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Abstract

In recent years, mass spectrometry has emerged as a core component of
fundamental discoveries in virology. As a consequence of their coevolu-
tion, viruses and host cells have established complex, dynamic interactions
that function either in promoting virus replication and dissemination or in
host defense against invading pathogens. Thus, viral infection triggers an
impressive range of proteome changes. Alterations in protein abundances,
interactions, posttranslational modifications, subcellular localizations, and
secretion are temporally regulated during the progression of an infection.
Consequently, understanding viral infection at the molecular level requires
versatile approaches that afford both breadth and depth of analysis. Mass
spectrometry is uniquely positioned to bridge this experimental dichotomy.
Its application to both unbiased systems analyses and targeted, hypothesis-
driven studies has accelerated discoveries in viral pathogenesis and host de-
fense. Here, we review the contributions of mass spectrometry–based pro-
teomic approaches to understanding viral morphogenesis, replication, and
assembly and to characterizing host responses to infection.
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Posttranslational
modifications
(PTMs): functional
groups that modify
amino acids in proteins
to regulate localization
and function

INTRODUCTION

As obligate parasites, viruses have coevolved with their hosts, developing finely tuned mechanisms
to capture and manipulate host cellular processes for their replication and spread. Furthermore, in
response to infection, cells deploy a range of intrinsic defense mechanisms to curb immediate viral
replication and mobilize local and distal immune effectors. Consequently, viral infection triggers
an impressive array of changes in the cell proteome, metabolome, and lipidome. These changes are
starting to be established as key markers of the infection status. Mass spectrometry (MS) provides
the unique ability to accurately define these diverse changes via either global unbiased analyses or
targeted hypothesis-driven strategies. Here, we review the contribution of MS-based proteomic
approaches to understanding viral and host protein functions and their regulation during infection.

The proteome—that is, the total protein content of a cell—is extraordinarily complex. Quan-
titative proteomic analyses have provided estimates of 0.5–3 × 106 proteins/μm3 for human cells
(1). These proteins are encoded by ∼16,000–20,000 open reading frames, and all are subject to
transcriptional, posttranscriptional, translational, and posttranslational regulation, which varies
with cell and tissue types. Viruses co-opt and further expand the complexity of the proteome
during infection. In fact, it is at the proteome level that most cellular pathways are modulated;
viral or host genes exert most of their functions during infection at the protein level. Therefore,
defining protein function during infection is challenging.

As with other research fields, virology has reached a stage when expanding research bound-
aries and answering long-standing questions benefit from the integration of technologies from
diverse disciplines. Using modern quantitative MS, protein levels, localizations, interactions, and
posttranslational modifications (PTMs) can be unambiguously and unbiasedly defined during in-
fection. Thus, because they are both versatile and unique in the data they provide, MS-based pro-
teomic strategies can readily be integrated with microscopy, biochemistry, genomic, and molecular
virology approaches to generate a systems biology view of the viral replication cycle (Figure 1).
As discussed in this review, MS studies have characterized virion composition and structure, virus-
host protein interactions, global and subcellular proteome changes, infection-induced secretomes,
and viral and cellular protein PTM functions. Our laboratory has extensively studied virus-host
protein interactions that provide direct mechanistic insights regarding protein complexes and cel-
lular pathways modulated during infection, thereby offering new targets for antiviral therapeutic
intervention. Given the inherent dynamic nature of protein interactions, the study of virus-host
interactions has benefited from the development of sensitive and quantitative MS approaches to
quantify infection-driven changes in protein interactions, to capture stable and transient interac-
tions, and to build functional interaction networks (Figure 2). To provide hands-on experience
with analyzing proteomic data sets, we have developed two tutorials for generating protein in-
teraction networks (Supplemental Tutorial 1) and determining protein interaction specificity
(Supplemental Tutorial 2) (Figure 2). We also provide a list of prominent qualitative, quan-
titative, and structural MS-based approaches relevant to virology (Table 1). As MS and related
computational strategies are continuously improving, we discuss several emerging approaches that
show great promise for application to virology studies.

VIRION COMPOSITION AND STRUCTURE

Mature viral particles are a microcosm of their host, composed of cell-derived amino acids, lipids,
and nucleotides. The intricate assembly of these components is required to produce an infectious
virus. Although many complementary analytical methods have contributed to understanding the
composition of extracellular virions (2, 3), MS has provided a powerful means for characterizing
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Figure 1
Contribution of mass spectrometry (MS)-based proteomics to understanding viral infection. The productive infection cycle of the
prototypic human virus herpes simplex virus 1 (HSV-1) is depicted within a susceptible host cell. Key aspects of the virus life cycle that
can be studied using MS-based proteomics are designated by numbers. Briefly, the composition and structure of mature virions can be
characterized by tandem MS and native MS, respectively (�). Affinity purification (AP)-MS can detail interactions between viral and
host constituents at the cell surface mediating entry (�); in the nucleus regulating transcription, genome replication, and capsid
assembly (�); and in the cytosol aiding egress and assembly (�). Quantitative MS can measure virus-induced, organelle-specific
changes in protein expression and posttranslational modifications (�) and the secretion of antiviral mediators that initiate the innate
and adaptive immune response (�). Viral proteins are shaded red and yellow; host proteins are shaded blue and purple.
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their detailed protein composition and macromolecular structures (Figure 2). For compositional
analysis, most studies have focused on viruses with high proteomic complexity, including those in
the families Herpesviridae (4–9) and Poxviridae (10–12). A noteworthy exception was the compar-
ison of adenovirus subtypes using isotope-labeled (18O) water by the Fenselau laboratory (13), an
early application of 18O for comparative quantitative proteomics of complex biological samples.
MS analysis of virion composition has also offered proof of evolutionary origins. In a pioneering
study, MS analysis of purified channel catfish virus virions provided amino acid sequence data to
support the common evolutionary origin of this virus with other herpesviruses (14), a hypoth-
esis previously based only on capsid and virion morphology. Subsequently, deeper proteomic
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analyses have been conducted on mammalian herpesviruses, such as human (8) and murine (5) cy-
tomegaloviruses, herpes simplex viruses (7, 9, 15), Epstein–Barr virus (EBV) (4), and pseudorabies
virus (PRV) (6). Technological advances in MS instrumentation have improved the sensitivity of
detection, providing near-complete proteome coverage and access to low-abundance virion com-
ponents (6, 7, 16). These developments have helped establish that virions contain host proteins
and have triggered the expansion of MS studies to the proteomes of filoviruses, HIV, influenza,
and respiratory syncytial virus (16–22). Nevertheless, defining virion composition still presents
challenges and is a developing area of research. Purifying homogeneous populations of virions is
difficult; for example, the presence of nonenveloped capsids in preparations of mature herpesvirus
virions is common. Therefore, virion preparation purity must be assessed using microscopy tech-
niques prior to MS analysis. The identification of virion-associated host proteins also presents
challenges in distinguishing those that are specifically and functionally incorporated. It is critical
that host factors are screened to eliminate spurious candidates. Current approaches involve deter-
mining proteinase sensitivity (6, 9) and/or performing functional RNA interference–based virus
propagation assays (16, 22).

Recent technology developments have allowed MS to also contribute insights into the structure
of virions. An emerging biomolecular technique, termed native MS, enables the detection of
complexes of several million daltons (23, 24). When combined with ion mobility, a gas phase–based
separation, native MS becomes a valuable technique for structural virologists to determine the size
and shape of intermediate and mature capsid structures (Figure 2) (25–27). As many capsid proteins
self-assemble in vitro, native ion mobility MS can monitor the dynamics of capsid morphology and
stability as a function of pH and ionic strength (28, 29). For example, native MS and atomic force
microscopy have demonstrated that the single-stranded RNA genome of the picorna-like Triatoma
virus stabilizes or triggers uncoating of the capsid in a pH-dependent fashion through electrostatic
genome-capsid interactions (29). In addition to native ion mobility MS, hydrogen/deuterium
(H/D) exchange MS has been used as a complementary strategy for characterizing the assembly
of viral capsids (30). In this technique, the rates of amide proton exchange (deuterium versus
protium) are used as a measure of relative solvent accessibility. For the study of macromolecular

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
(a) Multifaceted mass spectrometry (MS)-based analyses of viral structures, interactions, and pathogenesis. Orthogonal workflows
illustrate biochemical and MS-based approaches that can be used to study recombinant viral proteins expressed in bacteria or
mammalian cells, extracellular virions, or virus-infected mammalian cells. Masses of intact viral assemblies can be determined by
electrospray ionization (ESI)–native MS (also called top-down MS), with an orthogonal ion mobility separation to assess molecular
compactness (top). Peptide-based MS (also called bottom-up MS) analysis requires denatured protein extracts obtained from
extracellular virions, infected cells, organelles, or virus-host complexes. Protein extracts can be directly digested to MS-amenable
peptides, or they can first be separated by SDS-PAGE and then in-gel digested into peptides. Following nano–liquid chromatography
and ESI (nLC-ESI), peptide sequencing is performed by successive rounds of intact and fragment peptide mass measurements (tandem
MS) in the mass spectrometer. Peptide quantification strategies use MS or tandem MS spectra as the basis for protein-level
quantification. Global quantitative techniques can use either isotope labeling—within the cell, for simultaneous comparison of usually
up to three samples (SILAC), or at the peptide level, for comparison of currently up to ten samples (isobaric tags)—or label-free
quantification (peak area or spectral counts). Selected reaction monitoring (SRM) is used for targeted analyses in isotopic or label-free
workflows. (b,c) Supplemental Tutorials 1 and 2 provide hands-on experience in the computational analysis of AP-MS data sets. (b) In
Supplemental Tutorial 1, a data set of high-confidence protein identifications from HDAC1-EGFP immunoisolations is provided as
an example for construction and analysis of functional protein networks using the STRING database of known and predicted protein-
protein interactions. (c) In Supplemental Tutorial 2, protein identifications from HDAC1-EGFP immunoisolations that have not
been filtered for specificity are provided. The tutorial demonstrates how to use spectral counting to classify specific versus nonspecific
associations. Abbreviations: H, heavy; hpi, hours postinfection; I, infected; L, light; M, mock; M9+, molecular ion with a charge state of
9; SC diff, spectral count difference.
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virus structures, this technique allows determination of amino acid sequence regions that undergo
changes in conformation and/or modification of intermolecular contacts during infection. For
example, the Prevelige laboratory (31) compared H/D exchange rates for immature, mature, and
Gag/CA5 mutant capsids. H/D exchange rates supported increased protection in the β-hairpin and
the NTD-CTD interface in mature virions, which interestingly had yet to form in the Gag/CA5
structural intermediate. Overall, these approaches rely on the stability of complexes in solution
and in gas phase (for native MS) and therefore are technically demanding; however, with increases
in the mass resolution and acquisition speed of the instruments used, analysis of intermediate
virion structures with increased heterogeneity and mass will become feasible.

VIRUS-HOST PROTEIN INTERACTIONS

Dynamic Protein-Protein Interactions During Infection

The progression of viral infection depends on the establishment of numerous finely tuned virus-
host and virus-virus protein interactions. Through these dynamic protein-protein interactions,
complex cellular pathways are modulated to promote viral replication or act in host defense.
Understanding which host factors are targeted by viral proteins provides direct insight into the
molecular details of infection and identifies regulatory hubs for antiviral intervention. The identi-
fication of virus-host interactions has benefited greatly from the use and continuous development
of antibody-based affinity purification (AP; also known as immunoprecipitation) strategies (re-
viewed in 32). Their integration with MS (AP-MS) (Figure 2) has allowed a protein’s interacting
partners to be identified with little to no a priori knowledge (33). Most studies have focused on
interactions at one given time point of infection. For example, the Knipe laboratory (34, 35) used
AP-MS to study virus-host protein complexes containing the immediate-early proteins ICP27 or
ICP8 at an early stage of herpes simplex virus 1 (HSV-1) infection in human Hep2 cells. Interest-
ingly, components of SWI/SNF and ISWI chromatin-remodeling complexes were coisolated with
the single-stranded DNA–binding protein ICP8. The identification of chromatin-remodeling en-
zymes was a key finding, because at that time, their role in productive HSV-1 infection was not
clear. This study clearly stimulated further investigations, as chromatin-remodeling complexes
are now established as important players during infection (reviewed, e.g., in 36).

Although the spatial and temporal regulation of virus-host interactions is at the core of their
functions during the progression of an infection, it was not until the use of fluorescent probes for AP
by Cristea and coworkers (37) that the applicability of AP-MS was demonstrated for the isolation of
protein complexes at different stages of a viral infection (38). In this initial study, the Sindbis virus
nonstructural protein nsP3 was affinity-tagged at its native genomic locus with green fluorescent
protein (GFP), while maintaining the virus’s replication competence and infectivity in fibroblasts
(38). The GFP tag afforded the temporal examination of protein localization and interactions (37)
at a given moment in infected cells (38, 39). Further advancements introduced through this AP-
MS strategy were cryogenic cell lysis of infected cells and fast isolations on magnetic beads, which
helped preserve complexes close to their original state in the cell, maximized viral bait isolation,
and reduced nonspecific interactions (38). These strategies offered a temporal distinction of virus-
host interactions, such as with G3BP1 throughout the infection and with heterogeneous nuclear
ribonucleoproteins at early and 14-3-3 proteins at late stages of Sindbis virus infection. The
power of these approaches for the discovery and functional characterization of various virus-host
interactions (33) was demonstrated in our studies of diverse viruses, including Sindbis virus (38,
40), human cytomegalovirus (HCMV) (41–44), HSV-1 (45), PRV (46, 47), and West Nile virus
(48).
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Another significant advancement to increase AP specificity was the development of the tandem
affinity purification (TAP) tag system, originally applied to characterizing multiprotein complexes
in yeast (49) and subsequently extended to mammalian systems (50). As the name implies, TAP uses
a dual epitope tag for successive immunoaffinity isolations and has been applied to interactions
within virus-infected cells (51–54). For example, a streptavidin- and calmodulin-binding TAP
system was used to isolate the vaccinia virus A56 and K2 proteins, which localize to the cell surface
and are required for interaction with the entry fusion complex (51). Overall, the two-step TAP
system reduces background contaminants and identifies stable interactions, but unlike single-step
AP, it often cannot retain transient interactions.

Although studying virus-protein interactions in the context of an infection by using full-length,
replication-competent viruses is ideal, in vitro or cellular overexpression of individual affinity-
tagged viral proteins has also shown utility for studying interactions (55–60), particularly when the
generation of recombinant viruses has proved difficult. For example, in a large-scale interactome
study, all the viral proteins encoded by the HIV genome were individually expressed in 293 and
Jurkat cells and subjected to TAP AP-MS analysis (61). Almost 200 interactions were identified in
both cell types. Moreover, 97 of 127 selected interactions were confirmed by reciprocal isolations,
highlighting the confidence of this data set. In general, one drawback of the expression of single
viral proteins within cellular systems is that it cannot fully recapitulate the diversity and temporality
of signaling pathway modulation during an infection. Furthermore, virus-host interactions that
depend on the expression of other viral proteins are missed. Nonetheless, this approach can isolate
interactions of biological significance, as evidenced by the aforementioned HIV interactome,
which stimulated further biological insights into HIV pathogenesis. Ultimately, these studies
accelerate insights into how viral proteins could directly alter host cell functions.

In combination with advances in molecular virology, AP-MS studies have significantly im-
proved our understanding of the molecular mechanisms that underlie the virus life cycle. As the
number of studies and the diversity of human viruses are sizable, we focus on selected works
in which MS-based proteomics has facilitated insights into key aspects of virus biology, namely
virus–host cell signaling, genome replication, and assembly and maturation.

Elegant AP-MS studies have described protein interactions early during infection that permit
virus entry and promote cell survival (62–64). For example, after initial binding to cell surface
receptors, Kaposi sarcoma–associated herpesvirus (KSHV) is rapidly translocated in a c-Cbl-
dependent manner to lipid rafts and internalized into macropinosomes (65). To define signaling
molecules that stimulate c-Cbl recruitment, KSHV entry complexes were isolated via α3β1 inte-
grin at a remarkably early time of infection (5 min postinfection) in human endothelial cells (64).
EphA2 was found in a functional complex with integrins, c-Cbl, and myosin IIA and was further
shown to impact macropinocytic entry and KSHV trafficking (64). In another study, Gabaev et al.
(66) identified the HCMV pUL11—a glycoprotein expressed at the cell surface—as an inter-
action partner and ligand of the receptor tyrosine phosphatase CD45. Importantly, the authors
determined that this interaction generated an immunosuppressive phenotype, as pUL11 binding
reduced tyrosine phosphorylation, leading to inhibition of T cell proliferation (66).

Once inside the host cells, the virus initiates programs aimed at replication of its genome.
Genome replication mechanisms vary widely across virus families, yet all viruses leverage host
protein functions. AP-MS has been employed to determine the identity of such host proteins, for
instance, proteins in replication complexes at viral promoters in herpesviruses (67–69), viral poly-
merases of influenza virus (53), and preintegration complexes in HIV-1 (70). In HCMV infection,
the virion protein pUL83 was found to induce transcription from the viral major immediate-
early promoter (MIEP). To explore the molecular mechanism of this function, we defined
pUL83 interactions, identifying the interferon-inducible protein IFI16 (43). Using chromatin
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immunoprecipitation, pUL83 and IFI16 were simultaneously localized to the MIEP. Interest-
ingly, pUL83 not only sequestered IFI16 but also co-opted it for regulation of immediate-early
gene expression. The subsequent identification of IFI16 as the first known nuclear DNA sen-
sor (70a, 71, 72) and of the pUL83-dependent inhibition of this sensing function (73) further
highlights the ability of AP-MS approaches to drive discoveries in molecular virology.

Following genome replication and viral protein synthesis, a coordinated program assembles the
final infectious particle. Global proteomic approaches have characterized virion compositions (see
above), but the cellular factors that coordinate virion assembly are less well understood. Integra-
tion of AP-MS with imaging tools can help determine how viruses hijack host vesicular transport
and secretory pathways (74–76). In Ebola virus infection, because VP40 expression alone and its
transport to the plasma membrane (PM) lead to release of filamentous virus-like particles (77),
Yamayoshi et al. (54) examined its host interactions in 293 cells. The COPII complex component
Sec24C was identified and validated by colocalization and reciprocal isolations, and its contribu-
tion to virus-like particle formation was demonstrated by knockdown studies (54). For viruses with
greater virion proteome complexity, such as herpesviruses, trafficking and assembly of >50 distinct
virion components are required. To investigate the spatial-temporal relationship of virion com-
ponents during HCMV virion assembly, we combined AP-MS, molecular virology, and confocal
microscopy (42). During HCMV infection, GFP-expressing fusions of pUL99 or pUL32—viral
proteins required for virion assembly—were found to associate with distinct host factors, including
ubiquitin and clathrin. The existing functional knowledge regarding these factors led to the model
that pUL99 associates with the ESCRT/TGN pathway, whereas pUL32 traffics in clathrin-coated
vesicles. Interestingly, at the same time, the viral glycoprotein gB localized to endosomes, and it was
not until late in infection that all three proteins merged within a large virion assembly structure (42).

Independent of virus type or stage in the life cycle, the true value of AP-MS lies in its comple-
mentarity with biochemistry, molecular biology, and optical approaches. AP-MS has the unique
ability to identify and functionally profile previously unknown interactions from a complex bio-
logical state. Quantitative MS approaches and continuous developments in bioinformatics (see
Computational Strategies for Protein Interaction Analysis, below) can provide a precise definition
of temporal changes in virus-host interactions and are expected to continue expanding the range
of AP-MS applications to virology studies.

Viral RNA–Host Protein Interactions

As many viruses do not encode their own transcription machinery, regulation of viral gene tran-
scription is achieved via recruitment of host polymerases and host factors. Although protein AP can
target host proteins to identify unknown effectors of viral transcription, an alternative approach
is to target the viral genome itself (78, 79). AP-MS approaches have been adapted to identify
proteins that bind viral RNA (vRNA), most often to the 5′ or 3′ untranslated regions thought to
function in the initial stages of vRNA replication and translation (80). Similar to protein-based
AP-MS, RNA-based AP-MS employs epitope tagging, with biotin as a tag of choice due to its ease
of conjugation to nucleotides and high affinity with avidin (Kd = ∼10−14 M). For example, the
first RNA-based AP-MS studies investigated cellular factors associated with the 3′ untranslated
region of hepatitis C virus RNA using biotinylated oligonucleotides complementary to the vRNA
(81, 82). However, nonspecific binding can be an issue given the negatively charged phosphate
backbone of oligonucleotides. To address this issue, a DNA mimic, termed peptide nucleic acid,
was developed to replace the phosphate backbone with amide bonds, providing reduced nonspe-
cific binding (83). For viruses such as poliovirus that do not use host polymerases to replicate, we
have shown that UV-sensitive nucleotide analogs can be incorporated selectively into the vRNA,
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which is ideal for studying vRNA-protein associations directly from infected cells (84). Because
associations in close apposition are cross-linked, nonspecific binding is reduced through high-
stringency isolation. Overall, although nucleotide-based AP-MS is not as technologically refined
as its protein-based sibling, future studies targeting virus-induced transcriptional effectors will
benefit greatly from these affinity- and MS-based strategy developments.

Computational Strategies for Protein Interaction Analysis

The sensitivity of AP-MS methodologies has allowed detection of lower-abundance species, which
include indirect specific and nonspecific associations. Although this expands the pool of candidate
binding partners, often it results in data sets too large to evaluate with functional assays. Recently
developed computational platforms address this challenge, evaluating interaction specificity and
functional relationships for diverse AP-MS data sets (85–87). A major advancement was the de-
velopment of scoring algorithms for filtering nonspecific interactions (61, 88–90). Although these
tools have yet to be used routinely for virus-host AP-MS data sets, we have used the Significance
Analysis of INTeractome (SAINT) scoring algorithm (90), which models protein spectral counts
between experimental and control affinity purifications (Figure 2), in our study of HSV-1 pUL46
tegument protein interactions during infection (45). One notable pUL46 interaction was the viral
E3 ubiquitin ligase ICP0, which triggered a proteasome-dependent degradation of pUL46—a first
example of virus-induced degradation of a viral protein. Another interaction specificity predictor,
MiST, distinguished high-confidence virus-host protein interactions of epitope-tagged HIV pro-
teins individually expressed in human cells (61). These computational approaches are effective at
predicting nonspecific associations to the resin and tag, but contaminants that bind to the isolated
proteins are more difficult to discern. To address this issue, an approach using metabolic labeling
with stable isotopes was developed (I-DIRT; see Figure 2) (91, 92).

As proteins usually exist within multiple complexes with distinct functions, high-scoring can-
didate interactions can be further evaluated through functional classification and network-based
relationships. Bioinformatic network tools, including STRING and GeneMania (93, 94), can
score direct and indirect protein functional relationships using public database repositories, such
as IntAct and Reactome (95, 96). Virus-centric repositories have also been established, including
ViralZone (97) and VirusMINT (98), as well as GPS-Prot, which focuses on HIV-host interactions
(99). As bioinformatic strategies are a critical aspect of interaction studies, this review includes two
interactive tutorials for construction of functional protein interaction networks (Supplemental
Tutorial 1) and evaluation of protein interaction specificity (Supplemental Tutorial 2).

To supplement interaction networks, recent studies have demonstrated the utility of overlaying
annotation and quantitative information to identify high-value candidates for focused biological
validation (92). Future AP-MS studies will benefit from increased use of quantitative MS (100), par-
ticularly for determining complex stability and absolute abundances within viral complexes. The
continued refinement of computational tools will ensure reliable cataloging of virus-host interac-
tions and streamlined web-based interfaces to fuel the cycle of hypothesis generation and testing.

MASS SPECTROMETRY–BASED ANALYSIS OF GLOBAL
PROTEOMES DURING VIRAL INFECTION

Intracellular Proteome Expression and Reorganization

Viral infection triggers a drastic transformation in intracellular proteomes, including de novo
expression of viral proteins and reorganization of organelles. With the ability of MS-based
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proteomics to simultaneously quantify thousands of proteins, an unbiased proteome profiling
of infected cells permits the discovery of new viral gene products not previously predicted or
observed. Recently, MS and ribosome occupancy profiling were used to identify and temporally
resolve unique, previously unreported HCMV polypeptides (>50) and transcripts (>550) dur-
ing infection (101). Sequences of uncharacterized proteins and transcripts could be mapped to
nonannotated or overlapping annotated HCMV genomic loci and corresponded with alternative
splicing or translation sites within known HCMV gene transcripts. This study highlighted the
necessity of MS approaches to reveal the true genetic complexity and protein diversity of even
well-studied viruses.

Moreover, as alterations in protein localizations and abundances within subcellular compart-
ments reflect host defense responses and viral morphogenesis processes, several studies have
utilized biochemical fractionation or affinity isolation techniques in conjunction with MS to char-
acterize target organelle subproteomes. These enrichment strategies confer increased sensitivity,
providing greater molecular details of host and viral processes. For instance, metabolic labeling
using stable isotope labeling in cell culture (SILAC; see Figure 2) was employed to quantify
virus-induced expression changes in Golgi-enriched fractions from mouse hepatitis virus (MHV)-
infected hepatocytes (102). Here, mock- and virus-infected cells were labeled with light- or heavy-
isotopic amino acids and then mixed 6 h postinfection, allowing enrichment of Golgi membranes
from a single isolation. Overall, SILAC is well suited for minimizing quantification variance from
multistep proteomic approaches. Following MS quantification, selected differentially regulated
Golgi-resident and vesicle trafficking factors, such as SEC22B and the Ragulator complex protein
LAMTOR1, were shown to alter MHV virion assembly using RNA interference and overexpres-
sion assays. Other noteworthy studies have coupled nuclear-cytoplasmic biochemical fractionation
with quantitative MS to delineate modulation of compartment-specific pathway functions dur-
ing HSV-1 (103), influenza A (104), adenovirus (105), and respiratory syncytial virus (106)
infection.

Subproteome studies have also been extended to the PM. Functioning at the interface be-
tween the cell and the extracellular space, the PM is a site of intercellular signal integration
and propagation. Furthermore, viruses that derive their envelopes from cellular membranes cap-
ture integral viral and cellular proteins necessary for subsequent infection. Due to their roles
in viral morphogenesis and their accessibility to small molecules, PM constituents are promis-
ing targets for antivirals. To profile cell surface proteins by MS, PM enrichment by chemical
derivatization–affinity purification confers reduced organelle contamination and improved de-
tection of low-abundance membrane receptors (107, 108). Berro et al. (109) used cell surface
biotinylation coupled with streptavidin affinity chromatography to investigate PM changes in
HIV-1 latently infected lymphocytes. Differentially expressed integral and membrane-associated
proteins, including the antiapoptotic proteins XIAP and Mcl-1, were identified and validated by
orthogonal techniques. Interestingly, drug inhibition of XIAP and Mcl-1 expression sensitized la-
tently infected cells to apoptosis. More recently, during latent HCMV infection, the degradation
of the PM drug transporter MRP1 by the viral protein pUL138 was discovered by SILAC-MS
after PM enrichment (110). Loss of MRP1 conferred sensitivity to cytotoxic MRP1 drug sub-
strates in latently infected monocytes and hematopoietic progenitors. Therefore, these studies
propose therapeutic strategies for the specific elimination of cells latently infected with HIV or
HCMV. Our lab used affinity isolation and label-free MS quantification (Figure 2) to investigate
HCMV-induced PM changes across productive immediate-early, early, and late stages of infec-
tion (111). The low-density lipoprotein receptor LRP1, which negatively regulates cholesterol
influx into cells (15), was strongly upregulated early in infection. Disruption of LRP1 activity in-
creased intracellular and progeny HCMV envelope cholesterol levels, which was correlated with
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greater virion infectivity. Similar to our HCMV studies, depletion of cholesterol was observed to
compromise infectivity of other enveloped viruses, such as HIV-1, hepatitis B and C viruses, and
influenza (112–115). Thus, the LRP1 PM recruitment could reflect a general antiviral response
that starves the infected cell of cholesterol, promoting the production of infection-incompetent
virions. Altogether, quantitative MS–based subproteomic profiling heightens our understanding
of host-virus dynamics by providing sensitivity and spatial resolution during infection.

Cellular Secretomes During Infection

Viral infection also significantly alters the proteome within the extracellular space. This is critical
from the host perspective, as the virus-induced secretion of signaling factors mediates the onset of
innate and adaptive immunity (116). Secreted cytokines, inflammation effectors, and cell adhesion
molecules recruit and activate circulating blood leukocytes and alert neighboring cells. These
events initiate tissue destruction and antiviral cellular programs at the infection epicenter, abating
viral dissemination. Importantly, approximately 10% of the human genome open reading frames
encode proteins that are secreted (117). Considering their physiological importance and protein
richness, the characterization of cellular secretomes by MS can drive key insights into the molecular
mechanisms of host immunological responses.

Due to their roles in immunosurveillance, monocyte-derived macrophages have been a focus
for many MS-based secretome analyses (118–121). In one study, isobaric tagging and tandem MS
(Figure 2 and Table 1) quantified the secretion of >400 proteins from HSV-1-infected
macrophages (121). Interestingly, bioinformatic analyses revealed that 80% of these are exosomal
proteins, suggesting export through nonconventional, vesicle-mediated pathways. Furthermore,
though the HSV-1-induced secretome was composed of known secreted danger signals and im-
munomodulators, interferon-inducible proteins not known to be secreted were also detected,
including IFIT1, STAT1, and MxA. Finally, the authors found no secretion of the proinflam-
matory cytokine interleukin-1β, a process known to depend on the inflammasome—a caspase-
1-containing complex (122). These results implicated an HSV-1 mechanism for antagonizing
inflammasome activity, which was subsequently demonstrated (123). Hence, in a single MS-based
secretome study, the authors were able to unbiasedly confirm and discover a variety of cellular
secretion responses to viral infection and to predict an immunoevasive function of HSV-1. In-
terestingly, the influenza A–induced secretome (120) exhibited significant overlap with those of
HSV-1 (121) and HCMV (124) in cytokines, cathepsin proteases, and danger-associated signals,
suggesting the activation of common downstream signaling pathways in response to different
viruses. Secreted cathepsin protease activity was shown to be required for both inflammasome
stimulation and apoptosis in response to influenza (120). These studies illustrate the ability of
quantitative MS to complement traditional antibody array–based analyses of secretomes and re-
veal details of cellular immune responses to viral infection.

MS-based secretome analyses have also identified factors that contribute to virus-associated
pathologies. Accruing data suggest that chronic inflammation triggered by persistent, lifelong
HCMV infection contributes to vascular pathologies, including atherosclerosis and allograft re-
jection (125–127). Considering recent evidence implicating angiogenesis in HCMV-associated
vasculopathies (128), Dumortier et al. (124) profiled the secretome of HCMV-infected human
dermal fibroblasts. Pathway analysis revealed that the HCMV-specific secretome was enriched
for proangiogenic and wound healing factors. Indeed, supernatants from HCMV-infected cells
induced angiogenesis and wound healing responses in primary human endothelial cells. Addition-
ally, other MS-based studies have investigated the mechanisms of HIV-associated neurodegener-
ation through secretome profiling of HIV-infected phagocytes (118, 119). Together, these studies
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substantiate the effectiveness of MS in understanding the immunological and pathophysiological
consequences of viral infection through characterization of cellular secretion patterns.

ROLES OF PROTEIN POSTTRANSLATIONAL MODIFICATIONS
IN VIRUS INFECTION

In addition to changes in abundances and subcellular localizations, proteins are subject to regu-
lation by posttranslational modifications (PTMs), which, during an infection, can be modulated
by either cell- or virus-encoded factors. PTMs have been recognized to regulate an expanding
array of protein properties, for example, stability, localizations, activities, and interactions. Fur-
thermore, the list of existing PTMs is growing faster than our understanding of the functions
they mediate. Without a doubt, the temporal and spatial definition of PTMs during infection
can provide critical mechanistic knowledge regarding important viral and cellular processes. To
this end, MS-based proteomic strategies conferring high sensitivity have been developed for the
unambiguous identification, quantification, and localization of PTMs within protein structures.

Several MS studies have focused on intracellular PTM dynamics on viral proteins during
infection. For example, Bell et al. (129) discovered 95 phosphorylations and 10 ubiquitinations
within HSV-1 proteins enriched for cellular trafficking and immune evasion functions. Although
this study did not functionally assess the identified PTMs, it highlights the sensitivity and breadth of
modern MS-based proteomics with respect to PTM identification and the scarcity of information
regarding viral PTMs in the context of infection. Analysis of these phosphorylation sites revealed
great sequence degeneracy, suggesting that the kinases mediating these phosphorylation events
either have altered behavior during infection or have not yet been characterized. Global PTM
studies are, therefore, effective ways of building comprehensive databases for future functional
characterization of modifications and the pathways that regulate them.

The ability of global PTM studies to access lower-abundance modifications has benefited from
a variety of affinity enrichment strategies (as reviewed in 130), including PTM-specific antibodies
and immobilized metals, such as Fe and TiO2. Recently, TiO2 phospho-enrichment was success-
fully applied for mapping the phosphoproteome of influenza A–infected human cell lines (131).
Here, an identified phosphorylation within the influenza A nucleoprotein was found to be necessary
for efficient viral replication. As an alternative to PTM-specific enrichment, immunoaffinity iso-
lation of a protein of interest allows the simultaneous detection of various PTMs within the target
protein, aiding the investigation of PTM-dependent protein function. For instance, the HCMV
immunosuppressant protein pUL83 (73) was known for several decades to be heavily phosphory-
lated (132); however, the sites and functions of these phosphorylations remained unclear. Recently,
we identified eight phosphosites within immunoaffinity-isolated pUL83 and established that one
phosphorylation, under the control of host kinases, functions to block pUL83-dependent dispersal
of cellular innate immunity effectors (73). Similarly, several identified phosphorylations within the
multifunctional HSV-1 protein ICP0 were found to modulate its ubiquitin ligase, transactivation,
and localization activities using an AP-MS/mutagenesis approach (133). In addition to studying
intracellular viral PTMs, several studies have profiled modifications within purified mature virions
(6, 131, 134, 135). This strategy may distinguish PTMs important for virion structure, entry, and
dissemination from those added de novo to regulate intracellular viral protein functions over the
course of infection.

Dynamic PTMs on host proteins have also been demonstrated to mediate critical cellular
functions related to viral infection. For instance, the DNA sensor IFI16 is an effector of in-
nate immune responses during viral infection, detecting viral DNA in both the nucleus and the
cytoplasm (71–73, 136, 137). Using AP-MS, we identified two acetylations within its nuclear
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localization signal that modulate IFI16 nuclear-cytoplasmic distribution, effectively expanding
its range of immunosurveillance to both subcellular compartments (71). Interestingly, multiple
acetylations within other innate immunity signaling components—OAS2, TRIM25, IRAK4, and
RIG-I—were identified using anti-acetyllysine antibody enrichment and MS (138). As drug in-
hibition of cellular deacetylases strongly attenuates pathogen- and immunogen-induced immune
responses (139–141), it is tempting to speculate that acetylation plays a key role in modulating
immune signaling pathways. Further studies of acetylation-dependent functions are required to
strengthen this hypothesis.

PTM-dependent pathways have also been characterized by investigating the enzymes that
regulate these modifications using MS-based chemoproteomic approaches. As PTM-modifying
pathways are commonly implicated in disease pathogenesis, a plethora of small-molecule inhibitors
have been developed to target them. Taking advantage of this concept, metabolic labeling was
effectively coupled with AP of cellular kinases via immobilized inhibitors to quantify cellular ki-
nome changes during HCMV infection (142). The authors demonstrated that drug inhibition of
AMPK, a kinase found to be upregulated during infection, decreased virus growth, in agreement
with a previous RNA interference screen of kinases during HCMV infection (143). Whereas this
chemoproteomic strategy assessed relative protein abundances, other MS-amenable techniques
have been designed to measure enzyme activity. For instance, hemagglutinin-affinity-tagged ubi-
quitin derivatives were developed as active site–directed probes for deubiquitinating enzymes
(DUBs) (144). By using AP of active DUBs and MS analysis, the activities of several DUBs were
found to be strongly upregulated in EBV-infected lymphocytes (145). Unique DUB activity was
additionally identified following EBV establishment of latency and correlated with changes in cell
proliferation rates. Altogether, these studies provide just a glimpse of the value that defining PTMs
in the context of infection can provide for understanding the molecular details of viral infection.

CONCLUSIONS AND FUTURE PERSPECTIVES

Intimate virus-host coevolution has shaped viruses in their every facet. Their genomic organi-
zation, virion structure, and protein arsenal are all finely tuned to exploit and manipulate the
molecular processes of their permissive host cells. As a consequence, viruses must induce complex
alterations in intracellular protein abundance and activity to dismantle inhibitory host functions
and promote their own propagation. For this reason, modern MS-based proteomics, in conjunc-
tion with orthogonal approaches, is perfectly suited for acquiring a systems understanding of
virus-host dynamics. The sensitivity, speed, accuracy, and analytical breadth conferred by recent
advances in MS instrumentation, sample preparation, and bioinformatics have allowed researchers
to successfully elucidate the molecular details of viruses and their interactions with hosts.

Thus far, global proteome studies have provided a wealth of quantitative information regarding
intracellular protein identifications and abundances during viral infection. Paired with MS detec-
tion, parallel genomic and bioinformatic analyses have enabled functional categorization of host
response pathways and identification of previously uncharacterized viral gene products. However,
the dynamic range and spatial-temporal insight of current MS-based proteomic approaches are
still limiting factors. These issues can be partly mitigated using organelle enrichment strategies
performed across multiple time points of infection, which offer not only protein temporal kinetics
and subcellular localizations but also increased sensitivity for subtle proteomic changes otherwise
undetected in global analyses. These fractionation approaches come with their own challenges,
but organelle enrichment techniques are continuously improving and show promise for uncov-
ering mechanisms of virion assembly. Apart from sample fractionation, targeted detection using
selected reaction monitoring (SRM) (Figure 2 and Table 1) also holds great potential for accurate
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quantification of low-abundance proteins or PTMs (146). Future incorporation of SRM in viral
studies can provide relative and absolute quantification of critical factors, and possibly stoichiom-
etry within infection-induced structures; in addition, the application of SRM to high-throughput
identification of biomarkers of infection in clinical settings is a particularly exciting future
direction.

Apart from global and subproteome studies, immunoaffinity isolation coupled with MS has
provided invaluable insights into the dynamic functions and components of viral and cellular
protein complexes during infection. These MS-based analyses come with their own challenges,
including distinguishing specific from nonspecific associations. The incorporation of computa-
tional analyses to predict interaction specificity into proteomic workflows represents a technical
milestone in resolving these issues. Integration of these strategies with the metabolic labeling strat-
egy I-DIRT can offer additional validation of interaction specificity and, importantly, a measure
of the relative stability of a protein (92). Furthermore, because functional interaction networks
constructed from single affinity purifications cannot differentiate direct and indirect protein in-
teractions within complexes, improvements in chemical cross-linking reagents and bioinformatic
tools will accelerate the definition of protein interface topologies, as elegantly demonstrated for
virus-plant interactions (147). Finally, characterizing virus-host protein interactions at multiple
stages of infection can be laborious and expensive (due to extensive instrument analysis time).
Isobaric tag labeling (Figure 2 and Table 1) after immunoisolation of virus-host protein com-
plexes may provide an effective multiplexing strategy to simultaneously analyze multiple stages
of infection. Altogether, the future incorporation of the above techniques into viral studies will
help expand our knowledge of the viral and host protein complexes that mediate critical processes
during infection.

In recent years, it has become increasingly evident that viral infection modulates the epigenetic
landscape of the cell. This is accomplished via interactions of viral proteins with chromatin-
remodeling enzymes and virus-induced changes in histone PTMs and DNA methylation profiles.
Furthermore, the discovery that nuclear-replicating DNA viral genomes associate with core his-
tones implicates cellular effectors of chromatinization as important regulators of viral gene expres-
sion. Integration of epigenetic studies with MS technologies will aid in delineating the mechanisms
by which viruses exploit cellular chromatin structural components and transcriptional machinery.

In summary, MS-based proteomics has already significantly contributed to multifaceted dis-
coveries in virology. Ongoing improvements in MS and bioinformatics are expected to further
expand the range of applications and establish MS as a routine tool in virology studies.

SUMMARY POINTS

1. The integration of mass spectrometry–based proteomic platforms with orthogonal tech-
niques and research disciplines provides mechanistic insights into viral infection that are
hard to obtain by traditional approaches.

2. Tandem mass spectrometry–based peptide sequencing and native ion mobility mass spec-
trometry are powerful tools for elucidating virion protein composition and intermediate
capsid structures, respectively.

3. The development of diverse affinity purification–mass spectrometry workflows, including
fluorescent affinity probes, quantitative mass spectrometry, and bioinformatic analyses,
has made it possible to define spatially and temporally dynamic virus-host protein inter-
actions during viral infections.
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4. Comprehensive and unbiased whole-cell proteome studies offer a systems view of infec-
tion and delineate previously uncharacterized cellular response pathways and viral gene
products.

5. Biochemical and affinity-based subcellular fractionation techniques coupled with mass
spectrometry can sensitively analyze organelle-specific host and viral processes during
infection, pointing to infection biomarkers and new targets for antiviral therapeutics.

6. Mass spectrometry–based secretome analyses of virus-infected immune cells can ascertain
secreted immunomodulatory factors that contribute to host immunological responses and
virus-associated pathologies.

7. Viral and host posttranslational modifications that modulate a vast range of protein
and pathway functions can be conclusively identified and quantified using various mass
spectrometry approaches.

FUTURE ISSUES

1. Affinity purification–mass spectrometry in conjunction with label-free and metabolic la-
beling approaches can reveal protein interaction specificity, as well as the relative stability
of interactions within virus-host protein complexes during infection.

2. The use of chemical cross-linking reagents within affinity purification–mass spectrometry
workflows can determine direct virus-host protein interactions, identifying intermolec-
ular protein interfaces to reconstruct protein complex topology.

3. For hypothesis-driven viral proteomics, targeted mass spectrometry approaches, such as
selected reaction monitoring, allow sensitive quantification of proteins or posttransla-
tional modifications within complex biological samples, making them promising candi-
dates for clinical applications.

4. Mass spectrometry approaches provide the opportunity to begin defining the virus-
induced changes in the host epigenetic landscape by mapping histone modifications
and characterizing the functions of chromatin-remodeling enzymes in the context of
infection.
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