ERRATUM

Volume 11 (1982)

In "Fast Neutron Radiation Therapy," by L. Cohen and M. Awschalom, the last ten lines of text following the equation $TDF = K \times N \times (100d)^{\delta} \times t^{-\tau}$ on page 374 were omitted and should read as follows:

... where $\delta = 1/(1 - \alpha - \beta)$ and $\tau = \beta \delta$. Since the exponent of N is unity, this formula allows for additivity of TDF values in concomitant or sequential courses. Thus if TDF_y is calculated for a course of X-ray therapy that is then followed by a neutron boost corresponding to TDF_y, the total biological effect corresponds to TDF = TDF_y + TDF_y.

Numerically, for photons $\delta_{y} = 1.538$ and $\tau_{y} = 0.169$; for neutrons $\delta_{v} = 1.176$ and $\tau_{v} = 0.129$. The normalization constant for neutrons (K_{v}) is derived from clinical observation and is numerically equal to 0.024 for the high-energy p(66)Be(49) Fermilab beam (24). An analogous formulation for a low-energy d(15)Be unit by Kutsutani-Nakamura (41) gave ...