1932

Abstract

Germinal centers (GCs) are microanatomical sites of B cell clonal expansion and antibody affinity maturation. Therein, B cells undergo the Darwinian process of somatic diversification and affinity-driven selection of immunoglobulins that produces the high-affinity antibodies essential for effective humoral immunity. Here, we review recent developments in the field of GC biology, primarily as it pertains to GCs induced by infection or immunization. First, we summarize the phenotype and function of the different cell types that compose the GC, focusing on GC B cells. Then, we review the cellular and molecular bases of affinity-dependent selection within the GC and the export of memory and plasma cells. Finally, we present an overview of the emerging field of GC clonal dynamics, focusing on how GC and post-GC selection shapes the diversity of antibodies secreted into serum.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-120419-022408
2022-04-26
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-120419-022408.html?itemId=/content/journals/10.1146/annurev-immunol-120419-022408&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Landsteiner K. 1936. The Specificity of Serological Reactions Springfield, IL: C.C. Thomas
  2. 2. 
    Burnet FM. 1957. A modification of Jerne's theory of antibody production using the concept of clonal selection. Aust. J. Sci. 20:67–68
    [Google Scholar]
  3. 3. 
    Tonegawa S. 1983. Somatic generation of antibody diversity. Nature 302:575–81
    [Google Scholar]
  4. 4. 
    Jerne NK. 1951. A study of avidity based on rabbit skin responses to diphtheria toxin-antitoxin mixtures. Acta Pathol. Microbiol. Scand. Suppl. 87:1–183
    [Google Scholar]
  5. 5. 
    Eisen HN, Siskind GW. 1964. Variations in affinities of antibodies during the immune response. Biochemistry 3:996–1008
    [Google Scholar]
  6. 6. 
    Eisen HN. 2014. Affinity enhancement of antibodies: how low-affinity antibodies produced early in immune responses are followed by high-affinity antibodies later and in memory B-cell responses. Cancer Immunol. Res. 2:381–92
    [Google Scholar]
  7. 7. 
    Weigert MG, Cesari IM, Yonkovich SJ, Cohn M. 1970. Variability in the lambda light chain sequences of mouse antibody. Nature 228:1045–47
    [Google Scholar]
  8. 8. 
    Berek C, Milstein C. 1987. Mutation drift and repertoire shift in the maturation of the immune response. Immunol. Rev. 96:23–41
    [Google Scholar]
  9. 9. 
    Klein F, Diskin R, Scheid JF, Gaebler C, Mouquet H et al. 2013. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell 153:126–38
    [Google Scholar]
  10. 10. 
    Wu X, Zhang Z, Schramm CA, Joyce MG, Kwon YD et al. 2015. Maturation and diversity of the VRC01-antibody lineage over 15 years of chronic HIV-1 infection. Cell 161:470–85
    [Google Scholar]
  11. 11. 
    Nieuwenhuis P, Opstelten D. 1984. Functional anatomy of germinal centers. Am. J. Anat. 170:421–35
    [Google Scholar]
  12. 12. 
    Jacob J, Kelsoe G, Rajewsky K, Weiss U 1991. Intraclonal generation of antibody mutants in germinal centres. Nature 354:389–92
    [Google Scholar]
  13. 13. 
    Kuppers R, Zhao M, Hansmann ML, Rajewsky K. 1993. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J 12:4955–67
    [Google Scholar]
  14. 14. 
    MacLennan IC. 1994. Germinal centers. Annu. Rev. Immunol. 12:117–39
    [Google Scholar]
  15. 15. 
    Schwickert TA, Lindquist RL, Shakhar G, Livshits G, Skokos D et al. 2007. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446:83–87
    [Google Scholar]
  16. 16. 
    Allen CD, Okada T, Tang HL, Cyster JG. 2007. Imaging of germinal center selection events during affinity maturation. Science 315:528–31
    [Google Scholar]
  17. 17. 
    Hauser AE, Junt T, Mempel TR, Sneddon MW, Kleinstein SH et al. 2007. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26:655–67
    [Google Scholar]
  18. 18. 
    Victora GD, Nussenzweig MC. 2012. Germinal centers. Annu. Rev. Immunol. 30:429–57
    [Google Scholar]
  19. 19. 
    Allen CD, Cyster JG. 2008. Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin. Immunol. 20:14–25
    [Google Scholar]
  20. 20. 
    Heesters BA, Myers RC, Carroll MC. 2014. Follicular dendritic cells: dynamic antigen libraries. Nat. Rev. Immunol. 14:495–504
    [Google Scholar]
  21. 21. 
    Garside P, Ingulli E, Merica RR, Johnson JG, Noelle RJ, Jenkins MK 1998. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281:96–99
    [Google Scholar]
  22. 22. 
    Rodda LB, Bannard O, Ludewig B, Nagasawa T, Cyster JG 2015. Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells. J. Immunol. 195:4781–91
    [Google Scholar]
  23. 23. 
    Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M et al. 2010. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143:592–605
    [Google Scholar]
  24. 24. 
    Kepler TB, Perelson AS. 1993. Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation. Immunol. Today 14:412–15
    [Google Scholar]
  25. 25. 
    Gitlin AD, Mayer CT, Oliveira TY, Shulman Z, Jones MJ et al. 2015. T cell help controls the speed of the cell cycle in germinal center B cells. Science 349:643–46
    [Google Scholar]
  26. 26. 
    Ersching J, Efeyan A, Mesin L, Jacobsen JT, Pasqual G et al. 2017. Germinal center selection and affinity maturation require dynamic regulation of mTORC1 kinase. Immunity 46:1045–58.e6
    [Google Scholar]
  27. 27. 
    Weisel FJ, Mullett SJ, Elsner RA, Menk AV, Trivedi N et al. 2020. Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis. Nat. Immunol. 21:331–42
    [Google Scholar]
  28. 28. 
    Jellusova J, Cato MH, Apgar JR, Ramezani-Rad P, Leung CR et al. 2017. Gsk3 is a metabolic checkpoint regulator in B cells. Nat. Immunol. 18:303–12
    [Google Scholar]
  29. 29. 
    Gatto D, Paus D, Basten A, Mackay CR, Brink R. 2009. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 31:259–69
    [Google Scholar]
  30. 30. 
    Pereira JP, Kelly LM, Xu Y, Cyster JG. 2009. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460:1122–26
    [Google Scholar]
  31. 31. 
    Lu E, Wolfreys FD, Muppidi JR, Xu Y, Cyster JG. 2019. S-geranylgeranyl-l-glutathione is a ligand for human B cell-confinement receptor P2RY8. Nature 567:244–48
    [Google Scholar]
  32. 32. 
    Muppidi JR, Lu E, Cyster JG 2015. The G protein–coupled receptor P2RY8 and follicular dendritic cells promote germinal center confinement of B cells, whereas S1PR3 can contribute to their dissemination. J. Exp. Med. 212:2213–22
    [Google Scholar]
  33. 33. 
    Yoshino T, Kondo E, Cao L, Takahashi K, Hayashi K et al. 1994. Inverse expression of bcl-2 protein and Fas antigen in lymphoblasts in peripheral lymph nodes and activated peripheral blood T and B lymphocytes. Blood 83:1856–61
    [Google Scholar]
  34. 34. 
    Laidlaw BJ, Schmidt TH, Green JA, Allen CD, Okada T, Cyster JG. 2017. The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. J. Exp. Med. 214:639–49
    [Google Scholar]
  35. 35. 
    Lu P, Shih C, Qi H. 2017. Ephrin B1–mediated repulsion and signaling control germinal center T cell territoriality and function. Science 356:eaai9264
    [Google Scholar]
  36. 36. 
    Cervenak L, Magyar A, Boja R, László G. 2001. Differential expression of GL7 activation antigen on bone marrow B cell subpopulations and peripheral B cells. Immunol. Lett. 78:89–96
    [Google Scholar]
  37. 37. 
    Naito Y, Takematsu H, Koyama S, Miyake S, Yamamoto H et al. 2007. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell. Biol. 27:3008–22
    [Google Scholar]
  38. 38. 
    Giovannone N, Antonopoulos A, Liang J, Geddes Sweeney J, Kudelka MR et al. 2018. Human B cell differentiation is characterized by progressive remodeling of O-linked glycans. Front. Immunol. 9:2857
    [Google Scholar]
  39. 39. 
    Bhan AK, Nadler LM, Stashenko P, McCluskey RT, Schlossman SF. 1981. Stages of B cell differentiation in human lymphoid tissue. J. Exp. Med. 154:737–49
    [Google Scholar]
  40. 40. 
    Oliver AM, Martin F, Kearney JF 1997. Mouse CD38 is down-regulated on germinal center B cells and mature plasma cells. J. Immunol. 158:1108–15
    [Google Scholar]
  41. 41. 
    Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–63
    [Google Scholar]
  42. 42. 
    Revy P, Muto T, Levy Y, Geissmann F, Plebani A et al. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102:565–75
    [Google Scholar]
  43. 43. 
    Pavri R, Nussenzweig MC. 2011. AID targeting in antibody diversity. Adv. Immunol. 110:1–26
    [Google Scholar]
  44. 44. 
    Di Noia JM, Neuberger MS. 2007. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76:1–22
    [Google Scholar]
  45. 45. 
    Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL et al. 2008. The biochemistry of somatic hypermutation. Annu. Rev. Immunol. 26:481–511
    [Google Scholar]
  46. 46. 
    Yeap LS, Hwang JK, Du Z, Meyers RM, Meng FL et al. 2015. Sequence-intrinsic mechanisms that target AID mutational outcomes on antibody genes. Cell 163:1124–37
    [Google Scholar]
  47. 47. 
    Chen H, Zhang Y, Ye AY, Du Z, Xu M et al. 2020. BCR selection and affinity maturation in Peyer's patch germinal centres. Nature 582:7812421–25
    [Google Scholar]
  48. 48. 
    Dosenovic P, von Boehmer L, Escolano A, Jardine J, Freund NT et al. 2015. Immunization for HIV-1 broadly neutralizing antibodies in human Ig knockin mice. Cell 161:1505–15
    [Google Scholar]
  49. 49. 
    Roco JA, Mesin L, Binder SC, Nefzger C, Gonzalez-Figueroa P et al. 2019. Class-switch recombination occurs infrequently in germinal centers. Immunity 51:337–50.e7
    [Google Scholar]
  50. 50. 
    Ye BH, Cattoretti G, Shen Q, Zhang J, Hawe N et al. 1997. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat. Genet. 16:161–70
    [Google Scholar]
  51. 51. 
    Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM 1997. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276:589–92
    [Google Scholar]
  52. 52. 
    Allman D, Jain A, Dent A, Maile RR, Selvaggi T et al. 1996. BCL-6 expression during B-cell activation. Blood 87:5257–68
    [Google Scholar]
  53. 53. 
    Kitano M, Moriyama S, Ando Y, Hikida M, Mori Y et al. 2011. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34:961–72
    [Google Scholar]
  54. 54. 
    Basso K, Dalla-Favera R. 2015. Germinal centres and B cell lymphomagenesis. Nat. Rev. Immunol. 15:172–84
    [Google Scholar]
  55. 55. 
    Saito M, Novak U, Piovan E, Basso K, Sumazin P et al. 2009. BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. PNAS 106:11294–99
    [Google Scholar]
  56. 56. 
    Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan IC 1989. Mechanism of antigen-driven selection in germinal centres. Nature 342:929–31
    [Google Scholar]
  57. 57. 
    Basso K, Saito M, Sumazin P, Margolin AA, Wang K et al. 2010. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood 115:975–84
    [Google Scholar]
  58. 58. 
    Ci W, Polo JM, Cerchietti L, Shaknovich R, Wang L et al. 2009. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 113:5536–48
    [Google Scholar]
  59. 59. 
    Dominguez-Sola D, Victora GD, Ying CY, Phan RT, Saito M et al. 2012. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat. Immunol. 13:1083–91
    [Google Scholar]
  60. 60. 
    Tunyaplin C, Shaffer AL, Angelin-Duclos CD, Yu X, Staudt LM, Calame KL 2004. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J. Immunol. 173:1158–65
    [Google Scholar]
  61. 61. 
    Phan RT, Dalla-Favera R. 2004. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432:635–39
    [Google Scholar]
  62. 62. 
    Ranuncolo SM, Polo JM, Dierov J, Singer M, Kuo T et al. 2007. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat. Immunol. 8:705–14
    [Google Scholar]
  63. 63. 
    Ranuncolo SM, Polo JM, Melnick A. 2008. BCL6 represses CHEK1 and suppresses DNA damage pathways in normal and malignant B-cells. Blood Cells Mol. Dis. 41:95–99
    [Google Scholar]
  64. 64. 
    De Silva NS, Klein U. 2015. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15:137–48
    [Google Scholar]
  65. 65. 
    Laidlaw BJ, Cyster JG. 2021. Transcriptional regulation of memory B cell differentiation. Nat. Rev. Immunol. 21:209–20
    [Google Scholar]
  66. 66. 
    Allen CD, Ansel KM, Low C, Lesley R, Tamamura H et al. 2004. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5:943–52
    [Google Scholar]
  67. 67. 
    Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R, Nussenzweig MC. 2012. Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood 120:2240–48
    [Google Scholar]
  68. 68. 
    Pae J, Ersching J, Castro TBR, Schips M, Mesin L et al. 2020. Cyclin D3 drives inertial cell cycling in dark zone germinal center B cells. J. Exp. Med. 218:e20201699
    [Google Scholar]
  69. 69. 
    Gitlin AD, Shulman Z, Nussenzweig MC. 2014. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509:637–40
    [Google Scholar]
  70. 70. 
    McHeyzer-Williams LJ, Milpied PJ, Okitsu SL, McHeyzer-Williams MG. 2015. Class-switched memory B cells remodel BCRs within secondary germinal centers. Nat. Immunol. 16:296–305
    [Google Scholar]
  71. 71. 
    Finkin S, Hartweger H, Oliveira TY, Kara EE, Nussenzweig MC 2019. Protein amounts of the MYC transcription factor determine germinal center B cell division capacity. Immunity 51:324–36.e5
    [Google Scholar]
  72. 72. 
    Calado DP, Sasaki Y, Godinho SA, Pellerin A, Köchert K et al. 2012. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat. Immunol. 13:1092–100
    [Google Scholar]
  73. 73. 
    Sander S, Chu VT, Yasuda T, Franklin A, Graf R et al. 2015. PI3 kinase and FOXO1 transcription factor activity differentially control B cells in the germinal center light and dark zones. Immunity 43:1075–86
    [Google Scholar]
  74. 74. 
    Dominguez-Sola D, Kung J, Holmes AB, Wells VA, Mo T et al. 2015. The FOXO1 transcription factor instructs the germinal center dark zone program. Immunity 43:1064–74
    [Google Scholar]
  75. 75. 
    Inoue T, Shinnakasu R, Ise W, Kawai C, Egawa T, Kurosaki T. 2017. The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help. J. Exp. Med. 214:1181–98
    [Google Scholar]
  76. 76. 
    Nie Y, Waite J, Brewer F, Sunshine M-J, Littman DR, Zou Y-R. 2004. The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J. Exp. Med. 200:1145–56
    [Google Scholar]
  77. 77. 
    Bannard O, Horton RM, Allen CD, An J, Nagasawa T, Cyster JG 2013. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity 39:912–24
    [Google Scholar]
  78. 78. 
    Milpied P, Cervera-Marzal I, Mollichella ML, Tesson B, Brisou G et al. 2018. Human germinal center transcriptional programs are de-synchronized in B cell lymphoma. Nat. Immunol. 19:1013–24
    [Google Scholar]
  79. 79. 
    Laidlaw BJ, Duan L, Xu Y, Vazquez SE, Cyster JG. 2020. The transcription factor Hhex cooperates with the corepressor Tle3 to promote memory B cell development. Nat. Immunol. 21:1082–93
    [Google Scholar]
  80. 80. 
    Holmes AB, Corinaldesi C, Shen Q, Kumar R, Compagno N et al. 2020. Single-cell analysis of germinal-center B cells informs on lymphoma cell of origin and outcome. J. Exp. Med. 217:e20200483
    [Google Scholar]
  81. 81. 
    Kennedy DE, Okoreeh MK, Maienschein-Cline M, Ai J, Veselits M et al. 2020. Novel specialized cell state and spatial compartments within the germinal center. Nat. Immunol. 21:660–70
    [Google Scholar]
  82. 82. 
    Pikor NB, Mörbe U, Lütge M, Gil-Cruz C, Perez-Shibayama C et al. 2020. Remodeling of light and dark zone follicular dendritic cells governs germinal center responses. Nat. Immunol. 21:649–59
    [Google Scholar]
  83. 83. 
    Chen D, Wang Y, Manakkat Vijay GK, Fu S, Nash CW et al. 2021. Coupled analysis of transcriptome and BCR mutations reveals role of OXPHOS in affinity maturation. Nat. Immunol. 22:904–13
    [Google Scholar]
  84. 84. 
    King HW, Orban N, Riches JC, Clear AJ, Warnes G et al. 2021. Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. Sci. Immunol. 6:eabe6291
    [Google Scholar]
  85. 85. 
    Jacobson EB, Caporale LH, Thorbecke GJ. 1974. Effect of thymus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. Cell. Immunol. 13:416–30
    [Google Scholar]
  86. 86. 
    Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA et al. 1993. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259:990–93
    [Google Scholar]
  87. 87. 
    Han S, Hathcock K, Zheng B, Kepler TB, Hodes R, Kelsoe G. 1995. Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J. Immunol. 155:556–67
    [Google Scholar]
  88. 88. 
    Krautler NJ, Suan D, Butt D, Bourne K, Hermes JR et al. 2017. Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells. J. Exp. Med. 214:1259–67
    [Google Scholar]
  89. 89. 
    Arnold CN, Campbell DJ, Lipp M, Butcher EC 2007. The germinal center response is impaired in the absence of T cell-expressed CXCR5. Eur. J. Immunol. 37:100–9
    [Google Scholar]
  90. 90. 
    Haynes NM, Allen CD, Lesley R, Ansel KM, Killeen N, Cyster JG 2007. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179:5099–108
    [Google Scholar]
  91. 91. 
    Shulman Z, Gitlin AD, Targ S, Jankovic M, Pasqual G et al. 2013. T follicular helper cell dynamics in germinal centers. Science 341:673–77
    [Google Scholar]
  92. 92. 
    Yu D, Rao S, Tsai LM, Lee SK, He Y et al. 2009. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31:457–68
    [Google Scholar]
  93. 93. 
    Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S et al. 2009. Bcl6 mediates the development of T follicular helper cells. Science 325:1001–5
    [Google Scholar]
  94. 94. 
    Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D et al. 2009. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325:1006–10
    [Google Scholar]
  95. 95. 
    Crotty S. 2011. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29:621–63
    [Google Scholar]
  96. 96. 
    Vinuesa CG, Linterman MA, Yu D, MacLennan ICM 2016. Follicular helper T cells. Annu. Rev. Immunol. 34:335–68
    [Google Scholar]
  97. 97. 
    Mintz MA, Cyster JG. 2020. T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunol. Rev. 296:48–61
    [Google Scholar]
  98. 98. 
    Crotty S. 2019. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50:1132–48
    [Google Scholar]
  99. 99. 
    Shulman Z, Gitlin AD, Weinstein JS, Lainez B, Esplugues E et al. 2014. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 345:1058–62
    [Google Scholar]
  100. 100. 
    Liu D, Xu H, Shih C, Wan Z, Ma X et al. 2015. T–B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature 517:214–18
    [Google Scholar]
  101. 101. 
    Chou C, Verbaro DJ, Tonc E, Holmgren M, Cella M et al. 2016. The transcription factor AP4 mediates resolution of chronic viral infection through amplification of germinal center B cell responses. Immunity 45:570–82
    [Google Scholar]
  102. 102. 
    Zotos D, Coquet JM, Zhang Y, Light A, D'Costa K et al. 2010. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207:365–78
    [Google Scholar]
  103. 103. 
    Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M et al. 2010. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207:353–63
    [Google Scholar]
  104. 104. 
    Olatunde AC, Hale JS, Lamb TJ 2021. Cytokine-skewed Tfh cells: functional consequences for B cell help. Trends Immunol 42:536–50
    [Google Scholar]
  105. 105. 
    Reinhardt RL, Liang HE, Locksley RM. 2009. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10:385–93
    [Google Scholar]
  106. 106. 
    McGuire HM, Vogelzang A, Warren J, Loetsch C, Natividad KD et al. 2015. IL-21 and IL-4 collaborate to shape T-dependent antibody responses. J. Immunol. 195:5123–35
    [Google Scholar]
  107. 107. 
    Weinstein JS, Herman EI, Lainez B, Licona-Limón P, Esplugues E et al. 2016. TFH cells progressively differentiate to regulate the germinal center response. Nat. Immunol. 17:1197–205
    [Google Scholar]
  108. 108. 
    Gowthaman U, Chen JS, Zhang B, Flynn WF, Lu Y et al. 2019. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science 365:eaaw6433
    [Google Scholar]
  109. 109. 
    Merkenschlager J, Finkin S, Ramos V, Kraft J, Cipolla M et al. 2021. Dynamic regulation of TFH selection during the germinal centre reaction. Nature 591:458–63
    [Google Scholar]
  110. 110. 
    Jacobsen JT, Hu W, Castro TBR, Solem S, Galante A et al. 2021. Expression of Foxp3 by T follicular helper cells in end-stage germinal centers. Science 373:eabe5146
    [Google Scholar]
  111. 111. 
    Hatzi K, Nance JP, Kroenke MA, Bothwell M, Haddad EK et al. 2015. BCL6 orchestrates Tfh cell differentiation via multiple distinct mechanisms. J. Exp. Med. 212:4539–53
    [Google Scholar]
  112. 112. 
    Fernando TM, Marullo R, Pera Gresely B, Phillip JM, Yang SN et al. 2019. BCL6 evolved to enable stress tolerance in vertebrates and is broadly required by cancer cells to adapt to stress. Cancer Discov 9:5662–79
    [Google Scholar]
  113. 113. 
    Huang C, Hatzi K, Melnick A. 2013. Lineage-specific functions of Bcl-6 in immunity and inflammation are mediated by distinct biochemical mechanisms. Nat. Immunol. 14:4380–88
    [Google Scholar]
  114. 114. 
    Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S et al. 2011. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17:975–82
    [Google Scholar]
  115. 115. 
    Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ et al. 2011. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17:983–88
    [Google Scholar]
  116. 116. 
    Wollenberg I, Agua-Doce A, Hernández A, Almeida C, Oliveira VG et al. 2011. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J. Immunol. 187:4553–60
    [Google Scholar]
  117. 117. 
    Fonseca VR, Ribeiro F, Graca L 2019. T follicular regulatory (Tfr) cells: dissecting the complexity of Tfr-cell compartments. Immunol. Rev. 288:112–27
    [Google Scholar]
  118. 118. 
    Sage PT, Sharpe AH. 2015. T follicular regulatory cells in the regulation of B cell responses. Trends Immunol 36:410–18
    [Google Scholar]
  119. 119. 
    Aloulou M, Carr EJ, Gador M, Bignon A, Liblau RS et al. 2016. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat. Commun. 7:10579
    [Google Scholar]
  120. 120. 
    Wing JB, Kitagawa Y, Locci M, Hume H, Tay C et al. 2017. A distinct subpopulation of CD25 T-follicular regulatory cells localizes in the germinal centers. PNAS 114:E6400–9
    [Google Scholar]
  121. 121. 
    Hou S, Clement RL, Diallo A, Blazar BR, Rudensky AY et al. 2019. FoxP3 and Ezh2 regulate Tfr cell suppressive function and transcriptional program. J. Exp. Med. 216:605–20
    [Google Scholar]
  122. 122. 
    Clement RL, Daccache J, Mohammed MT, Diallo A, Blazar BR et al. 2019. Follicular regulatory T cells control humoral and allergic immunity by restraining early B cell responses. Nat. Immunol. 20:1360–71
    [Google Scholar]
  123. 123. 
    Xie MM, Chen Q, Liu H, Yang K, Koh B et al. 2020. T follicular regulatory cells and IL-10 promote food antigen-specific IgE. J. Clin. Investig. 130:3820–32
    [Google Scholar]
  124. 124. 
    Gonzalez-Figueroa P, Roco JA, Papa I, Núñez Villacís L, Stanley M et al. 2021. Follicular regulatory T cells produce neuritin to regulate B cells. Cell 184:1775–89.e19
    [Google Scholar]
  125. 125. 
    Canete PF, Sweet RA, Gonzalez-Figueroa P, Papa I, Ohkura N et al. 2019. Regulatory roles of IL-10-producing human follicular T cells. J. Exp. Med. 216:1843–56
    [Google Scholar]
  126. 126. 
    Krautler NJ, Kana V, Kranich J, Tian Y, Perera D et al. 2012. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150:194–206
    [Google Scholar]
  127. 127. 
    Jarjour M, Jorquera A, Mondor I, Wienert S, Narang P et al. 2014. Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells. J. Exp. Med. 211:1109–22
    [Google Scholar]
  128. 128. 
    Matsumoto M, Fu Y-X, Molina H, Chaplin DD. 1997. Lymphotoxin-α-deficient and TNF receptor-I-deficient mice define developmental and functional characteristics of germinal centers. Immunol. Rev. 156:137–44
    [Google Scholar]
  129. 129. 
    Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R et al. 2000. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–14
    [Google Scholar]
  130. 130. 
    Wang X, Cho B, Suzuki K, Xu Y, Green JA et al. 2011. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J. Exp. Med. 208:2497–510
    [Google Scholar]
  131. 131. 
    Mandel TE, Phipps RP, Abbot A, Tew JG 1980. The follicular dendritic cell: long term antigen retention during immunity. Immunol. Rev. 53:29–59
    [Google Scholar]
  132. 132. 
    Barrington RA, Pozdnyakova O, Zafari MR, Benjamin CD, Carroll MC. 2002. B lymphocyte memory: role of stromal cell complement and FcγRIIB receptors. J. Exp. Med. 196:1189–99
    [Google Scholar]
  133. 133. 
    van der Poel CE, Bajic G, Macaulay CW, van den Broek T, Ellson CD et al. 2019. Follicular dendritic cells modulate germinal center B cell diversity through FcγRIIB. Cell Rep 29:2745–55.e4
    [Google Scholar]
  134. 134. 
    Tokatlian T, Read BJ, Jones CA, Kulp DW, Menis S et al. 2019. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science 363:649–54
    [Google Scholar]
  135. 135. 
    Heesters BA, Chatterjee P, Kim Y-A, Gonzalez SF, Kuligowski MP et al. 2013. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38:1164–75
    [Google Scholar]
  136. 136. 
    Rahman ZSM, Shao W-H, Khan TN, Zhen Y, Cohen PL. 2010. Impaired apoptotic cell clearance in the germinal center by Mer-deficient tingible body macrophages leads to enhanced antibody-forming cell and germinal center responses. J. Immunol. 185:5859–68
    [Google Scholar]
  137. 137. 
    Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U et al. 2002. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum 46:191–201
    [Google Scholar]
  138. 138. 
    Gaya M, Barral P, Burbage M, Aggarwal S, Montaner B et al. 2018. Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells. Cell 172:517–33.e20
    [Google Scholar]
  139. 139. 
    Chang P-P, Barral P, Fitch J, Pratama A, Ma CS et al. 2011. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat. Immunol. 13:35–43
    [Google Scholar]
  140. 140. 
    Leong YA, Chen Y, Ong HS, Wu D, Man K et al. 2016. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17:1187–96
    [Google Scholar]
  141. 141. 
    Shih TA, Meffre E, Roederer M, Nussenzweig MC 2002. Role of BCR affinity in T cell dependent antibody responses in vivo. Nat. Immunol. 3:570–75
    [Google Scholar]
  142. 142. 
    Shih TA, Roederer M, Nussenzweig MC 2002. Role of antigen receptor affinity in T cell-independent antibody responses in vivo. Nat. Immunol. 3:399–406
    [Google Scholar]
  143. 143. 
    Paus D, Phan TG, Chan TD, Gardam S, Basten A, Brink R. 2006. Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med. 203:1081–91
    [Google Scholar]
  144. 144. 
    Phan TG, Paus D, Chan TD, Turner ML, Nutt SL et al. 2006. High affinity germinal center B cells are actively selected into the plasma cell compartment. J. Exp. Med. 203:2419–24
    [Google Scholar]
  145. 145. 
    Mesin L, Schiepers A, Ersching J, Barbulescu A, Cavazzoni CB et al. 2020. Restricted clonality and limited germinal center reentry characterize memory B cell reactivation by boosting. Cell 180:92–106.e11
    [Google Scholar]
  146. 146. 
    Stoler-Barak L, Biram A, Davidzohn N, Addadi Y, Golani O, Shulman Z 2019. B cell dissemination patterns during the germinal center reaction revealed by whole-organ imaging. J. Exp. Med. 216:2515–30
    [Google Scholar]
  147. 147. 
    Dal Porto JM, Haberman AM, Kelsoe G, Shlomchik MJ. 2002. Very low affinity B cells form germinal centers, become memory B cells, and participate in secondary immune responses when higher affinity competition is reduced. J. Exp. Med. 195:1215–21
    [Google Scholar]
  148. 148. 
    Schwickert TA, Victora GD, Fooksman DR, Kamphorst AO, Mugnier MR et al. 2011. A dynamic T cell–limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J. Exp. Med. 208:1243–52
    [Google Scholar]
  149. 149. 
    Amitai A, Mesin L, Victora GD, Kardar M, Chakraborty AK 2017. A population dynamics model for clonal diversity in a germinal center. Front. Microbiol. 8:1693
    [Google Scholar]
  150. 150. 
    Meyer-Hermann M, Mohr E, Pelletier N, Zhang Y, Victora GD, Toellner KM. 2012. A theory of germinal center B cell selection, division, and exit. Cell Rep 2:162–74
    [Google Scholar]
  151. 151. 
    Mayer CT, Gazumyan A, Kara EE, Gitlin AD, Golijanin J et al. 2017. The microanatomic segregation of selection by apoptosis in the germinal center. Science 358:eaao2602
    [Google Scholar]
  152. 152. 
    Tas JM, Mesin L, Pasqual G, Targ S, Jacobsen JT et al. 2016. Visualizing antibody affinity maturation in germinal centers. Science 351:1048–54
    [Google Scholar]
  153. 153. 
    Nowosad CR, Mesin L, Castro TBR, Wichmann C, Donaldson GP et al. 2020. Tunable dynamics of B cell selection in gut germinal centres. Nature 588:321–26
    [Google Scholar]
  154. 154. 
    Batista FD, Neuberger MS. 2000. B cells extract and present immobilized antigen: implications for affinity discrimination. EMBO J 19:513–20
    [Google Scholar]
  155. 155. 
    Shokat KM, Goodnow CC. 1995. Antigen-induced B-cell death and elimination during germinal-centre immune responses. Nature 375:334–38
    [Google Scholar]
  156. 156. 
    Pulendran B, Kannourakis G, Nouri S, Smith KG, Nossal GJ. 1995. Soluble antigen can cause enhanced apoptosis of germinal-centre B cells. Nature 375:331–34
    [Google Scholar]
  157. 157. 
    Turner JS, Marthi M, Benet ZL, Grigorova I. 2017. Transiently antigen-primed B cells return to naive-like state in absence of T-cell help. Nat. Commun. 8:15072
    [Google Scholar]
  158. 158. 
    Turner JS, Ke F, Grigorova IL. 2018. B cell receptor crosslinking augments germinal center B cell selection when T cell help is limiting. Cell Rep 25:1395–403.e4
    [Google Scholar]
  159. 159. 
    Papa I, Saliba D, Ponzoni M, Bustamante S, Canete PF et al. 2017. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature 547:318–23
    [Google Scholar]
  160. 160. 
    Liu B, Lin Y, Yan J, Yao J, Liu D et al. 2021. Affinity-coupled CCL22 promotes positive selection in germinal centres. Nature 592:133–37
    [Google Scholar]
  161. 161. 
    Mintz MA, Felce JH, Chou MY, Mayya V, Xu Y et al. 2019. The HVEM-BTLA axis restrains T cell help to germinal center B cells and functions as a cell-extrinsic suppressor in lymphomagenesis. Immunity 51:310–23.e7
    [Google Scholar]
  162. 162. 
    Draghi NA, Denzin LK. 2010. H2-O, a MHC class II-like protein, sets a threshold for B-cell entry into germinal centers. PNAS 107:16607–12
    [Google Scholar]
  163. 163. 
    Yeh CH, Nojima T, Kuraoka M, Kelsoe G. 2018. Germinal center entry not selection of B cells is controlled by peptide-MHCII complex density. Nat. Commun. 9:928
    [Google Scholar]
  164. 164. 
    Khalil AM, Cambier JC, Shlomchik MJ. 2012. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336:1178–81
    [Google Scholar]
  165. 165. 
    Luo W, Hawse W, Conter L, Trivedi N, Weisel F et al. 2019. The AKT kinase signaling network is rewired by PTEN to control proximal BCR signaling in germinal center B cells. Nat. Immunol. 20:736–46
    [Google Scholar]
  166. 166. 
    Nowosad CR, Spillane KM, Tolar P. 2016. Germinal center B cells recognize antigen through a specialized immune synapse architecture. Nat. Immunol. 17:7870–77
    [Google Scholar]
  167. 167. 
    Luo W, Weisel F, Shlomchik MJ. 2018. B cell receptor and CD40 signaling are rewired for synergistic induction of the c-Myc transcription factor in germinal center B cells. Immunity 48:313–26.e5
    [Google Scholar]
  168. 168. 
    Mueller J, Matloubian M, Zikherman J. 2015. Cutting edge: An in vivo reporter reveals active B cell receptor signaling in the germinal center. J. Immunol. 194:2993–97
    [Google Scholar]
  169. 169. 
    Kwak K, Quizon N, Sohn H, Saniee A, Manzella-Lapeira J et al. 2018. Intrinsic properties of human germinal center B cells set antigen affinity thresholds. Sci. Immunol. 3:eaau6598
    [Google Scholar]
  170. 170. 
    Silva M, Nguyen TH, Philbrook P, Chu M, Sears O et al. 2017. Targeted elimination of immunodominant B cells drives the germinal center reaction toward subdominant epitopes. Cell Rep 21:3672–80
    [Google Scholar]
  171. 171. 
    Sundling C, Lau AWY, Bourne K, Young C, Laurianto C et al. 2021. Positive selection of IgG+ over IgM+ B cells in the germinal center reaction. Immunity 54:5988–1001.e5
    [Google Scholar]
  172. 172. 
    Stewart I, Radtke D, Phillips B, McGowan SJ, Bannard O. 2018. Germinal center B cells replace their antigen receptors in dark zones and fail light zone entry when immunoglobulin gene mutations are damaging. Immunity 49:477–89.e7
    [Google Scholar]
  173. 173. 
    Davidzohn N, Biram A, Stoler-Barak L, Grenov A, Dassa B, Shulman Z. 2020. Syk degradation restrains plasma cell formation and promotes zonal transitions in germinal centers. J. Exp. Med. 217:jem.20191043
    [Google Scholar]
  174. 174. 
    Duyao MP, Buckler AJ, Sonenshein GE. 1990. Interaction of an NF-kappa B-like factor with a site upstream of the c-myc promoter. PNAS 87:4727–31
    [Google Scholar]
  175. 175. 
    Grumont RJ, Strasser A, Gerondakis S. 2002. B cell growth is controlled by phosphatidylinosotol 3-kinase-dependent induction of Rel/NF-κB regulated c-myc transcription. Mol. Cell 10:1283–94
    [Google Scholar]
  176. 176. 
    Heise N, De Silva NS, Silva K, Carette A, Simonetti G et al. 2014. Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits. J. Exp. Med. 211:2103–18
    [Google Scholar]
  177. 177. 
    Heinzel S, Binh Giang T, Kan A, Marchingo JM, Lye BK et al. 2017. A Myc-dependent division timer complements a cell-death timer to regulate T cell and B cell responses. Nat. Immunol. 18:96–103
    [Google Scholar]
  178. 178. 
    Ramezani-Rad P, Chen C, Zhu Z, Rickert RC 2020. Cyclin D3 governs clonal expansion of dark zone germinal center B cells. Cell Rep 33:108403
    [Google Scholar]
  179. 179. 
    Smith KG, Weiss U, Rajewsky K, Nossal GJ, Tarlinton DM. 1994. Bcl-2 increases memory B cell recruitment but does not perturb selection in germinal centers. Immunity 1:803–13
    [Google Scholar]
  180. 180. 
    Shinnakasu R, Kurosaki T. 2017. Regulation of memory B and plasma cell differentiation. Curr. Opin. Immunol. 45:126–31
    [Google Scholar]
  181. 181. 
    Ise W, Fujii K, Shiroguchi K, Ito A, Kometani K et al. 2018. T follicular helper cell-germinal center B cell interaction strength regulates entry into plasma cell or recycling germinal center cell fate. Immunity 48:702–15.e4
    [Google Scholar]
  182. 182. 
    Radtke D, Bannard O. 2018. Expression of the plasma cell transcriptional regulator Blimp-1 by dark zone germinal center B cells during periods of proliferation. Front. Immunol. 9:3106
    [Google Scholar]
  183. 183. 
    Erazo A, Kutchukhidze N, Leung M, Christ AP, Urban JF Jr. et al. 2007. Unique maturation program of the IgE response in vivo. Immunity 26:191–203
    [Google Scholar]
  184. 184. 
    Yang Z, Sullivan BM, Allen CD. 2012. Fluorescent in vivo detection reveals that IgE+ B cells are restrained by an intrinsic cell fate predisposition. Immunity 36:857–72
    [Google Scholar]
  185. 185. 
    Yang Z, Robinson MJ, Chen X, Smith GA, Taunton J et al. 2016. Regulation of B cell fate by chronic activity of the IgE B cell receptor. eLife 5:e21238
    [Google Scholar]
  186. 186. 
    Gitlin AD, von Boehmer L, Gazumyan A, Shulman Z, Oliveira TY, Nussenzweig MC. 2016. Independent roles of switching and hypermutation in the development and persistence of B lymphocyte memory. Immunity 44:769–81
    [Google Scholar]
  187. 187. 
    Suan D, Krautler NJ, Maag JLV, Butt D, Bourne K et al. 2017. CCR6 defines memory B cell precursors in mouse and human germinal centers, revealing light-zone location and predominant low antigen affinity. Immunity 47:1142–53.e4
    [Google Scholar]
  188. 188. 
    Inoue T, Shinnakasu R, Kawai C, Ise W, Kawakami E et al. 2021. Exit from germinal center to become quiescent memory B cells depends on metabolic reprograming and provision of a survival signal. J. Exp. Med. 218:e20200866
    [Google Scholar]
  189. 189. 
    Wang Y, Shi J, Yan J, Xiao Z, Hou X et al. 2017. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nat. Immunol. 18:921–30
    [Google Scholar]
  190. 190. 
    Zuccarino-Catania GV, Sadanand S, Weisel FJ, Tomayko MM, Meng H et al. 2014. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 15:631–37
    [Google Scholar]
  191. 191. 
    Pape KA, Taylor JJ, Maul RW, Gearhart PJ, Jenkins MK. 2011. Different B cell populations mediate early and late memory during an endogenous immune response. Science 331:1203–7
    [Google Scholar]
  192. 192. 
    Dogan I, Bertocci B, Vilmont V, Delbos F, Megret J et al. 2009. Multiple layers of B cell memory with different effector functions. Nat. Immunol. 10:1292–99
    [Google Scholar]
  193. 193. 
    He JS, Subramaniam S, Narang V, Srinivasan K, Saunders SP et al. 2017. IgG1 memory B cells keep the memory of IgE responses. Nat. Commun. 8: 641. Erratum. Nat. Commun 2018. 9:1968
    [Google Scholar]
  194. 194. 
    Viant C, Wirthmiller T, ElTanbouly MA, Chen ST, Cipolla M et al. 2021. Germinal center-dependent and -independent memory B cells produced throughout the immune response. J. Exp. Med. 218:e20202489
    [Google Scholar]
  195. 195. 
    Smith KG, Light A, O'Reilly LA, Ang SM, Strasser A, Tarlinton D. 2000. bcl-2 transgene expression inhibits apoptosis in the germinal center and reveals differences in the selection of memory B cells and bone marrow antibody-forming cells. J. Exp. Med. 191:475–84
    [Google Scholar]
  196. 196. 
    Shinnakasu R, Inoue T, Kometani K, Moriyama S, Adachi Y et al. 2016. Regulated selection of germinal-center cells into the memory B cell compartment. Nat. Immunol. 17:861–69
    [Google Scholar]
  197. 197. 
    Viant C, Weymar GHJ, Escolano A, Chen S, Hartweger H et al. 2020. Antibody affinity shapes the choice between memory and germinal center B cell fates. Cell 183:1298–311.e11
    [Google Scholar]
  198. 198. 
    Wong R, Belk JA, Govero J, Uhrlaub JL, Reinartz D et al. 2020. Affinity-restricted memory B cells dominate recall responses to heterologous flaviviruses. Immunity 53:1078–94.e7
    [Google Scholar]
  199. 199. 
    Inoue T, Moran I, Shinnakasu R, Phan TG, Kurosaki T. 2018. Generation of memory B cells and their reactivation. Immunol. Rev. 283:138–49
    [Google Scholar]
  200. 200. 
    Weisel FJ, Zuccarino-Catania GV, Chikina M, Shlomchik MJ 2016. A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 44:116–30
    [Google Scholar]
  201. 201. 
    Kuraoka M, Schmidt AG, Nojima T, Feng F, Watanabe A et al. 2016. Complex antigens drive permissive clonal selection in germinal centers. Immunity 44:542–52
    [Google Scholar]
  202. 202. 
    Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F et al. 2011. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333:1633–37
    [Google Scholar]
  203. 203. 
    Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG. 1987. The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805–11
    [Google Scholar]
  204. 204. 
    Chan TD, Wood K, Hermes JR, Butt D, Jolly CJ et al. 2012. Elimination of germinal-center-derived self-reactive B cells is governed by the location and concentration of self-antigen. Immunity 37:893–904
    [Google Scholar]
  205. 205. 
    Mayer CT, Nieke JP, Gazumyan A, Cipolla M, Wang Q et al. 2020. An apoptosis-dependent checkpoint for autoimmunity in memory B and plasma cells. PNAS 117:24957–63
    [Google Scholar]
  206. 206. 
    Sabouri Z, Schofield P, Horikawa K, Spierings E, Kipling D et al. 2014. Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity. PNAS 111:E2567–75
    [Google Scholar]
  207. 207. 
    Reed JH, Jackson J, Christ D, Goodnow CC 2016. Clonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunization. J. Exp. Med. 213:1255–65
    [Google Scholar]
  208. 208. 
    Burnett DL, Reed JH, Christ D, Goodnow CC 2019. Clonal redemption and clonal anergy as mechanisms to balance B cell tolerance and immunity. Immunol. Rev. 292:61–75
    [Google Scholar]
  209. 209. 
    Tan J, Pieper K, Piccoli L, Abdi A, Foglierini M et al. 2016. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature 529:105–9
    [Google Scholar]
  210. 210. 
    Pieper K, Tan J, Piccoli L, Foglierini M, Barbieri S et al. 2017. Public antibodies to malaria antigens generated by two LAIR1 insertion modalities. Nature 548:597–601
    [Google Scholar]
  211. 211. 
    Singh M, Jackson KJL, Wang JJ, Schofield P, Field MA et al. 2020. Lymphoma driver mutations in the pathogenic evolution of an iconic human autoantibody. Cell 180:878–94.e19
    [Google Scholar]
  212. 212. 
    Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K et al. 2009. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458:636–40
    [Google Scholar]
  213. 213. 
    Lingwood D, McTamney PM, Yassine HM, Whittle JR, Guo X et al. 2012. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature 489:566–70
    [Google Scholar]
  214. 214. 
    Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z et al. 2020. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584:437–42
    [Google Scholar]
  215. 215. 
    Muñoz-Alía , Nace RA, Zhang L, Russell SJ. 2021. Serotypic evolution of measles virus is constrained by multiple co-dominant B cell epitopes on its surface glycoproteins. Cell Rep. Med. 2:4100225
    [Google Scholar]
  216. 216. 
    Lee JM, Eguia R, Zost SJ, Choudhary S, Wilson PC et al. 2019. Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. eLife 8:e49324
    [Google Scholar]
  217. 217. 
    Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD et al. 2021. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29:463–76.e6
    [Google Scholar]
  218. 218. 
    Dal Porto JM, Haberman AM, Shlomchik MJ, Kelsoe G. 1998. Antigen drives very low affinity B cells to become plasmacytes and enter germinal centers. J. Immunol. 161:5373–81
    [Google Scholar]
  219. 219. 
    Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M et al. 2005. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLOS Biol 3:e150
    [Google Scholar]
  220. 220. 
    Woodruff MC, Kim EH, Luo W, Pulendran B 2018. B cell competition for restricted T cell help suppresses rare-epitope responses. Cell Rep 25:321–27.e3
    [Google Scholar]
  221. 221. 
    Lee JH, Hu JK, Georgeson E, Nakao C, Groschel B et al. 2021. Modulating the quantity of HIV Env-specific CD4 T cell help promotes rare B cell responses in germinal centers. J. Exp. Med. 218:e20201254
    [Google Scholar]
  222. 222. 
    Silver J, Zuo T, Chaudhary N, Kumari R, Tong P et al. 2018. Stochasticity enables BCR-independent germinal center initiation and antibody affinity maturation. J. Exp. Med. 215:77–90
    [Google Scholar]
  223. 223. 
    Abbott RK, Lee JH, Menis S, Skog P, Rossi M et al. 2018. Precursor frequency and affinity determine B cell competitive fitness in germinal centers, tested with germline-targeting HIV vaccine immunogens. Immunity 48:133–46.e6
    [Google Scholar]
  224. 224. 
    Dosenovic P, Kara EE, Pettersson A-K, McGuire AT, Gray M et al. 2018. Anti–HIV-1 B cell responses are dependent on B cell precursor frequency and antigen-binding affinity. PNAS 115:4743–48
    [Google Scholar]
  225. 225. 
    Moyer TJ, Kato Y, Abraham W, Chang JYH, Kulp DW et al. 2020. Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat. Med. 26:430–40
    [Google Scholar]
  226. 226. 
    Mesin L, Ersching J, Victora GD 2016. Germinal center B cell dynamics. Immunity 45:471–82
    [Google Scholar]
  227. 227. 
    Bannard O, Cyster JG. 2017. Germinal centers: programmed for affinity maturation and antibody diversification. Curr. Opin. Immunol. 45:21–30
    [Google Scholar]
  228. 228. 
    Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC 1991. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J. Immunol. 21:2951–62. Erratum. Eur. J. Immunol. 1992 22:2615
    [Google Scholar]
  229. 229. 
    Green JA, Cyster JG. 2012. S1PR2 links germinal center confinement and growth regulation. Immunol. Rev. 247:36–51
    [Google Scholar]
  230. 230. 
    Muppidi JR, Schmitz R, Green JA, Xiao W, Larsen AB et al. 2014. Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma. Nature 516:254–58
    [Google Scholar]
  231. 231. 
    Schwickert TA, Alabyev B, Manser T, Nussenzweig MC. 2009. Germinal center reutilization by newly activated B cells. J. Exp. Med. 206:2907–14
    [Google Scholar]
  232. 232. 
    Degn SE, van der Poel CE, Firl DJ, Ayoglu B, Al Qureshah FA et al. 2017. Clonal evolution of autoreactive germinal centers. Cell 170:913–26.e19
    [Google Scholar]
  233. 233. 
    Mathew NR, Jayanthan JK, Smirnov IV, Robinson JL, Axelsson H et al. 2021. Single-cell BCR and transcriptome analysis after influenza infection reveals spatiotemporal dynamics of antigen-specific B cells. Cell Rep 35:109286
    [Google Scholar]
  234. 234. 
    Purtha WE, Tedder TF, Johnson S, Bhattacharya D, Diamond MS 2011. Memory B cells, but not long-lived plasma cells, possess antigen specificities for viral escape mutants. J. Exp. Med. 208:2599–606
    [Google Scholar]
  235. 235. 
    Leach S, Shinnakasu R, Adachi Y, Momota M, Makino-Okamura C et al. 2019. Requirement for memory B-cell activation in protection from heterologous influenza virus reinfection. Int. Immunol. 31:771–79
    [Google Scholar]
  236. 236. 
    Wrammert J, Smith K, Miller J, Langley WA, Kokko K et al. 2008. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453:667–71
    [Google Scholar]
  237. 237. 
    Lee J, Boutz DR, Chromikova V, Joyce MG, Vollmers C et al. 2016. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat. Med. 22:1456–64
    [Google Scholar]
  238. 238. 
    Turner JS, Zhou JQ, Han J, Schmitz AJ, Rizk AA et al. 2020. Human germinal centres engage memory and naive B cells after influenza vaccination. Nature 586:127–32
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-120419-022408
Loading
/content/journals/10.1146/annurev-immunol-120419-022408
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error