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Abstract

Adeno-associated virus (AAV) is a small, nonenveloped virus that was adapted
30 years ago for use as a gene transfer vehicle. It is capable of transducing a
wide range of species and tissues in vivo with no evidence of toxicity, and it
generates relatively mild innate and adaptive immune responses. We review
the basic biology of AAV, the history of progress in AAV vector technology,
and some of the clinical and research applications where AAV has shown
success.
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INTRODUCTION

The idea of using gene transfer to cure human disease emerged shortly after construction of the
first restriction map of a viral genome, simian virus 40 (SV40). Many groups quickly realized that
a mammalian virus such as SV40 could be used to study gene expression and to correct genetic
defects. Several groups soon developed strategies for using SV40 as a DNA transfer vector (1,
2), but it became apparent that SV40 genomes persist in cell culture for only a limited period as
episomes before they are diluted by cell division (3). This finding prompted a search for viral vectors
that would provide long-term, persistent gene expression. Within a few years, proof of principle
for retrovirus (4, 5), adenovirus (Ad) (6), adeno-associated virus (AAV) (7), and herpesvirus vectors
(8) was published. These vectors have become standard research tools in the biological sciences,
but the dream of curing human disease has proven to be more difficult than originally anticipated.
This review focuses specifically on AAV vectors, which recently became the first vector system
to be approved for clinical applications (9). We describe the key elements of AAV biology that
affect vector production and cell tropism, describe recent advances in modifying AAV for specific
purposes, and discuss the recent progress in clinical applications.

BIOLOGY OF AAV

Genome Structure

AAV is a small, nonenveloped virus that packages a single-stranded linear DNA genome, approx-
imately 5 kb long (10, 11). A member of the family Parvoviridae, AAV was discovered in 1965
as a contaminant of Ad isolates (12). AAV has not been associated with any human or animal
disease, even though most humans (>70%) are seropositive for one or more serotypes (13, 14).
Both positive and negative DNA strands are packaged equally well, and infection can be initiated
with particles containing either strand (15–17). The virus has a T = 1 icosahedral capsid, 25 nm
in diameter, that is extraordinarily stable. It resists brief exposure to heat, acidic pH, and pro-
teases. The viral genome consists of three open reading frames (orfs) that code for eight proteins
expressed from three promoters (Figure 1) (11, 18). The mature capsid consists of the amino acid
sequence of only one orf (cap) and the packaged DNA. Thus, recombinant AAV (rAAV) vectors
present a very small target for the host immune system.

The coding regions of AAV are flanked by inverted terminal repeats (ITRs) that are 145 bases
long and have a complex T-shaped structure (Figure 2). These repeats are the origins for DNA
replication and serve as the primary packaging signal (19, 20). ITRs are the only cis-active sequences
required for making rAAV vectors and the only AAV-encoded sequences present in AAV vectors
(19, 21). Although the AAV ITRs have enhancer activity in the presence of Rep protein (22),
they have minimal promoter or enhancer activity in the absence of Rep protein (23, 24). Thus,
transgenes cloned into an AAV vector must be engineered with appropriate enhancer, promoter,
poly(A), and splice signals to ensure correct gene expression.

DNA Replication

AAV cannot be propagated by itself. To establish a productive viral infection, AAV must be coin-
fected with a helper virus, and this provides a natural safety feature that helps prevent inappropriate
spread of rAAV following clinical application (25). Ad is believed to be the natural helper virus in
the wild because clinical isolates of Ad are frequently contaminated with AAV (12), but herpesvirus
and baculovirus also can supply complete helper activity in cell culture (26, 27).
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(a) The AAV capsid surface looking down the fivefold symmetry axis (note the fivefold pore in the center) is shown as a depth-cued
space-filling model generated from the crystal structure of AAV2 (205) using Chimera. Surface amino acids are colored according to
their relative distance from the center of the capsid, in the following order: blue (closest), cyan, green, yellow, red ( farthest). (b) AAV
genetic map. The ∼5-kb AAV genome contains three open reading frames (orfs) that code for functional proteins. The rep orf (red )
codes for four Rep proteins (Rep78, Rep68, Rep52, and Rep40) that are synthesized from mRNAs initiated from the p5 and p19
promoters, each of which is either spliced or left intact. The two larger proteins (Rep78 and Rep68) have site-specific, single-strand
endonuclease, DNA helicase, and ATPase activities that are required for AAV DNA replication (206, 207). The two smaller Rep
proteins (Rep52 and Rep40) are required for packaging DNA into capsids (62) and retain only the helicase domain that is present in the
larger Rep proteins (208). The p40 promoter initiates an mRNA that is alternatively spliced to make three capsid proteins from the cap
orf ( yellow). The two minor capsid proteins, VP2 and VP1, contain the same amino acid sequence that is present in VP3 but contain
additional N-terminal sequences that are required for infection. The ratio of VP1, VP2, and VP3 in the capsid is approximately 1:1:10.
The additional N-terminal sequences present in VP1 and VP2 contain nuclear localization signals and a phospholipase A2 activity (105,
110, 113, 209), both of which are required for infection. The spliced mRNA that codes for VP3 from a conventional AUG start codon
( yellow) also codes for the minor VP2 protein, which has additional N-terminal residues (orange), from a weak upstream ACG start
codon (asterisk) (210). In addition, the VP2/VP3 mRNA codes for an assembly-activating protein (AAP) ( green) from a weak CTG start
codon (asterisk) but in a different reading frame (18). AAP facilitates nuclear import of the major VP3 capsid protein and promotes
assembly and maturation of the capsid, but AAP is not present in the mature capsid. Also shown are the 145-base (not to scale)
T-shaped AAV inverted terminal repeats (ITRs) (blue).

AAV DNA is replicated by the so-called rolling hairpin mechanism (Figure 2), and replication
has been completely reconstituted in vitro with purified components (10, 28). DNA replication
requires the AAV-encoded Rep78 or Rep68; the cellular DNA polymerase δ complex and its ac-
cessory proteins, replication factor C (RFC) and proliferating cell nuclear antigen (PCNA); and
minichromosome maintenance complex (MCM). MCM is the cellular DNA helicase used for un-
winding chromosomes during cellular DNA replication. AAV DNA replication in crude cellular
extracts also requires a single-stranded DNA–binding protein, either the cellular replication pro-
tein A (RPA) or a helper virus–encoded single-stranded DNA–binding protein (29, 30). The use
of highly conserved cellular enzymes for AAV DNA replication may help explain the unusually
broad host range of AAV. rAAV has been generated in human, bovine, and insect cells, and the
vector has been shown to transduce a variety of preclinical animal models, including mouse, dog,
pig, rabbit, horse and non-human primate.
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Figure 2
AAV DNA replication. The inverted terminal repeat (ITR) of AAV consists of two small palindromes (B and C) flanked by a larger
palindrome (A) and an additional 20-base sequence (D) that is repeated at both ends (211). The ITR contains a 22-bp sequence
[Rep-binding element (RBE)] that binds the AAV Rep78 and Rep68 proteins in a specific orientation (58, 212–215). If the ITR is in the
palindromic (hairpinned) configuration, the Rep protein also contacts a 5-base sequence at the tip of one of the short palindromes
(RBE′), which activates the Rep DNA helicase and strand-specific endonuclease activities (214, 216, 217). When AAV DNA is uncoated
in the nucleus, the ITR of the incoming single-stranded genome snaps into a hairpin that provides a natural 3′-OH primer (small arrow)
for the synthesis of the second strand. This produces a duplex molecule that has a covalently closed (hairpinned) end. The large Rep
proteins then bind RBE and RBE′ within the hairpin, and the activated endonuclease cleaves one strand at a specific site within a 7-base
recognition sequence called the terminal resolution site (trs) (blue arrow). This creates a new 3′-OH primer (red arrowhead ) that is used
to repair the ITR to form a normal blunt-ended duplex molecule. During cleavage, a molecule of Rep78 or Rep68 (red circle) is
covalently attached to the 5′-end phosphate via a tyrosine-phosphate linkage. The ITR is then reconfigured into a double hairpin to
produce a 3′-OH primer (red arrowhead ) that directs strand displacement synthesis down the length of the genome using the cellular
complexes pol δ, MCM, and their accessory proteins (28). This displaces a single strand, which is packaged, and reforms a duplex
molecule that is covalently closed at one end, beginning a new cycle of nicking, repair, and strand displacement synthesis. Each time
this cycle is repeated, a new single strand is generated for packaging. Because the two ends are identical, the process occurs equally well
from both ends, generating both positive and negative strands for packaging. Abbreviations: MCM, minichromosome maintenance
complex; PCNA, proliferating cell nuclear antigen; pol δ, polymerase δ; RFA, replication factor A; RFC, replication factor C.
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Helper Virus Function

Expression of adenovirus DNA replication proteins [Ad DNA polymerase, Ad terminal protein,
and Ad DNA-binding protein (DBP)] has little to no effect on AAV DNA replication (31–33),
suggesting that in the case of Ad coinfection, AAV relies primarily on cellular replication proteins.
Of the three Ad replication proteins, only the absence of DBP has an effect on the yield of AAV
DNA (3-fold), and this may be due to its role in activating transcription from the AAV p5 promoter
(31, 34). The Ad helper functions have been identified as Ad E1a, E1b, E4 orf6, DBP, and VA
(viral associated) RNA. Both E1a and DBP act as transcriptional activators that induce the AAV
p5 promoter (34–36). Rep78 in turn can activate the three AAV promoters in the presence of an
Ad coinfection by as much as 450-fold (22, 37–40). E1a also induces S phase in host cells (41),
which increases the level of the cellular DNA replication enzymes needed for DNA replication.
Thus, coinfection with Ad and expression of E1a essentially act as a sensing switch to turn on
AAV gene expression when the cellular environment is committed to DNA replication. In con-
trast, when Ad is not available, the p5 Rep proteins autorepress the p5 promoter (40), producing
barely detectable levels of Rep protein and keeping the AAV genome silent in the latent state.
The other Ad helper functions, E1b, E4 orf6, and VA RNA, perform various tasks that provide
a window for AAV replication. These tasks include promoting second-strand synthesis of AAV;
inhibiting p53-induced apoptosis; inhibiting the MRN complex, which would otherwise convert
AAV genomes to concatemers; preventing entry into mitosis (thereby freezing cells in S phase);
shutting off host cell translation; promoting AAV mRNA transport to the cytoplasm (42); and in-
hibiting the interferon-induced double-stranded RNA–activated protein kinase R (DAI/PKR) (41,
43–47).

With herpesvirus coinfection, the situation is different. Expression of both the her-
pes single-stranded DNA–binding protein, UL9, and the herpes helicase-primase complex,
UL5/UL8/UL22, is required (48, 49). In addition, expression of the herpes DNA polymerase
complex, UL30/UL42, stimulates but is not essential for AAV replication (50, 51). Thus, with
herpes, the virus-encoded replication proteins appear to supply the primary single-stranded DNA–
binding protein and may supply some helicase activity. Alternatively, their primary role may be
to recruit AAV DNA to replication centers in the context of herpes-infected nuclei. In addition,
three herpes regulatory proteins (ICP0, ICP4, ICP22) supply essential helper functions (49, 50),
and these appear to be required for AAV rep gene expression. Finally, baculovirus has also been
shown to provide complete helper function for AAV propagation, but the viral elements involved
are not known.

Packaging

Newly synthesized AAV DNA is packaged into preassembled empty particles (52). The icosahedral
AAV particle contains an 8.5-Å-diameter pore at the fivefold symmetry axis (Figure 1) that is
believed to be the portal for DNA entry because mutations in amino acids at this pore affect
packaging to various extents (53). Empty capsids also can bind to Rep protein complexes and Rep
complexes can bind to each other (54–58). Thus, the packaging signal for AAV DNA may be
the covalently attached large Rep protein present at the 5′ end of newly synthesized AAV DNA
(Figure 2). This protein would serve to tag newly synthesized AAV DNA for packaging and
form a bridge between the newly synthesized DNA molecule and the capsid. In support of this
idea, Salvetti and colleagues (59–61) have shown that AAV genomes that have no ITRs also can be
replicated and packaged by using the Rep-binding element (RBE) present in the p5 promoter. The
p5 RBE is normally used for p5 promoter repression during viral latency and for activation of AAV
transcription during productive infection. However, in the absence of the ITRs, the p5 RBE and
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a nearby cryptic trs site can support limited AAV DNA replication and packaging. This aberrant
packaging of ITR-negative genomes appears to be due to the covalent linkage of Rep at the cryptic
p5 trs; when the p5 RBE or the cryptic trs is deleted, both replication and packaging of the ITR
negative genomes are abolished. Taken together, these findings suggest that the covalently bound
Rep protein serves as the packaging signal. Finally, the small Rep proteins, Rep52 and Rep40, use
their helicase activity as a motor for loading DNA into the capsid (62).

The First AAV Vectors

When work on the design of AAV vectors began, no genetic system was available. Because AAV
could be grown only in the presence of a helper virus, there was no standard AAV plaque assay that
could be used for isolating AAV viral clones. The problem was solved when Samulski et al. (63)
discovered that a plasmid clone of wild-type AAV was infectious when transfected into human cells
that had been infected with Ad. This discovery allowed investigators to delete AAV sequences,
substitute them with foreign DNA, and grow rAAV stocks by complementing the rAAV genomes
with plasmids that expressed the rep and cap genes (64, 65). Hermonat & Muzyczka (7) were the
first to show long-term expression of a marker gene under the control of a foreign enhancer
or promoter delivered via rAAV infection in cell culture. That same year, Tratschin et al. (66)
showed that gene transfer was possible with AAV by demonstrating transient expression of a
marker gene. These early vectors still retained rep function, but subsequently McLaughlin et al.
(19) demonstrated that essentially all the AAV internal coding regions could be deleted and only
the 145-bp terminal repeats were needed to ensure replication and packaging of the rAAV genome.
rep and cap functions were supplied in trans by a plasmid deleted for the ITRs to prevent packaging
of wild-type AAV. This was confirmed by Samulski et al. (21), and vectors containing only the
AAV ITRs became the standard approach for AAV-mediated gene transfer that is used today.

PRODUCTION METHODS

Wild-type AAV normally generates more than 105 DNA-containing particles per cell, often called
DNase-resistant particles (DRPs). However, the early DNA transfection systems produced only
100–1,000 DRPs per cell. This limited amount was presumably due to the inherent inefficiency of
plasmid transfection and to the suboptimal complementation of rep and cap functions. In addition,
helper virus functions were supplied by coinfection with wild-type Ad, thus producing mixed stocks
of rAAV and wild-type Ad (19, 21). To remove Ad, early workers used CsCl density centrifugation
to separate rAAV from Ad and differential sensitivity to heat to inactivate the contaminating Ad.
Neither method was completely effective, and so early rAAV stocks frequently displayed toxicity
due to the contaminating Ad components.

Plasmid Transfection Method

The first major breakthrough in AAV vector technology came when three groups independently
cloned the Ad helper functions on a separate plasmid and eliminated the Ad replication and capsid
genes, thereby eliminating Ad in the rAAV stocks. Two groups cloned the necessary Ad genes
on a separate plasmid and propagated rAAV by a triple-plasmid transfection (Figure 3), in which
each plasmid contained the rAAV genome, the rep/cap sequences, or the Ad helper genes (67,
68). By eliminating sequences that could be used for homologous recombination, these groups
further reduced, but did not eliminate, wild-type-like, replication-competent AAV contamination.
Grimm et al. (69) devised a double-plasmid transfection protocol in which one plasmid contained
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Figure 3
rAAV production methods. In the triple-plasmid method, HEK293 cells expressing adenovirus E1a and E1b are cotransfected with an
adenovirus helper plasmid (pHelper), a rep/cap plasmid expressing AAV2 rep and AAV8 cap (pAAVrep2cap8), and the transgene plasmid
carrying the rAAV-transgene cassette (pAAV-transgene). In the baculovirus approach, the rAAV-transgene cassette is built into a
baculovirus, which is then used to infect Sf9 insect cells that are coinfected with a second baculovirus expressing rep2 and cap8 under
control of baculovirus promoters. Both the baculovirus and plasmid transfection methods produce rAAV8 expressing the transgene, but
the baculovirus method (and similar herpesvirus methods) typically produces 100 times more virus per cell and is more easily scaled to
large volumes of cells.

the rAAV sequences and the other contained the rep/cap and Ad genes. This group also replaced
the p5 Rep promoter with an alternative mouse mammary tumor virus (MMTV) LTR promoter
and eliminated the low-level replication and packaging of the ITR negative rep/cap sequences
mentioned above.

Scalable Production Methods

The work of these three groups (67–69) produced the so-called double- and triple-plasmid trans-
fection methods commonly used today for research-grade rAAV. However, they still relied on
DNA transfection; thus, these methods were not suitable for the high-volume, scalable produc-
tion necessary for clinical applications. Clark et al. (70) produced the first scalable rAAV production
method by cloning a HeLa cell line that contained both the rep/cap genes and the rAAV genome
integrated into the host’s chromosomes. This producer cell line was stable and could be infected
with wild-type Ad to generate mixed stocks of Ad and rAAV. In principle, the cell line could be
expanded and grown in high-capacity fermenters. Many variations of the stable cell line coupled
with helper virus infection or DNA transfection have been developed and reviewed (71–76).
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The most promising scalable approaches currently in use involve the infection of cell lines with
two (or three) viruses containing the rep (and/or cap) genes and the rAAV genome, respectively.
The first approach uses a strain of herpes simplex 1 virus defective for an essential herpes gene
(e.g., ICP27) that reduces the growth of herpes but is not essential for rAAV production (72,
77); the second approach uses baculovirus as the carrier (Figure 3) (76). These viruses are then
used to coinfect a suitable cell line (e.g., BHK for herpesvirus or Sf9 for baculovirus). Many
variants of both the herpesvirus and the baculovirus methods have been published (27, 51, 72,
76, 78–80). Both methods are scalable and generate wild-type levels of virus, >105 DRP per cell.
Crude rAAV stocks are typically >1011/mL and after purification can be concentrated to 1014–1015

DRP/mL. However, some serotypes, notably AAV2, appear to aggregate at concentrations above
1013 DRP/mL.

Virus Purification

Because rAAV is a relatively simple, nonenveloped, and highly stable protein complex, all the
standard high-throughput protein purification methods can be used for rAAV purification. Tan-
gential flow filtration and standard ion exchange chromatography, as well as a variety of affinity
chromatography approaches, have been used (51, 72, 76, 78–80). These include heparin and glycan
columns that take advantage of the known interaction of different AAV serotypes with cell surface
proteoglycans (81–83), and monoclonal antibody columns specific for one or more serotype (69,
84). rAAV preparations are a mixture of both empty and full capsids, and thus far only density
gradient centrifugation (either CsCl or iodixanol) has been effective for removing the empty cap-
sids from virus preparations. The ratio of empty capsids to full capsids varies with the production
method used, ranging from higher than 20:1 (54, 85) to as low as 0.05:1 (86). Empty capsids
presumably add to the antigenic signal when injected in vivo, which may become an important
consideration when choosing the purification method for clinical applications. On the other hand,
a recent study suggests that empties can be used as decoys to soak up circulating neutralizing
antibodies and improve transduction (87).

For clinical applications, the virus stock is typically tested for adventitious agents and titered
to establish the number of DRPs per milliliter and the number of infectious units per milliliter
(iu/mL) (75, 81, 82, 88). The DRP/iu ratio is usually referred to as the particle-to-infectivity ratio
and can vary over a wide range (2:1 to 105:1) depending on the serotype and tissue culture cell line
used to measure infectivity. The particle-to-infectivity ratio is a useful measure of vector stock
potency during virus production, but it has little predictive value for the potency of the virus stock
in vivo, where the target tissue may have different virus receptors or different receptor density.

PERSISTENT GENE EXPRESSION IN VIVO

The second major breakthrough in AAV vector technology was made by several groups in 1996.
Flotte and colleagues (89) used rAAV to transfer the cystic fibrosis transmembrane receptor
(CFTR) gene to airway epithelia of primates and demonstrated persistent expression for 6 months.
Similarly, injection of rAAV into mouse brain resulted in continuous expression of the transgene
(90, 91). This suggested that expression could be long-lived, but the levels of expression were diffi-
cult to determine over time. However, Byrne and colleagues (92) and Samulski and colleagues (93)
convincingly demonstrated that mice injected in vivo with rAAV expressing the erythropoietin
gene and the β-galactosidase gene, respectively, produced persistent levels of gene expression that
did not change over time. Such long-lasting levels of expression had never before been seen. Until
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then, most virus- and DNA-based vectors lost expression within a week to a few months after
administration in vivo. Explanations for the loss of gene expression include immune clearance in
the case of Ad vectors and epigenetic silencing in the case of retroviruses. In contrast, the Samulski
group demonstrated that β-galactosidase was expressed more than a year and a half after intra-
muscular injection, and the Byrne group measured essentially constant levels of erythropoietin
expression for six months after systemic infection. The following year, other groups demonstrated
similar long-term, persistent gene expression after rAAV injection into the eye, brain, spinal cord,
muscle, and liver (94–99). Data such as these suggest the exciting possibility that genetic diseases
might be corrected with a single application of rAAV that would last a lifetime.

Cell Entry and Trafficking

AAV enters cells by binding to cell surface sugars present on proteoglycans (such as sialic acid,
galactose, or heparan sulfate) and to cell surface receptors (e.g., fibroblast growth factor receptor or
integrin), which have been reviewed (100, 101). Cell surface binding then triggers endosomal up-
take through clathrin-coated vesicles and the CLIC/GEEC (clathrin-independent carriers/GPI-
enriched) endocytic compartment pathway (100, 102–104). Following entry, AAV is found in
virtually every cytoplasmic compartment of the cell. Within the first 2 h postinfection, most of the
virus accumulates in a perinuclear location and undergoes a structural change when exposed to
the acidic pH of the endosomal compartment (105, 106). Many groups have shown that exposure
to acidic pH is absolutely essential for AAV infection, although its mechanism is still not clear
(107–109). Among other things, exposure to acidic pH is necessary for inducing the extrusion of
the N-terminal end of the minor capsid protein VP1 (VP1u) to the surface of the capsid (105).
VP1u displays phospholipase A2 activity, which is thought to be involved in rupturing the endo-
some to allow the AAV capsid to enter the cytoplasm (110) or in promoting entry of the capsid
into the nucleus (111). VP1u also contains nuclear localization signals as well as other ligands that
presumably promote accumulation of virus at the nuclear membrane (105, 112, 113). Despite these
uncertainties, it seems clear that the AAV capsid eventually emerges in the cytoplasm (105, 112)
and enters the nucleus intact (105), where it uncoats its DNA. This is followed by second-strand
DNA synthesis to form a duplex genome, which is capable of transcription and gene expression.

Second-Strand Synthesis

The synthesis of the second strand appears to be a major rate-limiting step for gene expression
in vivo. It has been argued that duplex rAAV molecules are formed by annealing of positive
and negative strands following in vivo infection (114). However, several groups have shown that
virus particles containing only one rAAV strand are as infectious in vivo and in vitro as standard
virus stocks that contain both strands (15–17). Many groups have shown that in vivo rAAV gene
expression builds up over days to months after infection before it reaches a plateau (115). Evidence
that the slow increase in gene expression is due to second-strand synthesis comes from studies
by McCarty and colleagues (116, 117), who invented a method for packaging double-stranded
(self-complementary) AAV DNA. This group discovered that if they inactivated one of the AAV
ITRs so that it could no longer be processed by the Rep protein, the genome would replicate as an
inverted dimer, which would self-anneal after viral uncoating. When these duplex genomes were
used to infect animals or cell culture, expression of the transgene was immediate. Unfortunately,
although self-complementary vectors were more efficient for transduction in vivo than single-
stranded vectors were, they reduced the cloning capacity of AAV by half.
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Genomes Persist as Episomes

Studies of AAV and rAAV integration in cell culture led to the assertion, often made in the early
literature, that wild-type AAV and rAAV achieved latency by integrating into host chromosomes.
However, there is actually little support for this in vivo. In cell culture, wild-type AAV has a
preference for integration into human chromosome 19 when Rep is expressed (118, 119). However,
genomic studies of rAAV in vivo have shown that rAAV DNA molecules in muscle, heart, liver,
brain, and lung are converted to circles and then persist predominantly as episomes containing
multiple copies of the transgene cassette, usually in a head-to-tail configuration (120–127). The
highest frequency of integration appears to occur in the liver, where approximately 1% of the cells
integrated a copy of the rAAV genome. This was convincingly shown in mice that had undergone
a partial hepatectomy. Upon hepatectomy, the affected mice lost 90% of the rAAV-directed gene
expression, presumably due to the loss of rAAV episomes during hepatocyte cell division, but
retained expression in hepatocyte clones that were the progeny of cells that integrated a stable
copy of the rAAV genome (120). Low-level integration has also been demonstrated in skeletal and
cardiac muscle (128) and brain (121). Taken together, these data suggest that rAAV is suitable for
modifying the many nondividing somatic tissues of the body, such as eye, brain, and muscle, and
less suitable for gene transfer to tissues that normally undergo cell division, such as hematopoietic
stem cells. The fact that integration is a relatively rare event during AAV transduction in vivo
reduces the chance of insertional mutagenesis and provides an additional margin of safety for
AAV-mediated gene therapy.

Because rAAV exists primarily as concatemers formed by end-to-end joining, several groups
have tested the possibility of circumventing the size restriction for rAAV vectors by placing the
front and back halves of a transgene cassette into separate vectors. The two halves then recombine
in vivo via homologous recombination or undergo trans splicing to reconstitute the full-length
gene. This approach has been successfully demonstrated using animal models (129–131), but it is
not yet clear whether the method is sufficiently robust for therapeutic purposes.

SEROTYPE REVOLUTION AND DESIGNER rAAV

The third major breakthrough in rAAV vector technology was the isolation and testing of new
serotypes. For many years only five AAV serotypes were available, and most investigators used
AAV2, the most widely studied serotype, for clinical applications. However, in 1998 Rutledge et al.
(132) identified AAV6, which differs from AAV1 by only 14 amino acids but, nevertheless, had
different in vivo properties. Gao et al. (101, 133) subsequently searched human and nonhuman
primate tissues for new serotypes and identified over 100 new capsid variants. With one serotype
isolated by Gao et al., AAV8, transduction in murine liver was 10- to 100-fold higher than with
AAV2. Currently, 13 serotypes are widely available for packaging rAAV cassettes. Fortunately,
the same cassette that was built with AAV2 ITRs can be packaged into any serotype capsid by
merely exchanging the capsid-coding region in the helper plasmid or helper virus. This allows
investigators to quickly test a variety of serotypes in preclinical animal models to determine which
serotype is most efficient in their application. Often the best serotype in rodent models does not
translate to humans, but investigators can test the same transgene cassette/serotype combination
in mice and later in larger animal models to ensure that the optimum vector is used in human
trials. The in vivo tissue tropisms of AAV1–13 have been reviewed elsewhere (100, 134, 135).

Many AAV serotypes have been crystallized, and their atomic structures have been determined
(134). Capsid amino acid sequences are highly conserved in regions necessary for making contacts
between monomer capsid proteins at the two-, three- and fivefold interfaces. The variations in
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capsid tissue tropism and neutralizing antibody binding are the result of changes in the so-called
variable loop regions exposed on the capsid surface (Figure 3). The difference in tissue tropism
can be huge (101, 135). Differences in tissue tropism often reflect differences in ligands on the
capsid surface that bind different cell-specific receptors. However, tropism is a complex mixture
that reflects receptor affinity, cell entry, trafficking efficiency, DNA uncoating, and, more recently,
postnuclear gene expression (136).

To take advantage of the diversity of capsid architecture, three general approaches have been
used to create new capsid variants. Using the rational design approach, Zhong et al. (137) modi-
fied surface tyrosines to phenylalanines after discovering that inhibiting tyrosine phosphorylation
during capsid entry increased transduction. One of the new variants, which contained three Y-
to-F substitutions, displayed significantly higher transduction frequency in some tissues (138). In
another example of rational design, Bowles et al. (139) compared the surface amino acids of AAV1
and AAV2 to identify residues that might account for the increased muscle tropism of AAV1.
They used a loop-swapping approach to design a capsid, AAV2.5, that contained five amino acid
changes that gave AAV2 the superior muscle transduction seen with AAV1. This strategy has been
used to identify a number of improved hybrid viruses and is reviewed elsewhere (135).

In a second approach, many groups have shown that short (8–30 amino acid) ligands can be
inserted into a surface loop, amino acids 585–588, of AAV2 (140, 141). The insertions disrupt a
heparan sulfate–binding motif (142, 143), thus detargeting AAV2, and decorate the capsid with
60 copies of a new ligand targeted to a specific cell type. These changes can significantly increase
transduction (typically 10- to 100-fold) of the target organ. This approach has been expanded
with the development of peptide display libraries, in which random peptide sequences are inserted
into AAV2 and selected for viruses that target specific tissues (144, 145). In a similar approach,
Warrington et al. (146) have shown that much longer ligands (up to 30 kDa) can be attached to
the N-terminal end of VP2 without significantly affecting virus assembly or infectivity. This raises
the interesting possibility of tagging AAV with single-chain monoclonal antibodies specific for a
cell surface receptor.

Finally, in a third approach, several groups have constructed capsid libraries that consist of
randomized capsid sequences in a single serotype or random recombinants of several different
serotypes with complexities greater than 106 different capsid sequences per library (147–151). In
a process called directed evolution (151), these libraries are then screened either in cell culture or
in vivo to select capsids enriched for infecting a particular tissue or cell type (Figure 4) or capsids
that no longer bind a neutralizing antibody. Often, several log improvement of infectivity in the
target cell can be achieved with only a few amino acid changes.

In addition to capsid modifications that provide altered tissue tropism, many laboratories have
shown that tissue-specific promoters retain their specificity in the context of AAV vectors and can
be used to create a second layer of tissue-specific control of gene expression. For example, rod-
and cone-specific promoters have been used to target photoreceptor cells in the eye (94, 152). An
alternative approach has been the incorporation of microRNA targets into the transgene cassette
to prevent AAV-directed gene expression in tissues where it might be harmful (153–157). In
addition, several groups have successfully developed inducible promoter systems that in principle
allow fine-tuning of gene expression (158–163).

CLINICAL TRIALS

Three general approaches are being used to treat diseases with rAAV. The first approach uses
an organ as a depot to secrete a protein that is normally secreted into serum. Both muscle and
liver have been used to secrete proteins such as alpha-1-antitrypsin (AAT) or factor IX following
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Figure 4
Directed evolution of novel AAV tropism. (Left) The AAV2 capsid contains nine variable surface loops
(various colors) and conserved regions (black). Libraries of AAV, in which each library member contains
randomly generated mutations in one or more variable regions, are injected into rodent or nonhuman
primate models and the target organ is collected. (Right) Variants that successfully infect the target organs
are PCR amplified to produce an enriched library, and the process is repeated to identify individual variants
that are more efficient for transducing the target organ due to a handful of surface residue changes (colored on
gray background ).

intramuscular injection or intravenous injection (164, 165), which results primarily in liver
transduction. In a second approach, systemic (intravenous) injection is used to treat diseases that
affect all cells, notably lysosome storage diseases (166). In these cases, some of the recombinant
protein is secreted and then endocytosed by distant cells, thus cross-correcting noninfected cells.
Alternatively, the treated cells become a sink for removing metabolites that become toxic as they
accumulate (167). A major challenge for systemic delivery has been identifying vectors that are
capable of crossing the blood-brain barrier. The third approach is surgical injection into a specific,
diseased organ. For example, many eye diseases are treated with either subretinal injection, which
places virus in contact with the photoreceptor and retinal pigmented epithelial (rpe) layers of the
eye, or intravitreal injection, which primarily affects retinal neurons (168). Cardiac diseases have
been treated by injection into the heart (169). Similarly, some neurodegenerative diseases, such as
Parkinson disease, that primarily affect a particular region of the brain (striatum) can in principle
be treated by injection into the target region using stereotactic surgery (98, 170). In contrast,
diseases that affect the whole brain, such as Alzheimer disease, are less amenable to sterotactic
surgery. Injecting virus into brain parenchyma is similar to injecting virus into a bowl of gelatin,
where the level of vector dispersion is dependent on the volume and rate of injection and the
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affinity of the particular rAAV serotype for cell receptors at the site of injection. This awareness
has led to the use of serotypes that show wider dispersion (e.g., AAV9) in brain (171, 172). In
addition, for diseases in which the whole brain (Alzheimer disease) or the entire musculature
(muscular dystrophy) must be corrected, physical methods to enhance virus dispersion have also
been tested successfully. These methods include convection-enhanced delivery and mannitol in
the brain (173) and isolated limb infusion in muscle (174).

Flotte and colleagues (175, 176) were the first to use rAAV in a clinical trial to correct cystic fi-
brosis, a genetic disease. The cystic fibrosis gene codes for a chloride ion channel whose loss leads to
chronic lung infection, emphysema, and reduced life span. Relying on the low-level promoter activ-
ity of the AAV ITR, they inserted a promoterless CFTR gene into rAAV and applied the vector to
nasal or lung airway epithelial cells. These trials demonstrated the safety of the vector and showed
that transduction varied depending on the target tissue. Although CFTR expression could be
demonstrated, the efficiency of the AAV2 vector used was too low to show clear therapeutic efficacy.

The first clinical success came when several groups investigated the use of rAAV for homozy-
gous recessive rpe65 deficiency. rpe65 codes for a protein that regenerates 11-cis retinal in the
retinal pigmented epithelial cell layer of the eye, and without it the patient is functionally blind
in low light. In three independent phase 1 clinical trials, the rAAV-rpe65 vector was injected sub-
retinally into one eye of each patient (177–179). Significant recovery of vision was seen in some
patients, and studies of gene expression in the portion of the eye that was treated showed virtually
100% correction in the photoreceptor cells that remained (180). The generally positive results
with rpe65 suggest that virtually any recessive loss-of-function genetic defect in the eye should be
capable of correction. Studies are now underway for a variety of other genetic eye diseases, as well
as diseases such as macular degeneration.

Several trials have also been conducted for factor IX deficiency (hemophilia B). This serum
protein is an essential component of the blood clotting cascade, without which patients experi-
ence increased episodes of bleeding in response to mild trauma or spontaneous hemorrhage in
joints and muscle. Earlier trials using rAAV2 in muscle or portal vein injections showed factor
IX expression in some patients, which rapidly declined (181). The loss of expression was asso-
ciated with a cytopathic T cell (CTL) response to AAV capsid protein but not the transgene.
More recently, Nathwani et al. (165) switched to rAAV8 and used intravenous injection to de-
liver a codon-optimized, self-complementary factor IX cassette. In a phase 1 clinical trial, they
showed dose-dependent and stable expression of therapeutic levels of factor IX in serum at middle
and high vector doses. Expression was stable over 6 months of follow-up, and several patients
no longer found it necessary to infuse factor IX protein. As in earlier hemophilia B trials, some
patients appeared to mount an inflammatory response, as judged by increased levels of serum ala-
nine aminotransferase. These patients recovered a normal enzyme profile after a short course of
an immune modulator, prednisolone, and retained therapeutic levels of factor IX after immuno-
suppression was stopped.

Similar trials have been conducted for AAT deficiency (164). AAT is a protease inhibitor
secreted by the liver that inhibits neutraphil elastase, a protease active in the lung. Without AAT,
patients experience emphysema or chronic obstructive pulmonary disease. Injection of rAAV1-
AAT into muscle produced wild-type AAT that was dose dependent and persisted for over a year
with no loss of expression, but the serum concentration of AAT did not reach therapeutic levels.
As in the hemophilia B trial, a CTL response to the capsid but not the transgene was detected;
however, the CTL response did not affect AAT expression. The investigators suggested that CD4
regulatory T cells had been induced.

Several groups have developed potential therapies for neurodegenerative diseases such as
Parkinson and Alzheimer that have shown limited success. In the case of Parkinson disease, a
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relatively small region of the brain, the substantia nigra pars compacta, releases dopamine to the
striatum and controls a variety of brain functions. Progressive loss of nigral neurons leads to
Parkinson symptoms. Various genes prevent or slow neurodegeneration or upregulate dopamine
production. Because the striatum can be saturated with vector by stereotactic brain injection, vari-
ous groups have tried to deliver these genes with rAAV vectors. Bartus et al. (170) have used rAAV2
to deliver neurturin, a neurotrophic factor, to striatal tissue in the hope of preventing neurodegen-
eration and increasing dopamine neuron synapses. They saw some evidence for improvement, but
it was clear that most of their patients might have had too few nigral neurons to see a significant
effect; ultimately, they did not reach their primary therapeutic end points. Christine et al. (182)
overexpressed the final enzyme in the dopamine synthetic pathway, aromatic amino acid decar-
boxylase. They also saw some improvement clinically and clearly showed continuous expression
of the gene over time. Encouraging results also have come from a study in which rAAV was used
to treat Alzheimer disease by engineering expression of nerve growth factor in the hippocampus
(183).

Perhaps the most difficult target diseases have been the muscular dystrophies and lysosomal
storage diseases, which affect all cells in the body. To treat these diseases, vectors would have to
be disseminated widely throughout the body and be able to cross the blood-brain barrier to treat
brain and eye tissue. Many investigators have obtained proof of principle in preclinical animal
models and in phase 1 trials (139, 184, 185), but the problem of disseminating rAAV systemically
to all organs has not been solved. The hope is that a newer set of rAAV vectors that provide better
control of viral tropism will solve these problems.

One group has succeeded in winning regulatory approval for an rAAV-based gene therapy
designed to treat lipoprotein lipase deficiency. The lipase is normally present on a variety of cell
surfaces, including muscle, and is involved in the metabolism of fat particles carried in blood. The
European Commission approved in 2012 the use of uniQure’s drug Glybera, an rAAV1-based
vector for intramuscular injection (9). This is the first viral vector that has achieved regulatory
approval in the West. For a complete list of rAAV clinical trials that have been completed or are
ongoing, we refer the reader to http://www.genetherapynet.com/clinical-trials.html.

TOXICITY

To date, there has been no association between toxicity and AAV in clinical trials. However, two
potential sources of toxicity have emerged that must be monitored in human trials. The first is
the immune system. AAV elicits a mild, innate immune response due to the activation of Toll-
like receptor 9 (TLR9) when rAAV infects antigen-presenting cells (186–188). TLR9 monitors
unmethylated CpG residues in nucleic acids and activates the classical and alternative NF-κB
pathways, which leads to the expression of proinflammatory cytokines and interferon response
genes. This expression in turn generates a CTL response and a robust neutralizing antibody titer.
The CTL response in an early factor IX clinical trial appeared to be against AAV capsid, either
because the capsid is long lived in vivo or because contaminants of vector preparations included
mispackaged capsid genes and empty capsids (59, 189); however, CTL responses to transgenes
have also been documented (188). The widespread presence of memory B cells in response to
some AAV serotypes is also believed to be responsible for the absence of expression following
rAAV2–factor IX injection into some patients. Using rodent models, many groups have shown
that little expression is seen following the second injection of the same rAAV vector when the
vector is injected into peripheral organs. In contrast, repeat injection into the eye and brain,
which are partially immunoprivileged, is often successful (190, 191). Several approaches are used
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to minimize immune responses to AAV-mediated gene transfer. The simplest is to treat patients
transiently with immunosuppressive drugs to avoid a CTL response. This appears to have been
successful in the human factor IX trial (165). The use of AAV serotypes that are less prevalent in the
human population is also being investigated. In addition, efforts are underway to map neutralizing
antibody epitopes on the serotypes that are currently being tested (192). This information is then
used to eliminate these epitopes by mutagenesis. Alternatively, virus libraries are used to isolate
escape variants that have lost epitopes for neutralizing antibodies (147).

The second potential source of toxicity is insertional mutagenesis and tumor induction. Sands
and colleagues (193, 194) reported in a knockout mouse model that liver transduction with single-
stranded rAAV expressing β-glucuronidase increased the chance of liver tumors. Examination of
the tumors did not show a high correlation between integrated rAAV and tumors. In addition,
other studies did not show an increased incidence of liver tumors after application of AAV vectors
to liver in B6C3F1 mice, a mouse strain known to be liver-tumor prone (195, 196). Similarly,
Wu et al. (197) showed that overexpression of Tcf12, a gene with unknown function, produced
glioblastoma-like proliferation at the site of injection in rat brain, whereas other neuronal genes
and a null vector did not. These examples suggest that overexpression of a gene in a limited number
of cells may lead to tumor formation even if rAAV genomes do not integrate. Finally, McCarty
and colleagues (198) examined tumor formation by self-complementary AAV vectors in a mouse
liver model prone to hepatocyte tumor formation, C3H/Hej. They found that the frequency of
tumors was elevated in mouse liver injected with either rAAV-GFP or a null vector containing
only the enhancer or promoter. Taken together, this limited data set suggests that insertional
mutagenesis may preclude targeting of some tissues, such as liver, and that each gene cassette may
have to be monitored separately for potential oncogenic effects.

AAV AS A RESEARCH TOOL

In addition to its success in treating human genetic diseases, rAAV has become an important re-
search tool, and its impact is best seen in neurobiology. The first clear example came from injection
of rAAV expressing α-synuclein into substantia nigra, the region of the brain that degenerates in
Parkinson disease (199). Overexpression of α-synuclein in rat substantia nigra caused a progres-
sive neurodegeneration that mimicked the course of Parkinson disease in humans and essentially
produced a new animal model that could be used for identifying promising therapeutics. This
approach can be used to create nonhuman primate and rodent models (200). The use of AAV to
create transgenic animals also has been useful for functional genomic studies. Several groups have
overexpressed or downregulated genes in the hippocampus or substantia nigra to determine their
effect on learning and memory or neurodegeneration, respectively (201–203). Perhaps the most
exciting development has been the recent pairing of AAV with channel rhodopsin expression in
local brain regions (204). This pairing allows optical stimulation of specific neuronal populations
(optogenetics), enabling researchers to study synaptic plasticity and connectivity.

CONCLUSION

It has taken 30 years to develop AAV vectors to a stage where it appears they might fulfill their
promise. Scalable methods for virus production and purification are now available. The kinds of
diseases amenable to intervention with vector technology are becoming clear. The hope remains
the same: Gene therapy will provide a novel set of therapeutic reagents that will allow medicine
to treat many diseases that were previously intractable.
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