained. There were
2,107 HAQ observations available for our analyses. Figure 1 illustrates clearly the cluster of 30.6%
(645/2107) of the observations at zero.

2.2. Permanent Joint Damage in Patients with Psoriatic Arthritis

Another question of interest regarding PsA relates to what influences the development of per-
manent joint damage (defined as ankylosis, subluxation, or >20% decreased range of motion,
attributable to joint damage rather than inflammation) (Siannis et al. 2006), which is often taken
to be a measure of disease progression. However, a significant fraction of PsA patients, even with
extended follow-up, are not observed to experience any damage in their joints. In the analysis of
such data, a clinical question of interest is whether there exists a subpopulation of patients who
will never experience damage. The existence of such a population will lead to an excess of zero
observations because between any two longitudinal observation times, the patients in this subpop-
ulation will always be observed to have no increase in their damaged joint count. This contrasts
with the HAQ data, where there is an excess of zeros at each longitudinal observation time but
the patients contributing to the excess may vary over time.
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Figure 1
Bar plot of Health Assessment Questionnaire (HAQ) data from 382 psoriatic arthritis patients with 2,107
clinic visits. Adapted with permission from Su et al. (2009).

2.3. Motivational Interviewing Intervention on Risky Sexual Behaviors
in HIV-Positive Patients

Reducing risky sexual behavior among people living with HIV/AIDS is one area of focus among
infectious disease researchers. One measure of risky behavior is the number of unprotected anal
or vaginal sexual intercourse acts (the UAVI count) within a given time period. The SafeTalk
program was developed as a motivational interviewing-based intervention to reduce risky sexual
behavior, particularly UAVI (Golin et al. 2010, 2012). To assess SafeTalk’s efficacy at reducing
unprotected sex acts in this population, a randomized clinical trial was performed with subjects
recruited at three sites being randomized to receive either SafeTalk or a nutritional intervention
as control. The participants were then surveyed every four months for one year to measure their
self-reported sexual acts in the previous three-month period. The research question for this study
was whether those in the SafeTalk intervention had lower UAVI than those in the control group.

For illustration, data from the 8-month follow-up for 357 participants with complete UAVI
counts, excluding eight participants with UAVI counts greater than 18, are given in Figure 2.
The data contain 300 (84%) zeros and 8 counts of 10+ (2.2%).

3. TWO-PART MIXED MODELS FOR LONGITUDINAL
SEMICONTINUOUS DATA

Semicontinuous data can be treated as a mixture of true zeros and continuously distributed positive
values, which can be naturally viewed as generated from two processes, one determining whether
the outcome is zero and the other determining the actual value if it is nonzero. For convenience,
we refer to the data arising from these two processes as the binary part and the continuous part of
the data, respectively.

Olsen & Schafer (2001) first extended the two-part model for application to longitudinal
semicontinuous data by introducing correlated random effects into models for both the binary
part and the continuous part. Tooze et al. (2002) discussed a similar two-part mixed model, and
a general introduction was provided by Lachenbruch (2002). Here we follow the notation in Su
et al. (2009) and describe the formulation for two-part mixed models briefly.
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Figure 2
Bar plot of unprotected anal or vaginal sexual intercourse act (UAVI) count from 357 participants in the
SafeTalk efficacy trial. Adapted with permission from Long et al. (2014).

3.1. Model Formulation

Let Yi j be a semicontinuous variable for the ith (i = 1, . . . , N ) subject at time ti j ( j = 1, . . . , ni ).
This outcome variable can be represented by two variables, the occurrence variable

Zi j =
{

0 if Yi j = 0

1 if Yi j > 0

and the intensity variable g(Yi j ) given that Yi j > 0, where g(·) is a transformation function (e.g.,
log) that makes Yi j | Yi j > 0 approximately normally distributed with a subject-time-specific
mean and constant variance.

Instead of focusing on the marginal distribution of Yi j , in a two-part mixed model we are
interested in both the distribution for the occurrence variable Zi j and the conditional distribution
of the intensity variable g(Yi j ) given that Yi j > 0. Specifically, it is assumed that Zi j follows a
random effects logistic regression model

logit{Pr(Zi j = 1 | Xi j , Ui )} = Xi j θ + Ui , (1)

where Xi j is a 1 × q covariate (used as a synonym for explanatory variable) vector, θ is a q × 1
regression coefficient vector, and Ui is the subject-level random intercept. The intensity variable
g(Yi j ) given Yi j > 0 follows a linear mixed model

g(Yi j ) | Yi j > 0, X∗
i j = X∗

i j β + Vi + εi j , (2)

where X∗
i j is a 1 × p covariate vector, β is a p × 1 regression coefficient vector, and Vi is again

a subject-level random intercept. The error term εi j is assumed to be normally distributed as
N(0, σ 2

e ). Note that this two-part mixed model can be extended to include additional random
effects. For illustration purposes and simplicity, we restrict attention here to two-part mixed
models with random intercepts; extensions to models with random slopes are straightforward.
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An important assumption is that the random intercepts, (Ui , Vi ), are jointly normal and possibly
correlated, [

Ui

Vi

]
∼ N

([
0

0

]
,

[
σ 2

u ρσuσv

ρσuσv σ 2
v

])
. (3)

In the context of the HAQ example, the correlation aspect of this assumption can be interpreted as
follows: The presence or absence of disability at one time point is related to the level of disability,
if any, at that and other time points.

In this model, the covariate vectors Xi j , X∗
i j may coincide, but this is not required. The data can

be unbalanced by design or because of ignorable missingness. The primary targets of inference are
the regression coefficients θ and β, and variance components, including the correlation parameter
ρ, are usually treated as nuisance parameters.

3.2. Model Estimation

The estimation of θ , β, σ 2
u , σ 2

v , ρ and σ 2
e can be based on maximization of the likelihood

L =
N∏

i=1

∫
ui

∫
vi

ni∏
j=1

f ( yi j | θ , β, ui , vi , σ 2
e ) f (ui , vi | σ 2

u , σ 2
v , ρ)dvi dui

=
N∏

i=1

∫
ui

∫
vi

ni∏
j=1

{1 − Pr(Zi j = 1 | θ , ui )}(1−zi j ){Pr(Zi j = 1 | θ , ui )}zi j

× [
f {g( yi j ) | β, vi , σ 2

e }]zi j f (ui , vi | σ 2
u , σ 2

v , ρ)dvi dui ,

(4)

which presents the same computational challenges as with generalized linear mixed models
(GLMMs) (Stiratelli et al. 1984, Breslow & Clayton 1993, Wolfinger & O’Connell 1993) owing
to the fact that the likelihood cannot be evaluated exactly because of the intractable integrals.
Olsen & Schafer (2001) proposed an approximate Fisher scoring procedure based on high-order
Laplace approximations for obtaining maximum likelihood estimates. Tooze et al. (2002) used
quasi-Newton optimization of the likelihood approximated by adaptive Gaussian quadrature and
implemented it in the SAS PROC NLMIXED procedure (SAS Institute Inc. 2013).

Although there has been some discussion of the ability to recover the true parameter values and
the computational efficiency of different methods for handling the intractable integrals encoun-
tered in GLMMs, less work has been done with regard to what properties of the data (e.g., mean
cluster size, proportion of zeros, intraclass correlation, etc.) and model lead to issues with estima-
tion. In Su et al. (2009), some investigation was made into instability of estimation for parameters
in the binary part of two-part models. They found that when the unexplained between-subject
variability in the binary part was large or the proportion of zeros was small, this could lead to
instability, owing to the (profile) likelihood surface being flat. Thus it is important to avoid omit-
ting important explanatory variables when specifying the regression structure of the binary part,
as such omission may lead to unstable estimation of variance components and subject-specific
coefficients. Further investigations are needed to determine what aspects of the data and model
may lead to estimation issues.

4. AN ALTERNATIVE TWO-PART MODEL FOR LONGITUDINAL
SEMICONTINUOUS DATA

The two-part mixed model described in Section 3.1 examines subject-specific (conditional) ef-
fects of covariates on the two processes of the semicontinuous outcome. In certain scenarios,
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the population-averaged (marginal) effects of covariates are more desirable. For example, it is of
interest to examine the population-averaged effects of prespecified genetic markers on physical
functioning in the PsA cohort.

Su et al. (2015) developed an alternative two-part mixed model where the population-averaged
effects of covariates for the binary part of the model are directly parameterized. This model
can be conveniently implemented using standard software procedures such as SAS NLMIXED.
Also, compared with the moment-based approaches in Hall & Zhang (2004), it can deal with
longitudinal data that is unbalanced either by design or owing to ignorable missingness (such as
so-called missing at random data) because it is fully likelihood-based (Heagerty 2002, Diggle et al.
2002). In addition, it can offer some degree of robustness in regression parameter estimation for
the binary part of the model for departures from the true underlying random effect structure.
Here we briefly describe this alternative two-part model for longitudinal semicontinuous data.

4.1. Model Formulation

Basically, Su et al. (2015) replaced the random effect Ui in Equation 1 by a random effect Bi that
is assumed to follow the bridge density of Wang & Louis (2003):

fB (bi | φ) = 1
2π

sin(φπ )
cosh(φbi ) + cos(φπ )

(−∞ < bi < ∞),

with unknown parameter φ (0 < φ < 1). This bridge distribution is symmetric with mean zero and
variance σ 2

b = π2(φ−2 − 1)/3. It is slightly heavy tailed and more concentrated than the normal
distribution with the same variance. The key characteristic of this bridge density is that after
integration over the random intercepts in the two parts, (Bi , Vi ), with Vi in Equation 2 normally
distributed as before, the marginal probability Pr(Zi j = 1) relates to the linear predictors through
the same logit link function as for the corresponding conditional probability. In addition, if we
specify the marginal regression structure of the binary part as

logit{Pr(Zi j = 1 | Xi j )} = Xi j θ ,

then the marginal effects of covariates θ are proportional to the subject-specific conditional effects
of covariates θ̃ , with θ = φθ̃ . Therefore, we could replace Equation 1 as

logit{Pr(Zi j = 1 | Xi j , Bi )} = Xi j θ/φ + Bi .

Based on marginalization of random effects models, Heagerty (1999) and Heagerty & Zeger
(2000) proposed full likelihood-based methods of estimating marginal regression parameters for
longitudinal binary data. In their models, random effects are assumed to be normally distributed
and the marginal probability and the conditional probability given the random effects are matched
by an intercept term �i j . Similarly, in this model we have

Pr(Zi j = 1 | Xi j ) =
∫

Pr(Zi j = 1 | bi ) fB (bi )dbi =
∫

logit−1(�i j + bi ) fB (bi )dbi ,

and the intercept term is actually �i j = Xi j θ̃ .
For the model for the continuous part, we let Vi be normally distributed with mean zero and

variance σ 2
v . Therefore, g(Yi j ) | Yi j > 0 given the random intercepts (Bi , Vi ) again follows a

normal linear mixed model with mean X∗
i j β + Vi and variance σ 2

e .
As in the model of Section 3.1, a relationship between the two processes that generate semicon-

tinuous data should be allowed, especially if the outcome is observed at multiple time points. For
this purpose, a bivariate joint distribution for the random intercepts (Bi , Vi ) can be constructed
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from a pair of normal random variables[
Ui

Vi

]
∼ N

⎛
⎝
⎡
⎣0

0

⎤
⎦ ,

⎡
⎣ 1 ρσv

ρσv σ 2
v

⎤
⎦
⎞
⎠ ,

and the probability integral transformation

Bi = F−1
B {�(Ui )}, where F−1

B (x) = 1
φ

log
[

sin(φπx)
sin{φπ (1 − x)}

]
, 0 < x < 1,

can be used to obtain Bi (Wang & Louis 2003, Lin et al. 2010), where F−1
B (·) is the inverse

cumulative distribution function associated with the bridge density. �(·) is the cumulative distri-
bution function of the standard Normal. Lin et al. (2010) found that the correlation for (Bi , Vi ) is
approximately the same as the correlation ρ for (Ui , Vi ).

4.2. Model Estimation

In this two-part model, one primary target of inference is likely to be the marginal effects of
covariates θ that are relevant to the model for the binary part. The regression coefficients in the
model for the continuous part, β, would also likely be of interest, whereas variance components
σ 2

b (or equivalently φ), σ 2
v , σ 2

e , and the correlation parameter ρ will usually be regarded as nuisance
parameters. The estimation of θ , β, σ 2

b , σ 2
v , ρ and σ 2

e is based on maximization of the likelihood
in Equation 4, but with bi and σ 2

b replacing ui and σ 2
u , respectively.

5. ZERO-INFLATED POISSON MODELS WITH RANDOM EFFECTS
FOR LONGITUDINAL COUNT DATA

As discussed in the Introduction, zero-inflated models for count data allow observed zeros to
arise both from the binary part of the model and as an observation from a Poisson distribution
or other distributions for count data. This is in contrast to the two-part model structure for
semicontinuous data discussed in previous sections. Extending Lambert’s ZIP model (Lambert
1992), Hall (2000) proposed a ZIP model with random effects in the Poisson process to account
for within-subject correlation. In order to account for overdispersion in addition to excess zeros
in correlated data, Yau et al. (2003) proposed a zero-inflated negative binomial (ZINB) regression
model with independent random effects in each process. In this section, we focus on such random
effects models for zero-inflated count data, maintaining as much consistency in notation as possible
with Sections 3.1 and 4.1.

5.1. Model Formulation

Let Yi j be a count variable for the ith (i = 1, . . . , N ) subject at time ti j ( j = 1, . . . , ni ). It is linked
to a binary variable Zi j such that:

Yi j ∼
{

0 with probability Pr(Zi j = 0 | Xi j , Ui )

Poisson (μC
i j ) with probability Pr(Zi j = 1 | Xi j , Ui ) = 1 − Pr(Zi j = 0 | Xi j , Ui ),

where μC
i j = E(Yi j |Zi j = 1, X∗

i j , Vi ). As mentioned earlier, we have used similar notation to that
used in Sections 3.1 and 4.1 for models for semicontinuous data. However, conceptually Zi j is
here regarded as a partially latent, not a fully observed, variable. This is because if Yi j > 0, then
Zi j = 1, but if Yi j = 0 then it is not known whether Zi j = 0 or Zi j = 1. The notation μC

i j indicates
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that the Poisson mean is conditional on the random effect Vi and Zi j = 1, where Zi j follows a
random effects logistic regression model

logit{Pr(Zi j = 1 | Xi j , Ui )} = Xi j θ + Ui ,

as in Section 3.1, although covariate effects are now linked to the partially latent variable Zi j . The
Poisson mean, μC

i j , is modeled log-linearly as

log(μC
i j ) = X∗

i j β + Vi , (5)

with X∗
i j , β and Vi defined similarly to in Section 4. Where appropriate, an offset, log(Oi j ), might

be added to the right hand side of Equation 5. As in Section 3.1, for simplicity, we restrict attention
here to ZIP models with random intercepts, although the models can easily be extended. Also, as
in Section 3.1, the common assumption would be that the random intercepts, (Ui , Vi ), are jointly
normal and possibly correlated.

5.2. Model Estimation

The estimation of θ , β, σ 2
u , σ 2

v , and ρ can be based on maximization of the likelihood

L =
N∏

i=1

∫
ui

∫
vi

ni∏
j=1

Pr( yi j | θ , β, ui , vi ) f (ui , vi | σ 2
u , σ 2

v , ρ)dvi dui ,

where

Pr( yi j | θ , β, ui , vi ) =
[
Pr(Zi j = 0 | Xi j , ui ) + (1 − Pr(Zi j = 0 | Xi j , ui ))e−μC

i j

]1−zi j

×
[

(1 − Pr(Zi j = 0 | Xi j , ui ))e−μC
i j (μC

i j )yi j

yi j !

]zi j

.

Using the expectation-maximization (EM) algorithm framework that Lambert (1992) pro-
posed, Hall (2000) fitted this ZIP model with random effects with the EM algorithm using
Gaussian quadrature. Although Hall (2000) only accounted for correlation within the Poisson
process, others have utilized correlated random effects in both processes of the ZIP and hurdle
models for longitudinal count data (Dobbie & Welsh 2001, Min & Agresti 2005, Ghosh & Albert
2009, Neelon et al. 2011, Lee et al. 2006). As mentioned in Section 1, hurdle models are an al-
ternative to zero-inflated models and have been extended to longitudinal settings (Min & Agresti
2005). Similar to semicontinuous models, these two-part models address all zeros separately from
the positive realizations, using Bernoulli and truncated count distributions, respectively. Rather
than the partially latent class Zi j described for the zero-inflated model, the Zi j for hurdle models
is equivalent to the Zi j from Section 3.1.

6. MODELS BASED ON TWO-PART RANDOM EFFECTS
DISTRIBUTIONS FOR LONGITUDINAL COUNT DATA

Another two-part model structure for longitudinal count data that is appropriate in some contexts
is to have a binary component to the model, which indicates if all longitudinal counts for a subject
must be zero, and a second component for the distribution of the counts if this is not the case.
Basically, in certain scenarios, it is believed that there exists a separate population (e.g., PsA patients
without any joint damage over time) with all longitudinal observations equal to zero. The two-part
model structure discussed in Section 5 could be adapted to deal with this scenario if the binary
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part of the model were altered to accommodate this specific case of having a positive probability
of always having zeros for each subject.

However, an alternative approach is to achieve the same effect by adopting a two-part or similar
model for a random effects distribution. Models of this type are sometimes termed mover-stayer
models, and assume that there are two populations of subjects: stayers, who have no probability
of a nonzero observation, and movers, who may have a nonzero observation at one or more time
points. A version of this type of model for count data is outlined in this section. The presentation
is based on that of Yiu et al. (2016), who used such a model for modeling joint damage in PsA
patients, and this particular application is subsequently considered.

6.1. Patient-Level Random Effects Models

In this section, the general form of patient-level random effects models is given, followed by a
description of the particular random effects distributions used subsequently.

6.1.1. Model formulation. Let Yi j be a count variable for the ith (i = 1, . . . , N ) subject at the
j th visit time ( j = 1, . . . , ni ). Assume Yi j is Poisson distributed with mean

ui	i j = ui Oi jλ0 exp(Xi j β),

where ui is a realization of the patient-level random effect Ui , which induces correlation between
the observations of a patient; log(Oi j ) is an offset, typically introduced to allow for irregularly
spaced observations; λ0 is a constant baseline intensity; and β and Xi j are row vectors of regression
coefficients and covariates associated with the j th observation respectively.

To account for a subpopulation of stayers, the distribution of Ui is taken to have a two-part
distribution. Specifically the mover-stayer random effects densities for Ui are of the form

gM −S(ui ) =
{
πi , if ui = 0

f (ui ), if ui > 0,

where πi is the probability that the ith patient is a stayer and f (ui ) is a truncated random effect
density which integrates to 1 − πi when the ith patient is a mover. The corresponding marginal
likelihood contribution from the ith patient, Li , is then⎧⎨

⎩
∫ ∞

0

ni∏
j=1

(ui	i j )yi j exp
(−ui	i j

)
yi j !

f (ui ) dui

⎫⎬
⎭

c i∗ ⎧⎨
⎩πi +

∫ ∞

0

ni∏
j=1

exp
(−ui	i j

)
f (ui ) dui

⎫⎬
⎭

1−c i∗

,

where c i∗ = 0 if the ith patient remained damage free while in the clinic and c i∗ = 1 otherwise.
Models corresponding to a likelihood of this form can be referred to as Poisson M-S models,
and further qualification, when needed, can be through the addition of the type of random effects
distribution used.

6.1.2. Random effects distributions. There can be various mover-stayer random effects den-
sities chosen for Ui . In Subsection 11.1 we consider the three different two-parameter random
effects distributions used by O’Keeffe et al. (2012), which may capture the behavior of Ui at and
near zero differently. The first two random effects distributions are of the two-part form

gM −S(ui ) =
{
πi if ui = 0

(1 − πi )g(ui ) if ui > 0,
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where g(ui ) has either a gamma density with rate and shape parameter 1
θ

or an inverse Gaussian
density with mean 1 and shape parameter ψ . That is,

g(ui |θ ) =
( 1
θ

) 1
θ



( 1
θ

)u
1
θ −1
i exp

(
−ui

θ

)
or g(ui |ψ) =

(
ψ

2πu3
i

) 1
2

exp
(

−ψ(ui − 1)2

2ui

)
.

These two distributions will be referred to as the M-S gamma and M-S inverse Gaussian, re-
spectively. The third mover-stayer random effects density is a compound Poisson (CP) of the
form Ui = ∑Ki

j=1 L j , where Ki is a Poisson random variable with rate parameter ρi and L j

( j = 1, . . . , Ki ) are independently and identically distributed gamma random variables with shape
and rate parameters 1 and ν, respectively. The density is then given by

gM −S(ui |ν, ρi ) = exp(−ρi − νui )
√
νρi

ui
I1(2

√
νρi ui ), where I1(h) =

∞∑
k=0

1
k!
(k + 2)

(
h
2

)2k+1

is a modified Bessel function of the first kind. The CP density contains a point mass exp(−ρi ) at
zero and a density along the positive real line, and hence its density is conveniently in the mover-
stayer form with πi = exp(−ρi ). Readers are directed to Aalen (1992) and Moger (2004, 2005) for
applications of the CP distribution to survival studies.

Another commonly used random effects distribution for the positive part is the Log Normal.
It can be shown, however, that this distribution is very similar to that of an inverse Gaussian.

6.2. Patient- and Observation-Level Random Effects Models

In some applications, it may be desirable to allow for time-varying unobserved heterogeneity
in longitudinal count data. One way to introduce this into the Poisson M-S models is through
the incorporation of observation-level random effects. In this extended model, the patient-level
random effects primarily introduce correlation between observations within patients, and the
observation-level random effects are introduced for capturing unobserved heterogeneity.

Let Ui and Ui j be multiplicative patient-level mover-stayer and observation-level random
effects, respectively. Assume Yi j is Poisson distributed with mean

ui ui j	i j = ui ui j Oi jλ0 exp(Xi j β).

Then, under the usual assumption that Ui and Ui j are independent, the marginal likelihood
contribution, Li , from the ith patient is⎧⎨

⎩
∫ ∞

0

ni∏
j=1

h( yi j |ui ;	i j ) f (ui ) dui

⎫⎬
⎭

c i∗ ⎧⎨
⎩πi +

∫ ∞

0

ni∏
j=1

h(0|ui ;	i j ) f (ui ) dui

⎫⎬
⎭

1−c i∗

,

where c i∗ is as before and

h( y |ui ;	i j ) =
∫ ∞

0

(ui j ui	i j )y exp(−ui j ui	i j )
y!

g(ui j ) dui j .

This model can be implemented with patient-level mover-stayer random effects distributions
such as those in Section 6.1.2. The observation-level random effects distribution, g(ui j ), follows
a gamma distribution that takes the same form as given in Section 6.1.2 but with parameter θnb .
These models may be termed negative binomial M-S (NB M-S) models with further qualification
by the type of patient-level random effects distribution used. Note that a ZINB model is obtained
from the NB M-S gamma and NB M-S inverse Gaussian models when θ and 1

ψ
= 0, respectively.
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However, unlike the models in Section 5, the zero inflation is at the patient level and not the
observation level. The class of Poisson M-S models is obtained when θnb = 0.

6.3. Model Estimation

The estimation of λ0, β, and the parameters contained in the random effects distributions can be
based on maximization of the likelihood

L =
N∏

i=1

Li ,

where Li is defined as in either Section 6.1.1 or 6.2. This procedure can be performed using the
R function optim, which along with parameter estimates provides a numerically derived Hessian
matrix evaluated at these estimates. For the particular choices of random effects distributions
described in Section 6.1.2, it is worth noting that many of the integrations involved in the marginal
likelihood can be computed analytically. See the supplemental material in Yiu et al. (2016) for more
details.

7. GENERALIZED ESTIMATING EQUATIONS AND BAYESIAN
APPROACHES TO TWO-PART MODELS FOR LONGITUDINAL DATA

GEE approaches have been developed to analyze zero-inflated longitudinal data within the two-
part model structure (Moulton et al. 2002, Hall & Zhang 2004, Lu et al. 2004, Yang & Simpson
2010). Population-averaged covariate effects in both parts of the model are directly available
from these approaches. One goal in these papers is to avoid the multidimensional integration in
maximum likelihood approaches. For this purpose, Bayesian approaches have also been adopted in
the literature, but there is no essential difference in the model structures used in these estimation
approaches (Zhang et al. 2006, Ghosh & Albert 2009, Neelon et al. 2011, Smith et al. 2015).

8. ISSUES IN THE USE OF TWO-PART MODELS
IN LONGITUDINAL SETTINGS

8.1. Correlated Random Effects and Potential Bias in Estimation

If an assumption of independence between random effects is made, then the likelihood components
for the binary and continuous parts of the two-part models for semicontinuous data in Section 3.1
are separable (Tooze et al. 2002). In this case, maximization of the likelihood is computationally
simplified. However, if the random effects are correlated, there is an informative cluster size
aspect to the data structure because the parameters in the binary part determine the probabilities of
nonnegative observations at visit times, and consequently the number of nonnegative observations
contributing to the continuous part of the model (Su et al. 2009) for a subject. Essentially, with
a positive correlation between Ui and Vi , subjects with larger random effects Ui in the binary
part will also have larger random effects Vi in the continuous part, which will translate to them
having more observations contributing toward estimation of the continuous part of the model.
Moreover, these contributed observations will overrepresent larger values in the continuous part
of the data. Because we assume that E(Vi ) = 0, an incorrect assumption of independence between
random intercepts, and the consequent analysis of the continuous part of the data separately from
the binary part, will produce positive bias in estimating the intercept term in β. The impact on
estimation of other regression coefficients in β will depend on θ , σ 2

u , σ 2
v , ρ, σ 2

e , and the true
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values for β. The regression parameters θ remain unbiased under the incorrect assumption of
independence between random intercepts (i.e., ρ = 0).

This problem was considered by Su et al. (2009), who observed that it parallels conceptually the
nonignorable missingness problem characterized in a class of shared parameters models (Wu &
Carroll 1988, Wu & Bailey 1989, Henderson et al. 2000, Saha & Jones 2005). The model for the
binary part of semicontinuous data corresponds to the logistic random effects model for missing
indicators in shared parameters models; the continuous part is similar to the partly unobserved
outcome data modeled (typically) by linear mixed models. Underlying random effects in the shared
parameters models link the model for missing indicators and the model for outcomes, whereas in
our case the shared parameters are exactly those controlling correlated random intercepts (Ui , Vi )
in Equation 3. The only difference between these two scenarios is that in two-part mixed models,
both θ and β are primary targets of inference, whereas in shared parameters models, only β in the
outcome model is of interest.

Su et al. (2009) present results on the asymptotic bias in the estimation of β in the misspecified
two-part mixed models with random intercepts only, assuming that all variance component pa-
rameters are known. Let ti j = 0, 1 denote two measurement times for each subject and Gi = 0, 1
denote a binary covariate, say a treatment indicator. It is further assumed that subjects are equally
likely to be assigned to the two treatment groups and that

1. logit{Pr(Zi j = 1 | Ui )} = θ0 + θ1ti j + θ2Gi + Ui ,
2. conditional on Yi j > 0, [log(Yi j ) | Yi j > 0, Vi ] ∼ N (β0 + β1ti j + β2Gi + Vi , σ 2

e ), and
3. (Ui , Vi ) follow the bivariate normal distribution as in Equation 3.

The asymptotic bias for estimating β depends on θ (or equivalently, the proportion of nonzero
values for a typical subject in the treatment groups), the between-subject variability of occurrence
variablesσ 2

u , the between-subject variability of nonzero valuesσ 2
v , and the error variance of nonzero

values σ 2
e . Given that the other parameters are fixed, in this specific scenario, the bias for β is

independent of the true values of β.
For the simple scenario when θ1 = −1, θ2 = log(2), and σ 2

e is fixed at 0.08 (a value derived from
analysis of HAQ data), Su et al. (2009) investigate how the asymptotic bias varies as a function of
θ0, σ 2

u , σ 2
v , and the correlation parameter ρ.

Figure 3, adapted from Su et al. (2009), presents the contour plots of absolute asymptotic
bias for estimating the intercept term β0, plotted according to σ 2

u and the intraclass correlation
ψ = σ 2

v /(σ
2
v +σ 2

e ) for different values of ρ with θ0 = 0.5 and θ1 = log(2). The axes for σ 2
u andψ are

centered at 4 and 0.7 respectively, again based on analysis of HAQ data. Figure 3 illustrates that
β0 is overestimated, and the magnitude of the bias is positively related to the correlation parameter
ρ, the between-subject variability of occurrence variables σ 2

u , and the between-subject variability
of nonzero values σ 2

v (or equivalently ψ). Su et al. (2009) also show that, as θ0 (the proportion of
nonzero values in a control subject) increases, the bias in the estimation of β0 decreases.

Investigations of the absolute asymptotic bias in estimating the time effect,β1, and the treatment
effect, β2, show that there is a positive bias for β1 and a negative bias for β2, but the bias is much
less than that observed for β0. A more comprehensive discussion of biases is given by Su et al.
(2009).

8.2. Marginal Inferences in Two-Part Models with Random Effects

The formulation of two-part models for longitudinal data, particularly those with random effects
in both parts of the model, often makes the characterization of marginal means, and associated
marginal effects of covariates, problematic. We consider this topic in the context of the model
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Figure 3
Contour plots of asymptotic bias for the intercept term β0 in a misspecified two-part mixed model by occurrence random intercept
variance σ 2

u and intraclass correlation σ 2
v /(σ

2
v + σ 2

e ), stratified by correlation between random effects [ρ = (0.2, 0.5, 0.8)] and overall
proportion of zeros [i.e., intercept term in the binary part θ0 = (−0.5, 0.5, 1.5); (θ1, θ2) = (−1, log(2)) are fixed]. The error variance is
fixed at σ 2

e = 0.08. Adapted with permission from Su et al. (2009).

for longitudinal semicontinuous data introduced in Section 4.1 and the longitudinal model for
zero-inflated count data of Section 5.1, based on work by Su et al. (2015), Tom et al. (2016), and
Long et al. (2015).

8.2.1. Marginal means from the binary part of a model for semicontinuous data. If a random
effects logistic model is desired for the binary part of a two-part model for semicontinuous data,
then a natural choice would be the one specified in Section 4.1, which adopts a bridge density for
the distribution of the random effects. Then as outlined there, the subject-specific conditional (on
random effect) and population-averaged marginal forms have the same logistic form with regres-
sion coefficients proportional to each other. Thus, it is straightforward to summarize inferences
in either form as required. Although, to our knowledge, this has not formally been explored, the
same formulation of the binary part of a hurdle model for count data would also be possible.

8.2.2. Marginal means from the continuous part of a model for semicontinuous data.
Assessment of the impact of a covariate on the marginal mean in the continuous part of a two-part
model, E{g(Yi j ) | X∗

i j , Yi j > 0}, depends on whether or not that covariate is also involved in the
binary part of the two-part model. If the covariate is not included in the binary part or if the
random effects Bi and Vi are uncorrelated (i.e., ρ = 0), then the interpretation of its effect on
E{g(Yi j ) | X∗

i j , Yi j > 0} can be quantified through just the appropriate element of β. However,
when Bi and Vi are correlated and, in addition, the covariate of interest is in both regression
components of the model, then a simple interpretation is not readily obtainable because of the
nonlinearity of E{g(Yi j ) | X∗

i j , Yi j > 0} in this covariate. Specifically, note that the population
averaged marginal mean of g(Yi j ) | X∗

i j , Yi j > 0 after integrating over (Bi , Vi ) is not X∗
i j β, but

E{g(Yi j ) | X∗
i j , Yi j > 0} = X∗

i j β + E(Vi | X∗
i j , Yi j > 0), (6)

which will be dependent on the impact of covariates X∗
i j on the marginal and conditional proba-

bilities of occurrence (see the supplemental material of Tom et al. 2016 for more details).
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As the integral given by E(Vi | X∗
i j , Yi j > 0) has no closed form solution, an exact analytical

expression for Equation 6 is not available. Tom et al. (2016) derived the bounds on Equation 6 as
follows: For ρ ≥ 0,

X∗
i j β ≤ E(g(Yi j ) | X∗

i j , Yi j > 0) ≤ X∗
i j β + σvρ√

2π

(
1 + e−Xi j θ

)
,

and for ρ ≤ 0,

X∗
i j β ≥ E(g(Yi j ) | X∗

i j , Yi j > 0) ≥ X∗
i j β + σvρ√

2π

(
1 + e−Xi j θ

)
.

Although an exact analytical expression is not available, numerically solving Equation 6 at the
maximum likelihood estimates is straightforward, as only a single integral is involved. This integral
can be evaluated using adaptive Gaussian quadrature techniques, where the parameters θ , β, σ 2

b ,
σ 2
v , σ 2

e , and ρ are replaced by their maximum likelihood estimates.
Subsequently, the impact of a covariate could be assessed through plotting the relation-

ship between this covariate and E(Yi j | X∗
i j , Yi j > 0), with other covariates held fixed, or al-

ternatively by describing the local changes (i.e., through the derivative or the difference) in
E(Yi j | X∗

i j , Yi j > 0) with respect to the covariate (Liu et al. 2010). However, the clinical relevance
of E(Yi j | X∗

i j , Yi j > 0) has been questioned, as discussed by Albert et al. (2005), in light of work by
Lu et al. (2004) and Williamson et al. (2003). For example, in the context of the HAQ data for PsA
patients, the patients whose data contributed to the estimation of E(Yi j | X∗

i j , Yi j > 0) are different
over time. Therefore, in this case, it is questionable whether the targeted population is meaningful
when the marginal inference of covariate effects is based on E(Yi j | X∗

i j , Yi j > 0). The overall
marginal mean of Yi j as the target of inference is more easily justified clinically, as discussed in Sec-
tion 9.4, with respect to the association between HLA alleles and overall expected disability level.

8.2.3. Overall marginal mean. When g(·) is the identity function, the overall marginal mean of
the response E(Yi j ) ≡ E(Yi j | Xi j , X∗

i j ) is given by

E(Yi j | Yi j = 0)Pr(Yi j = 0) + E(Yi j | Yi j > 0)Pr(Yi j > 0) = E(Yi j | Yi j > 0)Pr(Yi j > 0),

where we have suppressed the dependence on the covariate vectors, Xi j , X∗
i j , for convenience.

Although a closed form for the overall marginal mean is not available, it can be evaluated
numerically.

Using previous results on bounds for the conditional marginal mean, bounds on the overall
marginal mean can be obtained as

Pr(Yi j > 0)X∗
i j β ≤ E(Yi j ) ≤ Pr(Yi j > 0)X∗

i j β + σvρ√
2π

when ρ ≥ 0, and

Pr(Yi j > 0)X∗
i j β ≥ E(Yi j ) ≥ Pr(Yi j > 0)X∗

i j β + σvρ√
2π

when ρ ≤ 0. Note that Pr(Yi j > 0) = (1 + e−Xi j θ )−1.
Similar bounds can be derived for other common monotonic transformation functions for g(·).

For example, the bounds on the overall marginal mean when g(·) is logarithmic are provided by
Tom et al. (2016).

8.2.4. Marginalized model. We have highlighted some of the challenges when making marginal
inferences from two-part models in the context of longitudinal semicontinuous data. Many of these
issues are similar for ZIP models for longitudinal count data. In particular, inferences on the overall
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mean, rather than the means in the two-part structure, are desirable in certain clinical settings, as
illustrated in Section 10.1 using the SafeTalk data. In this section, we focus on a different approach
that involves formulating directly a regression model for the overall mean of longitudinal count
data arising from a ZIP structure.

For the ZIP model of Section 5.1, the overall conditional (subject-specific) mean E(Yi j |
Xi j , X∗

i j , Ui , Vi ) = {1 − Pr(Zi j = 0 | Xi j , Ui )}μC
i j will depend on θ , β and Ui , Vi through a com-

plicated function, which makes it difficult to evaluate covariate effects on the overall conditional
mean. Specifically, if one is interested in a particular covariate effect, then this can only be ex-
amined by fixing other covariates in order to define the necessary transformations and allow
variance estimation. To avoid this difficulty, Long et al. (2015) suggested the alternative model
that, rather than modeling the conditional Poisson mean μC

i j , models the overall conditional mean
νC

i j = E(Yi j | Xi j , X∗
i j , Wi ) through

log
(
νC

i j

) = X∗
i j α + log(Oi j ) + Wi , (7)

where the random intercepts, (Ui , Wi ), are mean zero normal variables with variances σ 2
u and σ 2

w

and correlation ρ, and log(Oi j ), an offset variable, has again been introduced to allow for situations
where the incidence density νi/Oi j is of interest. The use of the term marginalized, rather than
marginal, for this model is adopted because it is a subject-specific marginal mean, conditional
on a subject’s random effects, that is being modeled and not a population-averaged mean, which
marginalizes over random effects. However, as shown by Long et al. (2015), for all fixed covariates
that do not have corresponding random effects, the subject-specific parameters in Equation 7 are
equivalent to population-averaged parameters.

Because νC
i j is modeled directly in this marginalized ZIP model with random effects, the kth

parameter of α, αk, is interpreted as the subject-specific log-incidence density ratio (IDR) for the
kth covariate; that is, for a one-unit increase in corresponding covariate x∗

i j k, exp(αk) is the amount
by which the mean νC

i j for a particular subject is multiplied, which is the same interpretation as
in a Poisson random effects model. The direct modeling of νC

i j rather than the Poisson mean μC
i j

provides inference for the subject-specific overall mean.
The log-likelihood for this marginalized ZIP model with random effects can be written, in a

similar manner to that given in Section 5.2, as

L =
N∏

i=1

∫
ui

∫
wi

ni∏
j=1

Pr( yi j | θ , α, ui ,wi ) f (ui ,wi | σ 2
u , σ 2

w, ρ)dwi dui , (8)

where

Pr( yi j | θ , β, ui ,wi ) =
[
Pr(Zi j = 0 | Xi j , ui ) + (1 − Pr(Zi j = 0 | Xi j , ui ))e−μC

i j

]1−zi j

×
[

(1 − Pr(Zi j = 0 | Xi j , ui ))e−μC
i j (μC

i j )yi j

yi j !

]zi j

.

However, unlike in Section 5.1, for this marginalized model, μC
i j = exp(δC

i j ), where δC
i j is not

necessarily a linear function of covariates. In particular, using the defining model equations and
the knowledge νC

i j = {1 − Pr(Zi j = 0 | Xi j , Ui )}μC
i j , solving for δC

i j gives

δC
i j = log(Oi j ) + log{1 + exp(−Xi j θ − Ui )} + X∗

i j α + Wi . (9)

Through substitution of Equation 9 into Equation 8, this subject-specific marginalized ZIP
model with random effects may be fit using SAS NLMIXED, which employs an adaptive Gauss-
Hermite quadrature to approximate the integral of the likelihood over the random effects.
Additionally, SAS NLMIXED can provide robust (empirical) standard error estimates of the
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parameters, through the likelihood-based sandwich estimator, to address model misspecification
(White 1982). Following Long et al. (2015), these robust estimates are emphasized in the analysis
of the SafeTalk data in Section 10.

Preisser et al. (2016) have extended the marginalized ZIP model to account for overdispersion
in addition to excess zeros through a marginalized ZINB, though only for cross-sectional data. In
addition, marginalized two-part models for semicontinuous data have been developed by Smith
et al. (2014, 2015) for both cross-sectional and longitudinal settings. They noted that under this
type of model specification, the regression parameters for the binary part of the model contribute
to the likelihood for the continuous part so that some degree of correlation is inherently included
between the two components of the model. Therefore, the parameter ρ is, for this model, allowing
for additional correlation due to any unobserved processes that influence both the probability of
a nonzero value and the overall mean for a subject.

8.3. The Concept of Two Populations

Early work on two-part models for survival data, explicitly or implicitly, often involved the con-
cept of a population of cured patients, or at least a separate population of long-term survivors.
The natural question when using such models was, therefore, is there evidence for this separate
population?

In many applications of two-part models for longitudinal data, this type of question need not
arise. For example, in the two-part models for longitudinal semicontinuous data and zero-inflated
count data, the binary variable that indicates whether an observation is a zero or from an alternative
distribution is defined for each observation of a single subject. Generally, in such a situation, and
even in cross-sectional settings, this two-part model structure can be seen as a convenient empirical
approach to describing data that, for whatever reason, has a preponderance of zeros that cannot
adequately be reflected in another manner.

However, in models such as those discussed in Section 6, there is the concept of two populations
of subjects, one for which all longitudinal observations are always zero and one for which the
observations are all nonzero or a mixture of zeros and nonzeros. A special case of these models
corresponds to a version of zero-inflated count data models for longitudinal data that differ from
those in Section 5 by having this one-time subject-level specification of the binary indicator for
zero rather than a longitudinal set of binary indicators. In this type of model, it is assumed that all
observations for some patients must be zero, which makes the concept of a separate population of
patients almost unavoidable.

In the context of survival data, Farewell (1986) discusses the risks of adopting such a model and
highlights the inferential challenges of providing evidence for or against a separate population.
In particular, there can be considerable indeterminacy between the estimation of the probability
of being in a separate population and the location parameters of the time-to-event distribution
adopted for the other part of the model. This indeterminacy can often be seen through the shape
of a profile likelihood function.

With longitudinal data, in some contexts, there might be extra information in the data that can
identify such a separate population. For example, in the case of dietary data, if subjects provide
the information that they are never-consumers of a type of food, then we can incorporate such
information on this separate population into the model. In other scenarios of longitudinal data,
it is a reasonable conjecture that there might be more information on the possible existence of a
separate population when subjects can be observed to have a long sequence of zero observations.
Nevertheless, such information might not be available, and inferences concerning a separate
population might strongly depend on the particular form of two-part model adopted. In Section 11,
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we illustrate how the examination of different two-part models, the shape of likelihood functions,
and goodness-of-fit investigations might inform such inferences.

9. ANALYSES OF SEMICONTINUOUS HEALTH ASSESSMENT
QUESTIONNAIRE DATA

9.1. Potential Bias with a Misspecified Model for Random Effects

The HAQ data described in Section 2.1 can be modeled using a two-part mixed model, and we
present results extracted from Su et al. (2009). The random-intercept logistic model (Equation 1)
is used to model a binary indicator of a nonzero HAQ score, and the random-intercept linear
mixed model (Equation 2) is used for nonzero HAQ scores. No transformation is applied to the
nonzero HAQ scores.

The same set of covariates is included in both model parts, but the coefficients are allowed to
differ. These covariates include age at onset of PsA (standardized), sex, PsA disease duration in
years, total number of actively inflamed joints, total number of clinically damaged joints, Psoriasis
Area and Severity Index (PASI) score (standardized), morning stiffness (coded as either present
or absent), standardized erythrocyte sedimentation rate, and highest medication level ever used
prior to a visit, grouped based on a medication pyramid (Gladman et al. 1995, Munro et al. 1998).
Because there is particular interest in differential effects of both the number of actively inflamed
joints and the number of clinically deformed joints on physical functioning over the duration of
PsA, interaction terms for the duration of PsA with both of these variables are also included in the
model.

We refer to the two-part mixed model with correlated random intercepts as the full model.
Following (Su et al. 2009), if these data are modeled with an assumption of independent random
intercepts, we term it the misspecified model. Selected results from Su et al. (2009) are given in
Table 1, which only includes results for the primary covariates of interest.

As shown in Table 1, the estimated coefficients in the binary part are approximately the same
in both the full model and the misspecified model, and suggest the same predictors of functional
difficulty. Particularly, there is no differential effect of actively inflamed joints on functioning
difficulty over the duration of PsA, but there is some evidence that the effect of the number of
deformed joints increases with disease duration. The parameter estimates for the distribution of
the random intercepts in the binary part are also similar.

As expected from the discussion in Section 8.1 and simulation results in Su et al. (2009), Table 1
shows that, for the continuous part, the misspecified model overestimates the intercept term and
underestimates the time-invariant sex effect. For other time-varying covariates, the estimates are
approximately the same, except that the coefficients for the PASI score and the interaction between
clinically deformed joints and PsA duration are larger in the full model, with correspondingly
smaller p-values. The random intercept variance in the misspecified model is underestimated, and
error variance estimates are similar, consistent with the simulation results in Su et al. (2009). Thus,
the qualitative conclusions do not change across models. In particular, the positive effects of active
joints and deformed joints differ over the duration of PsA: The effect of the former decreases,
while the effect of the latter increases over time.

The deviance and Akaike information criterion values in Table 1 indicate that the full model
provides a better fit to the data. A likelihood ratio test of the hypothesis of zero correlation
generates a significance level less than 0.0001.

The estimated correlation between random intercepts of the two parts of the full model is
positive and close to one (ρ̂ = 0.94). This suggests that there might be a single unmeasured
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Table 1 Parameter estimates for the Health Assessment Questionnaire data

Binary model Continuous model

Misspecified Full Misspecified Full
Parameters estimate (SE) estimate (SE) estimate (SE) estimate (SE)

Intercept −1.0199 (0.4079) −1.0015 (0.3746) 0.3176 (0.0567) 0.2149 (0.0556)

Female 1.9944 (0.3603) 2.0080 (0.3276) 0.1811 (0.0505) 0.2225 (0.0512)

Disease duration −0.0027 (0.0259) 0.0156 (0.0232) 0.0039 (0.0033) 0.0035 (0.0032)

AJ 0.1758 (0.0513) 0.1566 (0.0495) 0.0219 (0.0028) 0.0239 (0.0027)

DJ −0.0161 (0.0321) 0.0120 (0.0260) 0.0058 (0.0031) 0.0052 (0.0031)

PASI score 0.1941 (0.1257) 0.1754 (0.1086) 0.0128 (0.0140) 0.0247 (0.0134)

AJ * duration 0.0002 (0.0034) −0.0003 (0.0033) −0.0004 (0.0002) −0.0004 (0.0002)

DJ * duration 0.0032 (0.0016) 0.0022 (0.0013) 0.0002 (0.0001) 0.0003 (0.0001)

σ 2
u 4.2519 (0.8546) 4.3930 (0.8924)

σ 2
v 0.1587 (0.0154) 0.1732 (0.0166)

σ 2
e 0.0785 (0.0040) 0.0774 (0.0039)

ρ (ρ = 0) 0.9423 (0.0373)

−2 log likelihood 2,116.0 2,018.1

AIC 2,178.0 2,082.1

Abbreviations and symbols: AIC, Akaike information criterion; AJ, active joints; DJ, deformed joints; PASI, Psoriasis Area
and Severity Index; SE, standard error; σ 2

u , random effects variance for binary model; σ 2
v , random effects variance for

continuous model; σ 2
e , random error variance; ρ, correlation between random effects in binary and continuous models.

latent process that influences the two processes, corresponding to perfectly correlated random
intercepts. Therefore, a latent process two-part model, such that the correlated random intercepts
follow Vi = αUi and σ 2

v = α2σ 2
u , could be fit. The estimates from such a model are very similar

to those from the full model.

9.2. Marginal Covariate Effects

A focus on marginal covariate effects is perhaps particularly natural with time-invariant variables.
As mentioned in Section 2.1, for patients with PsA, there is a particular interest in genetics and
the role of alleles that code for HLA. We illustrate the use of the alternative two-part model of
Section 4.1 to examine the relationship between the HLA system and physical functioning as
measured by the HAQ.

9.3. Marginal Covariate Effects for the Binary Part

Some results for the estimated effects of genetic markers (taken from Su et al. 2015) are given in
Table 2. The covariates in both parts of the model, Xi j and X∗

i j , coincide. In this model, age at
onset of PsA, sex, and PsA disease duration were also controlled for in both parts. The conditional
estimates associated with the binary part of the underlying two-part mixed model, from which the
two-part marginal model is derived, are also shown. These conditional effect estimates are obtained
by inflating the corresponding marginal covariate effects in the binary part by the reciprocal of
φ = 0.4861 [95% confidence interval (CI): 0.4256–0.5465]. The corresponding standard errors
were calculated using the delta method.
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Table 2 Parameter estimates in the binary and continuous parts from the two-part marginal model for the Health
Assessment Questionnaire data: Marginal/conditional estimates in the binary part and the continuous part are in the form of
log odds ratio and difference in means, respectively

Binary part Continuous part

Marginal Conditional Conditional
estimate (SE) p estimate (SE*) p estimate (SE) p

Intercept 0.62 (0.18) 0.0005 1.28 (0.37) 0.0005 0.46 (0.06) <0.0001

HLA-B27 0.47 (0.22) 0.0324 0.97 (0.45) 0.0325 0.17 (0.08) 0.0294

HLA-DQw3 −0.22 (0.22) 0.3040 −0.46 (0.45) 0.3015 0.1075 (0.08) 0.16

HLA-DR7 −0.48 (0.29) 0.0972 −0.98 (0.59) 0.0964 −0.02 (0.10) 0.8775

HLA-DQw3*HLA-DR7 0.81 (0.38) 0.0358 1.66 (0.79) 0.0350 0.0256 (0.13) 0.85

Age at onset 0.40 (0.09) <0.0001 0.82 (0.18) <0.0001 0.10 (0.03) 0.0002

Disease duration 0.19 (0.07) 0.0072 0.39 (0.14) 0.0067 0.05 (0.02) 0.0182

Sex (female) 1.22 (0.19) <0.0001 2.51 (0.41) <0.0001 0.34 (0.06) <0.0001

σ 2
b 10.64 (1.76) <0.0001

φ 0.49 (0.03) <0.0001

σ 2
v 0.29 (0.03) <0.0001

σ 2
e 0.09 (0.01) <0.0001

ρ 0.98 (0.02) <0.0001

*Obtained using the delta method.
Abbreviations and symbols: HLA, human leukocyte antigen (B27, DQw3, DR7 are HLA alleles); SE, standard error; σ 2

b , random effects variance for binary
model; φ, parameter of bridge density; σ 2

v , random effects variance for continuous model; σ 2
e , random error variance; ρ, correlation between pair of

normal random variables used to construct random effects distributions.

From Table 2, we observe that the presence of HLA-B27 (HLA allele B27) significantly in-
creases both the odds of the presence of functional disability (p = 0.0324) and the actual level of
physical functioning given that one has functional disability (p = 0.0294). The (marginal) odds
ratio associated with HLA-B27 is 1.605 (95% CI: 1.041–2.476) and the subject-specific difference
in the mean (nonzero) HAQ scores between PsA patients with HLA-B27 present compared with
PsA patients with HLA-B27 absent, but all else the same, is 0.1652 (95% CI: 0.0166–0.3138). Fur-
thermore, there is statistically significant evidence (p = 0.0358) for an interaction effect between
HLA-DQw3 and HLA-DR7 on the probability of having functional disability, with an apparent
detrimental effect of having HLA-DQw3 present (compared with absent) whilst in the presence
of HLA-DR7. There are no statistically significant effects of HLA-DQw3, HLA-DR7, or their
interaction on the level of physical functioning once functional disability occurs.

9.4. Marginal Covariate Effects for the Continuous Part
and for the Overall Mean

Whereas the third column of Table 2 presents the conditional covariate effects, given random
effects, in the continuous part of this two-part model, as noted in Section 8.2.2, the corresponding
marginal covariate effects are generally not equal to these conditional effects. However, as also
noted in Section 8.2.2, it is perhaps more natural to examine the association between the HLA
alleles and the overall expected disability level of the patients over the study period, instead of the
association when some disability is present. This is because disability as measured by the HAQ
for patients can vary over time and, for example, at one visit a patient can have mild disability, but
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at the next visit his or her situation may be improved, resulting in a zero value of HAQ. Thus, it
might be considered clinically more informative to present the marginal covariate effects on the
overall expected disability level together with the marginal covariate effects on the probability of
having any level of disability.

This can be done by sampling from the asymptotic distribution of the parameters based on
the estimates in Table 2 and calculating the contrasts of overall expected HAQ with and without
specific HLA alleles, controlling for other covariates. In particular, we might fix the age at PsA
diagnosis at 35 years and disease duration at 15 years, which correspond to zero values in stan-
dardized versions of the two variables. These contrasts represent the effects of HLA alleles on the
overall expected disability level (controlling for other covariates) in the PsA cohort.

Because the overall mean of the HAQ score is not directly parameterized in the fitted model, the
corresponding covariate effects are not the same for all values of the other variables. Nevertheless,
the HLA-B27 effects (not shown) are approximately the same across different combinations of
other covariates, and the 95% CIs do not include zero.

Recall that a significant interaction between the effects of HLA-DQw3 and HLA-DR7 was seen
in the binary part of the two-part mixed model (p = 0.035), whereas the same interaction was
nonsignificant in the continuous part (p = 0.85). The estimated marginal (log-odds ratio) effect
of this interaction in the binary part was 0.8089 with 95% CI [0.0565, 1.5613].

Figure 4 reflects this possible interaction between the marginal effects of HLA-DQw3 and
HLA-DR7 on the overall marginal mean of HAQ stratified by gender and the absence/presence
of the HLA-B27 allele. Again, age at PsA diagnosis is fixed at 35 years and disease duration at
15 years.

Consider the left panel of Figure 4. For females with the presence of HLA-B27, we estimate
that the difference in the HLA-DQw3 effects on the overall marginal mean of HAQ between those
with the presence of HLA-DR7 allele and those with it absent (i.e., contrast D − B in the figure)
is 0.0564 with 95% CI [−0.2062, 0.3232]. For females with HLA-B27 absent, the estimate of this
difference in the HLA-DQw3 effects on the overall marginal mean of HAQ between those with
and without the HLA-DR7 allele (i.e., contrast C − A) is 0.0648 with 95% CI [−0.1971, 0.3158].
These estimates of the HLA-DQw3 and HLA-DR7 interaction for females, with and without
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Figure 4
Contrasts (with 95% confidence intervals) of the human leukocyte antigen (HLA) allele HLA-DQw3 effects on the overall mean of the
Health Assessment Questionnaire (HAQ) scores for different combinations of the HLA alleles HLA-B27 and HLA-DR7 (controlling
for being 35 years old at psoriatic arthritis diagnosis and having a disease duration of 15 years). Adapted with permission from Tom
et al. (2016).
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HLA-B27 present, are similar and both statistically nonsignificant. Exactly the same results could
be presented by a comparable plot of HLA-DR7 effects. Conclusions based on these results are
thus similar to those found for the continuous part of the two-part marginal model.

10. EVALUATING THE MOTIVATIONAL INTERVIEW
INTERVENTION IN THE SAFETALK STUDY

As outlined in Section 2.3, for the clinical trial examining the efficacy of the SafeTalk intervention,
participants were randomized to receive either SafeTalk intervention counseling or a control
nutritional counseling. The primary count outcome of interest was UAVI. Participants at three
study sites completed questionnaires about both nutritional and sexual behavior at baseline as well
as at three follow-up visits spaced at four-month intervals. After data cleaning, the sample sizes at
each time point were 476, 399, 363 and 301. The overall percentage of zero UAVI counts across
both treatment groups and all visits was 83.1%.

10.1. Marginalized Zero-Inflated Poisson Models with Random Effects

In order to evaluate the efficacy of the SafeTalk intervention over time, the marginalized ZIP with
random effects of Equation 7 was fit by Long et al. (2015) to the UAVI counts at all four time
points. The model of interest is

logit(Pr(Zi j = 1)) = θ0 + θ1xi1 + θ2xi2 + θ3 I ( j = 2) + θ4 I ( j = 2)gi

+ θ5 I ( j = 3) + θ6 I ( j = 3)gi + θ7 I ( j = 4) + θ8 I ( j = 4)gi + Ui ,

log(νC
i j ) = α0 + α1x∗

i1 + α2x∗
i2 + α3 I ( j = 2) + α4 I ( j = 2)gi

+ α5 I ( j = 3) + α6 I ( j = 3)gi + α7 I ( j = 4) + α8 I ( j = 4)gi + Wi ,

where j is the visit number, gi is an indicator of randomization to SafeTalk intervention group,
xi1 and xi2 and the identically defined x∗

i1 and x∗
i2 are indicator variables specifying study site, and

Ui and Wi follow the bivariate normal distribution as in Section 8.2.4.
The results of an analysis of the SafeTalk trial data are presented in Table 3 (adapted from

Long et al. 2015). The contrast testing treatment effect over time H 0 : (α4,α6,α8)′ = (0, 0, 0)′

is highly significant (Wald-type robust p = 0.0003), indicating that the SafeTalk intervention
affects UAVI count. At the second follow-up visit, for which the IDR (and 95% Wald-type robust
CI) is 0.542 (0.260, 1.128), a specific participant randomized to SafeTalk has 46% fewer unpro-
tected sexual acts with any partner than he or she would have if randomized to the nutritional
intervention. Because the only random effect for the above model is a random intercept, the pa-
rameters associated with treatment effect from this analysis additionally have population-averaged
interpretations. Thus, at the second follow-up visit, those participants randomized to SafeTalk had
on average 46% fewer unprotected sexual acts with any partner than the participants randomized
to the nutritional intervention. The SafeTalk intervention appears to have the largest effect on
UAVI count at the first follow-up survey, where the estimated IDR (and 95% Wald-type robust
CI) of treatment effect is 0.280 (0.145, 0.542). By the third follow-up survey, we observe less re-
duction in UAVI count due to SafeTalk, with an IDR of 0.769 (0.307, 1.928). Some reduction in
predicted UAVI count can also be seen in the nutritional control arm at the final visit, numerically
represented through α7. Additionally, note that the correlation between the random intercepts,
estimated to be −0.79, is highly significant, indicating those participants with higher expected
UAVI counts have lower odds of excess zero latent class membership. In fact, if independence of
the random intercepts is assumed, individual parameter estimates from the marginalized ZIP model
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Table 3 Marginalized zero-inflated Poisson model with random effects results: SafeTalk efficacy
trial. Regression parameter estimates in the zero-inflation and marginalized mean models are in the
form of log odds ratio and difference in log means, respectively

Zero-inflation model Marginalized mean model

Parameter Robust Parameter Robust
Parameter estimate SE Parameter estimate SE

Intercept θ0 −2.1187 0.3665 α0 −0.8966 0.2965

Site 2 θ1 −0.1026 0.4184 α1 0.0362 0.2893

Site 3 θ2 −0.2445 0.9548 α2 −0.0220 0.6442

Follow-up 1 θ3 −1.2709 0.3468 α3 0.2011 0.1969

Follow-up 1* treatment θ4 −0.8849 0.4627 α4 −1.2725 0.3365

Follow-up 2 θ5 −1.7071 0.7011 α5 −0.1217 0.2264

Follow-up 2* treatment θ6 0.6021 0.9185 α6 −0.6128 0.3742

Follow-up 3 θ7 −1.0214 0.6881 α7 −0.4762 0.3521

Follow-up 3* treatment θ8 0.3331 1.0968 α8 −0.2630 0.4691

Variance parameters† σu 9.7487 2.4313

σuv −4.5957 0.7345

σv 3.4461 0.6599

†ρ̂ = σ̂uv/(
√
σ̂u σ̂v ) = −0.79.

Abbreviations and symbols: SE, standard error; σu , random effects standard deviation for zero-inflation model; σuv , square
root of covariance of random effects from two parts of model; σv , random effects standard deviation for marginalized mean
model.

differ by as much as 40% (results not shown), demonstrating the same type of bias discussed in
Section 8.1.

10.2. Comparison with Traditional Zero-Inflated Poisson Models
with Random Effects

To highlight the differences between the proposed marginalized ZIP model with random effects
and the ZIP model with random effects from Section 5.1, the latter model was also fit by Long
et al. (2015) to the SafeTalk data, with the model given by

logit(Pr(Zi j = 1)) = θ0 + θ1xi1 + θ2xi2 + θ3 I ( j = 2) + θ4 I ( j = 2)gi

+ θ5 I ( j = 3) + θ6 I ( j = 3)gi + θ7 I ( j = 4) + θ8 I ( j = 4)gi + Ui ,
log(μC

i j ) = β0 + β1x∗
i1 + β2x∗

i2 + β3 I ( j = 2) + β4 I ( j = 2)gi

+ β5 I ( j = 3) + β6 I ( j = 3)gi + β7 I ( j = 4) + β8 I ( j = 4)gi + Vi ,

where Ui and Vi follows the bivariate normal distribution as in Equation 3. For this model, the
contrast of treatment effect is highly significant (p < 0.0001) with β4 = −0.96, β6 = −0.89, and
β8 = −0.42. In contrast to the marginalized ZIP model with random effects, these traditional ZIP
parameter estimates are the log-IDR for treatment among the non-excess zero latent class. Thus,
among the non-excess zero latent class, those participants randomized to SafeTalk had 62%, 59%
and 35% fewer UAVI acts than those participants randomized to control at the first, second, and
third follow-up visits, respectively.
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11. MOVER-STAYER MODELS FOR DAMAGE
IN PSORIATIC ARTHRITIS

As indicated in Section 2.2, joint damage is often used as a measure of disease progression in
PsA. Several authors (Aguirre-Hernández & Farewell 2004, Solis-Trapala & Farewell 2005, and
O’Keeffe et al. 2012) have considered the existence of a subpopulation of patients who do not
have the propensity to experience clinical joint damage. The mover-stayer model of Section 6.1.2
also provides a framework to examine the possibility of such a subpopulation. The model would
assume that there are two populations of patients, stayers who have no risk of damage and movers
who are at risk. This approach is illustrated in this section, with the development following that
in Yiu et al. (2016).

The data collected are counts of damaged joints, made at each clinic visit, where damage is
considered to represent a permanent change, and therefore the count of damaged joints cannot
decrease over time. The count variable of interest, denoted Yi j in Section 6.1.2, is the change
in damaged joint counts between clinic visits at times ti j−1 and ti j ( j = 1, . . . , ni and ti0 = 0);
log(Oi j ) = log(ti j − ti j−1) is the offset and Xi j are study entry or lagged-one (i.e., previous visit)
covariate information. To produce a homogeneous set of patients, the data are restricted to the
28 hand joints, 14 in each hand, and to 757 patients who entered the University of Toronto PsA
Clinic with no damaged hand joints and had more than one clinic visit. The mean and median
numbers of clinic visits per patient were 11.27 and 7, and the number of clinic visits ranged from
2 to 57. The mean follow-up time was 9.46 years, with an interquartile range of 11.15 years. The
mean and median inter-visit times were 0.84 and 0.54 years, with a standard deviation (SD) of
1.19 years. There were 232 patients who entered the clinic with damaged hand joints and had
more than one clinic visit. Although on average 7 years older at clinic entry [mean age (SD):
49.07 (12.62) years versus 42.19 (12.48) years], these 232 patients were not that different in gender
distribution, age at arthritis onset, follow-up and inter-visit times and number of clinic visits than
the 757 patients considered with undamaged joints. However, these patients, not surprisingly, had
on average higher numbers of disease-active hand joints [mean active joint count (SD): 6 (6) joints
versus 2.1 (3.7)].

While in the clinic, a large percentage, 72% (524 patients), of the 757 patients remained damage
free in the hand joints. Of the patients (233 patients) who developed damaged joints, the mean rate
of gaining damage was 0.53 joints per year. Although the development of damaged hand joints
is not formally a recurrent events process (because there is a finite number of hand joints), the
models for the movers are based on Poisson processes, as an approximation, because there are few
occasions when a large number of damaged hand joints have been observed.

11.1. Poisson Mover-Stayer Models

Table 4 presents the results of fitting Poisson M-S models with the three random effects distri-
butions given in Section 6.1.2. The covariates included in the Poisson component of the model
included the numbers of damaged and active (painful or swollen) joints at the previous visit, arthri-
tis duration, and age at onset of arthritis, all known from other studies to be related to the risk of
developing damaged joints.

For the Poisson M-S models, the gamma and inverse Gaussian distributional parts of the
mover-stayer random effects distributions were parameterized to have unit means in order to avoid
identifiability problems with the baseline intensity. An alternative but mathematically equivalent
approach to avoid nonidentifiability was taken for the CP random effects distribution, which has
an expectation of ρi

ν
; ρi and ν were allowed to vary freely on R

+ with λ0 constrained to unity.

306 Farewell et al.



ST04CH14-Farewell ARI 23 February 2017 9:36

Table 4 Model fits for Poisson mover-stayer models. Estimated parameters and confidence intervals

M-S Gamma M-S IG M-S CP

Previous number of damaged joints −0.11 (−0.13, −0.10) −0.12 (−0.14, −0.1) −0.08 (−0.1, −0.07)

Previous number of active joints 0.06 (0.05, 0.07) 0.06 (0.05, 0.07) 0.06 (0.05, 0.08)

Arthritis duration at previous visit (years) 0.07 (0.06, 0.08) 0.07 (0.06, 0.09) 0.04 (0.03, 0.06)

Age at onset of arthritis 0.02 (0.005, 0.04) 0.02 (0.002, 0.04) 0.014 (0.003, 0.024)

λ0 0.03 (0.02, 0.07) 0.05 (0.02, 0.12) 1

θ 6.19 (5.11, 7.5)

ψ 0.112 (0.066, 0.19)

ν 12 (6.68, 17.32)

ρ 0.58 (0.49, 0.67)

P(Stayer) 9.07×10−4 0.32 (0.20, 0.47) 0.56 (0.51, 0.61)
(5.5×10−12, 1)

Log-likelihood −2,689.03 −2,676.34 −2,741.55

Abbreviations and symbols: CP, compound Poisson; IG, inverse Gaussian; M-S, mover-stayer; λ0, baseline mean rate parameter; θ , variance parameter of
gamma distribution; ψ , reciprocal of variance parameter of inverse Gaussian distribution; ν, parameter of compound Poisson distribution; ρ, parameter of
compound Poisson distribution.

All models were fitted with πi = π so that the existence of a stayer population could be more
simply investigated, specifically through testing the null hypothesis H 0 : π = 0 for the Poisson
M-S gamma, Poisson M-S inverse Gaussian, and zero-inflated models. Under the null hypothesis,
the asymptotic distribution of the likelihood ratio test for these models (against their non-M-S
counterpart) is a 50:50 mixture of a point mass at zero and a χ2

1 (Self & Liang 1987). A test
of H 0 : π = 0 for the Poisson M-S CP model is equivalent to testing H 0 : exp(−ρ) = 0 (or
H 0 : ρ = ∞). However, under this null hypothesis, the parameter ν becomes irrelevant, which
therefore results in the asymptotic distribution of the likelihood ratio statistic being intractable.
For this model, we focus on the 95% Wald interval of π̂ in order to examine the possible existence
of a stayer population. Note that models could be easily extended so that πi depends on covariates,
as in the two-part models of Section 5.

For all three models, the regression coefficient estimates are quite similar; most estimates lie
in the corresponding 95% Wald interval of the other models. The current number of active
joints, arthritis duration, and age at onset of arthritis demonstrate significant positive associations,
whereas the current number of damaged joints demonstrates a significant negative association
with damage progression. After accounting for correlation through the multiplicative patient-
level random effect, one can postulate that the negative association indicates that fewer joints
have the propensity to become damaged. This was investigated by Yiu et al. (2016), who obtained
similar results with the use of a truncated Poisson distribution. The previous number of damaged
joints was primarily introduced by Yiu et al. (2016) to provide information about the history of a
patient and therefore introduces correlation between the patient observations. As the patient-level
random effect is also designed to partly reflect this type of correlation (in addition to capturing time-
invariant unobserved heterogeneity), the effect of this dynamic covariate will likely be confounded
with the random effects (see Aalen et al. 2008).

Figure 5 shows plots of the profile log-likelihoods for π . From the first panel of the figure, the
profile log-likelihood for the Poisson M-S gamma model is seen to be a monotonically decreasing
function, which implies that the maximum is attained at the boundary, in particular at π = 0,
and not at the value produced from the numerical optimization procedure (reported in Table 4).
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Figure 5
Plots of the profile log-likelihoods for π . The cross indicates the point at which the numerical optimization procedure converged.
Abbreviations: CP, compound Poisson; M-S, mover-stayer. Adapted with permission from Yiu et al. (2016).

The Poisson M-S gamma model therefore gives no evidence of a stayer population and may even
suggest that such a population is unlikely. As the optimization procedure did not converge at the
maximum, a more relevant CI (as opposed to a Wald interval) can be computed from the profile
likelihood based on values of π in which the null hypothesis H 0 : π = 0 cannot be rejected. Such
an interval was calculated as (0, 0.063). The optimization routine for the other two mover-stayer
models (Poisson M-S inverse Gaussian and CP models) do converge at the maximums of their
respective profile log-likelihoods. Furthermore, as the stayer proportions and their respective
CIs are estimated far from zero, these models are more consistent with a stayer population. A
likelihood ratio test of H 0 : π = 0 resulted in p < 0.001 for the Poisson M-S inverse Gaussian
and zero-inflated models, indicating convincing evidence for a stayer population. From Table 4,
it can, however, be seen that the stayer proportion estimates vary widely across these models. In
particular, the Poisson M-S inverse Gaussian and CP models estimate the stayer proportion as
0.32 (0.2, 0.47) and 0.56 (0.51, 0.61), respectively.

11.1.1. Comments on estimation of π . The widely varying estimates of π may suggest that the
PsA data contained many patients who were slow-transitioning movers and that the fitted models
distinguished very differently between slow-transitioning movers and stayers. Of the fitted models,
only the Poisson M-S gamma model is consistent with the absence of a stayer population, because
π̂ = 0. Under the current parameterization for Ui	i j , if θ > 1, the gamma distribution is such
that g(ui ) → ∞ as ui → 0, and therefore this distribution is able to place a large proportion
of mass arbitrarily close to zero. Implicitly, the gamma distribution is able to represent a large
proportion of patients with slow transition intensities, namely the slow-transitioning movers. In
the motivating example, the fitted Poisson M-S gamma model was such that θ̂ = 6.19(5.11, 7.5)
with a slow average estimated transition intensity. Thus this model seems to have accounted for
a slow-transitioning mover population, instead of a stayer population.
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In contrast, when Ui is assumed inverse Gaussian, g(ui ) → 0 when ui → 0 regardless of the
parameter ψ . When Ui is assumed CP distributed, g(ui ) → ρν exp(−ρ) as ui → 0. It is then
less likely that these distributions can place a large proportion of its mass arbitrarily close to
zero. Thus, if a slow-transitioning mover population exists, the Poisson M-S inverse Gaussian
and CP models may struggle to adequately represent these patients in the model for the movers,
and therefore these models may attribute slow-transitioning movers with high stayer probabilities
instead. Regarding the CP distribution, the parameter ρ, as discussed, governs both the overall
baseline transition intensity, ρ/ν, and the stayer proportion, exp(−ρ). An overall slow transition
intensity as indicated by ρ will then also enforce a higher stayer probability (through ρ) even if
no stayer population exists. This is not the case for the other models, as a slow overall baseline
transition intensity, (1 − π )λ0 through λ0—for example, when there are many slow transitioning
movers—will not force π to take a certain value. These features may explain the greater estimated
values of π from the Poisson M-S inverse Gaussian and CP models when compared with the
Poisson M-S gamma model.

On balance, it thus seems sensible to regard the nonzero estimates of π to reflect either a stayer
population or a subset of patients who are at minimal risk of the damage process as characterized
by the specified distribution for the movers.

11.1.2. Goodness of fit. The observed and estimated increments of damaged joints, for the
various Poisson M-S models, can be compared in the following manner. Let

ei j ( y) = P̂r(Yi j = y |Xi j , 	̂i j ), y = 0, 1, . . .

be the estimated probability that the ith patient develops y additional damaged joints between ti j

and ti j+1. For the Poisson M-S models, Yi j is assumed to have a Poisson distribution conditional
on ui . In order to obtain values of ei j ( y) for these models, the maximum likelihood estimates of
	̂i j and π̂ are used along with empirical Bayes estimates of ui and the probability of being a mover
for the ith patient (Yiu et al. 2016).

The observed and estimated changes in joint counts are displayed in columns 2–5 of
Table 5. It is evident from the table that none of the Poisson M-S models provide particularly
close agreements between the observed and estimated values. The category with increments of one
damaged joint is considerably overestimated by all three models, which then results in the majority
of categories with larger increments of damaged joints being severely underestimated. A statistic
that accounts for the overall model performance at each category is the Pearson statistic. Let
o ( y) denote the observed number of times where y incremental damaged joints occurred, and let
e( y) = ∑

i
∑

j e i j ( y). A Pearson statistic can then be defined as
∑

y
(o ( y)−e( y))2

e( y) . This statistic,
with category >4 expanded to categories 4 to 8 and >8, was calculated as 221.49, 203.46 and
256.52 for the fitted Poisson M-S gamma, Poisson M-S inverse Gaussian, and Poisson M-S CP
models, respectively. These numbers are relatively large and can be used for comparison purposes
subsequently.

11.2. Negative Binomial Mover-Stayer Models

The lack of fit seen in the Poisson M-S models, as well as the discrepancies in the estimation of
π between them, may suggest that the models should be extended to include observation-level
random effects, as in Section 6.2. Yiu et al. (2016) reported the results of fitting these NB M-S
models to the PsA data. The estimated values of π from the NB M-S inverse Gaussian and CP
models were 0.3 (0.18, 0.45) and 0.34 (0.26, 0.43) respectively, and are therefore in much closer
agreement than when observation-level random effects were not included. The profile likelihoods
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Table 5 Observed and estimated changes in joint counts from the Poisson and negative binomial mover-stayer
and zero-inflated models

Increments of P M-S P M-S P M-S NB M-S NB M-S NB M-S
damaged joints Observed gamma IG CP gamma IG CP

0 without previous damage 6,044 5,974.94 5,987.57 5,954.33 5,973.69 5,972.84 5,974.07

0 with previous damage 2,032 1,871.25 1,888.21 1,861.51 2,032.16 2,030.62 2,037.52

1 250 528.89 505.29 559.2 338.87 341.17 334.35

2 97 91.97 87.07 94.92 88.16 87.56 88.62

3 28 27.24 26.31 26.94 36.50 36.16 36.53

4 26 11.62 11.36 11.29 18.85 18.74 18.68

>4 53 24.09 24.19 21.81 41.78 42.89 40.24

Total 8,530 8,530 8,530 8,530 8,530 8,530 8,530

Abbreviations: CP, compound Poisson; IG, inverse Gaussian; M-S, mover-stayer; NB, negative binomial; P, Poisson.

for all three models were very similar in shape to those from the Poisson M-S models, and
again the profile log-likelihood for the NB M-S gamma model had its maximum at π̂ = 0, with a
95% likelihood ratio interval (0, 0.086). Thus even after accounting for time-varying unobserved
heterogeneity, the NB M-S gamma model provides no evidence for a stayer population, in contrast
to the NB M-S inverse Gaussian and CP models. A (generalized) likelihood ratio test of H 0 : θnb =
0 resulted in p < 0.001 for each of the fitted NB M-S models, supporting the need to account for
time-varying unobserved heterogeneity.

To compare observed and estimated incremental joint damage for these models, a similar
method to that in Section 11.1.2 can be used (Yiu et al. 2016). Columns 6–8 of Table 5 display
the estimated incremental joint damage from these NB M-S models. These models demonstrate
a much improved fit to the data compared with the Poisson M-S models. As well, these models
provide similar agreements between estimated and observed increments of damaged joints across
all categories. In particular, there is some evidence that all three models still overestimate the
category corresponding to an increase of one damaged joint. The Pearson goodness-of-fit statistics
were calculated as 37.07, 38.06 and 35.89 for the fitted NB M-S Gamma, inverse Gaussian, and
CP models, respectively, demonstrating much more reasonable agreements between the observed
and estimated increments than for the models not incorporating observation-level heterogeneity.
This is also demonstrated in the maximum log-likelihood values for the three estimated models,
which are −2,249.9, −2,249.9 and −2,253.9, respectively, and which correspond to much greater
likelihood values than those corresponding to the Poisson M-S models in Table 4.

As indicated in Section 6.2, a special case of the NB M-S Gamma and inverse Gaussian models
is the ZINB model that can be viewed as a two-part model with observation level random effects,
essentially a Poisson model with gamma random effects. This model leads to an estimate for π of
0.43 with a 95% CI of (0.36, 0.5). This model also results in a larger likelihood (log-likelihood =
−2,279.36) compared with those in Table 4, but a likelihood ratio test of the hypothesis θ = 0,
which corresponds to the ZINB model, within the NB M-S gamma model, is highly significant (test
statistic = 29.5, p-value< 0.001). Thus, it appears that models with both patient- and observation-
level random effects are the most appropriate for these PsA data.

12. FINAL REMARKS

We provide a survey of a variety of two-part models and consider issues arising in their use.
Figure 6 provides a schema of the different data types, structures, models, and targets of inference
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Type of data

Model 
formulation

Zero-heavy counts or
counting process data

Excess/extra zeros
over time

True zeros
over time

True zeros
over time

Semicontinuous
data

Handling zeros in
longitudinal data

Always zero over
time (stayers)

Mover-stayer models
based on two-part

random effects†

(Section 6)

Zero-inflated models
with correlated random

effects
(Section 5)

Zero-altered or hurdle
models with correlated

random effects
(Section 5.2*)

Two-part mixed models
with correlated  random

effects†

(Sections 3 and 4)

Subject-specific
Pr(Ui = 0) and

E(Yij | ui ; ui > 0)
(Sections 8.3  

and 11)

Population-averaged
Pr(Zij = 1) and

 E(Yij)
(Section 8.2.4*)

Pr(Zij = 1 | ui)
and E(Yij | wi)

(Sections 8.2.4
and 10.1)

Subject-specific

Pr(Zij = 1 | ui) and
E(Yij | Zij = 1, vi)

(Sections 5.1
and 10.2)

Subject-specific
Pr(Zij = 1 | ui) and
E(g(Yij) | Yij > 0, vi)

(Sections 8.1
and 9.1)

Pr(Zij = 1) and
E(g(Yij) | Yij >0)
(Sections 8.2.1,
8.2.2, and 9.4)

Pr(Zij = 1) and
E(g(Yij))

(Sections 8.2.3
and 9.4)

Population-averaged

Population 
of zeros

of interest 

Targets of 
inference

Figure 6
Schema of the different types of data, population of zeros of interest, model formulations and targets of inference discussed. An asterisk
indicates that the topic is briefly discussed, and a cross indicates that different choices for the random effects distributions can be made.

discussed in this survey to aid the reader with the potential options, choices and considerations
that can arise when dealing with longitudinal data of these types. Various models with a similar
structure have been proposed, for example inflated beta regression models (Ospina & Ferrari
2012) and multistate models with a two-part structure (Young et al. 1999, O’Keeffe et al. 2012).
The issues arising in the use of any such models for longitudinal data will be similar to those we
have discussed.

There is scope, however, to consider models with slightly different structures. For example, as
seen in Section 6.1.2, the CP distribution naturally contains a point mass at zero and a distribution
along the positive real line, and therefore conveniently has a two-part structure. If this distribution
is specified such that the mean of the summands and Poisson distribution is modeled using a log-
link, then the overall mean will also be modeled using the log-link, with the linear predictor being
the sum of the linear predictors from the component distributions. Thus, the CP distribution
naturally provides easily interpretable inference on the overall mean and also maintains the intuitive
structure of the means of the component distributions. Future investigation of this type of model
would be of interest.

There is also scope for further development and use of methods to examine the goodness
of fit of two-part models, perhaps especially for the representation of marginal covariate effects.
In so doing, however, it is also important to recall that the adoption of models should also be
based on the reasonableness of the particular two-part structure in the relevant scientific context,
for example, when a not-at-risk or cured population of subjects is assumed. Thus, for example,
models that account for an excess number of zeros without strong scientific assumptions may not
be particularly useful.
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In summary, this review considered two-part and related regression models in longitudinal
settings where there are repeated measures over time from the same subject and there is a need
to deal with zeros. We highlighted the need to assume correlation of random effects between
the two parts exists rather than assuming independence, as the latter assumption will result in
bias. We discussed different parameterizations and alternative forms of the mixed effects models
that could be used in these settings, emphasizing that choices made should be dependent on the
purpose, plausibility and particularities of the data. For example, the choice of parameterization
used may depend on whether inference is to be made at a subject-specific or population-averaged
level or whether the overall marginal mean, the conditional marginal mean, or the marginalized
mean is the target of interest. Additionally, we discussed the possible sensitivity of estimation
for, identifiability of, and inference on the stayer proportion to the chosen mover-stayer random
effects distribution, especially when the random effects do not adequately capture the unexplained
heterogeneity in the data.
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