1932

Abstract

Our assignment was to review the development of the face-processing network, an assignment that carries the presupposition that a face-specific developmental program exists. We hope to cast some doubt on this assumption and instead argue that the development of face processing is guided by the same ubiquitous rules that guide the development of cortex in general.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014917
2019-09-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014917.html?itemId=/content/journals/10.1146/annurev-vision-091718-014917&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DL, Sincich LC, Horton JC 2007. Complete pattern of ocular dominance columns in human primary visual cortex. J. Neurosci. 27:10391–403
    [Google Scholar]
  2. Aflalo TN, Graziano MSA. 2006. Possible origins of the complex topographic organization of motor cortex: reduction of a multidimensional space onto a two-dimensional array. J. Neurosci. 26:6288–97
    [Google Scholar]
  3. Aguirre GK, Singh R, D'Esposito M 1999. Stimulus inversion and the responses of face and object-sensitive cortical areas. Neuroreport 10:189–94
    [Google Scholar]
  4. Aguirre GK, Zarahn E, D'Esposito M 1998a. An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21:373–83
    [Google Scholar]
  5. Aguirre GK, Zarahn E, D'Esposito M 1998b. Neural components of topographical representation. PNAS 95:839–46
    [Google Scholar]
  6. Andrews TJ, Watson DM, Rice GE, Hartley T 2015. Low-level properties of natural images predict topographic patterns of neural response in the ventral visual pathway. J. Vis. 15:73
    [Google Scholar]
  7. Arcaro M, Schade PF, Livingstone MS 2018. Preserved cortical organization in the absence of early visual input. J. Vis. 18:1027
    [Google Scholar]
  8. Arcaro MJ, Livingstone MS. 2017a. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6:e26196
    [Google Scholar]
  9. Arcaro MJ, Livingstone MS. 2017b. Retinotopic organization of scene areas in macaque inferior temporal cortex. J. Neurosci. 37:7373–89
    [Google Scholar]
  10. Arcaro MJ, McMains SA, Singer BD, Kastner S 2009. Retinotopic organization of human ventral visual cortex. J. Neurosci. 29:10638–52
    [Google Scholar]
  11. Arcaro MJ, Schade PF, Vincent JL, Ponce CR, Livingstone MS 2017. Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20:1404–12
    [Google Scholar]
  12. Atkinson J, Hood B, Wattam-Bell J, Braddick O 1992. Changes in infants’ ability to switch visual attention in the first three months of life. Perception 21:643–53
    [Google Scholar]
  13. Aylward EH, Park JE, Field KM, Parsons AC, Richards TL et al. 2005. Brain activation during face perception: evidence of a developmental change. J. Cogn. Neurosci. 17:308–19
    [Google Scholar]
  14. Baldwin MK, Kaskan PM, Zhang B, Chino YM, Kaas JH 2012. Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys. J. Comp. Neurol. 520:544–69
    [Google Scholar]
  15. Banks MS, Ginsburg AP. 1985. Infant visual preferences: a review and new theoretical treatment. Adv. Child Dev. Behav. 19:207–46
    [Google Scholar]
  16. Bar-Haim Y, Ziv T, Lamy D, Hodes RM 2006. Nature and nurture in own-race face processing. Psychol. Sci. 17:159–63
    [Google Scholar]
  17. Barlow HB. 1986. Why have multiple cortical areas?. Vis. Res. 26:81–90
    [Google Scholar]
  18. Barone P, Dehay C, Berland M, Kennedy H 1996. Role of directed growth and target selection in the formation of cortical pathways: prenatal development of the projection of area V2 to area V4 in the monkey. J. Comp. Neurol. 374:1–20
    [Google Scholar]
  19. Beauchamp MS, Lee KE, Haxby JV, Martin A 2003. FMRI responses to video and point-light displays of moving humans and manipulable objects. J. Cogn. Neurosci. 15:991–1001
    [Google Scholar]
  20. Bell AH, Hadj-Bouziane F, Frihauf JB, Tootell RB, Ungerleider LG 2009. Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. J. Neurophysiol. 101:688–700
    [Google Scholar]
  21. Blasdel G, Campbell D. 2001. Functional retinotopy of monkey visual cortex. J. Neurosci. 21:8286–301
    [Google Scholar]
  22. Blasdel G, Obermayer K, Kiorpes L 1995. Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys. Vis. Neurosci. 12:589–603
    [Google Scholar]
  23. Blasdel GG. 1992. Orientation selectivity, preference, and continuity in monkey striate cortex. J. Neurosci. 12:3139–61
    [Google Scholar]
  24. Bock AS, Binda P, Benson NC, Bridge H, Watkins KE, Fine I 2015. Resting-state retinotopic organization in the absence of retinal input and visual experience. J. Neurosci. 35:12366–82
    [Google Scholar]
  25. Bruce C, Desimone R, Gross CG 1981. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophysiol. 46:369–84
    [Google Scholar]
  26. Buchel C, Price C, Friston K 1998. A multimodal language region in the ventral visual pathway. Nature 394:274–77
    [Google Scholar]
  27. Bushnell IWR. 2001. Mother's face recognition in newborn infants: learning and memory. Infant Child Dev 10:67–74
    [Google Scholar]
  28. Bushnell IWR, Sai F, Mullin JT 1989. Neonatal recognition of the mother's face. Br. J. Dev. Psychol. 7:3–5
    [Google Scholar]
  29. Butt OH, Benson NC, Datta R, Aguirre GK 2013. The fine-scale functional correlation of striate cortex in sighted and blind people. J. Neurosci. 33:16209–19
    [Google Scholar]
  30. Cang J, Niell CM, Liu X, Pfeiffenberger C, Feldheim DA, Stryker MP 2008. Selective disruption of one Cartesian axis of cortical maps and receptive fields by deficiency in ephrin-As and structured activity. Neuron 57:511–23
    [Google Scholar]
  31. Cang J, Renteria RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP 2005. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48:797–809
    [Google Scholar]
  32. Cantlon JF, Pinel P, Dehaene S, Pelphrey KA 2011. Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb. Cortex 21:191–99
    [Google Scholar]
  33. Cassia VM, Simion F, Milani I, Umilta C 2002. Dominance of global visual properties at birth. J. Exp. Psychol. Gen. 131:398–411
    [Google Scholar]
  34. Cassia VM, Turati C, Simion F 2004. Can a nonspecific bias toward top-heavy patterns explain newborns’ face preference?. Psychol. Sci. 15:379–83
    [Google Scholar]
  35. Castets V, Dulos E, Boissonade J, De Kepper P 1990. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64:2953–56
    [Google Scholar]
  36. Chao LL, Weisberg J, Martin A 2002. Experience-dependent modulation of category-related cortical activity. Cereb. Cortex 12:545–51
    [Google Scholar]
  37. Clark VP, Keil K, Maisog JM, Courtney S, Ungerleider LG, Haxby JV 1996. Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. Neuroimage 4:1–15
    [Google Scholar]
  38. Cohen L, Dehaene S, Naccache L, Lehericy S, Dehaene-Lambertz G et al. 2000. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123:Part 2291–307
    [Google Scholar]
  39. Constantine-Paton M, Law MI. 1978. Eye-specific termination bands in tecta of three-eyed frogs. Science 202:639–41
    [Google Scholar]
  40. Coogan TA, Van Essen DC 1996. Development of connections within and between areas V1 and V2 of macaque monkeys. J. Comp. Neurol. 372:327–42
    [Google Scholar]
  41. Cragg BG. 1969. The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vis. Res. 9:733–47
    [Google Scholar]
  42. Dailey MN, Cottrell GW. 1999. Organization of face and object recognition in modular neural network models. Neural Netw 12:1053–74
    [Google Scholar]
  43. Datwani A, Iwasato T, Itohara S, Erzurumlu RS 2002. Lesion-induced thalamocortical axonal plasticity in the S1 cortex is independent of NMDA receptor function in excitatory cortical neurons. J. Neurosci. 22:9171–75
    [Google Scholar]
  44. de Haan M, Pascalis O, Johnson MH 2002. Specialization of neural mechanisms underlying face recognition in human infants. J. Cogn. Neurosci. 14:199–209
    [Google Scholar]
  45. Deen B, Richardson H, Dilks DD, Takahashi A, Keil B et al. 2017. Organization of high-level visual cortex in human infants. Nat. Commun. 8:13995
    [Google Scholar]
  46. Dehaene S, Cohen L. 2007. Cultural recycling of cortical maps. Neuron 56:384–98
    [Google Scholar]
  47. Desimone R, Albright TD, Gross CG, Bruce C 1984. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4:2051–62
    [Google Scholar]
  48. Distler C, Bachevalier J, Kennedy C, Mishkin M, Ungerleider LG 1996. Functional development of the corticocortical pathway for motion analysis in the macaque monkey: a 14C-2-deoxyglucose study. Cereb. Cortex 6:184–95
    [Google Scholar]
  49. Downing PE, Chan AW, Peelen MV, Dodds CM, Kanwisher N 2006. Domain specificity in visual cortex. Cereb. Cortex 16:1453–61
    [Google Scholar]
  50. Downing PE, Jiang Y, Shuman M, Kanwisher N 2001. A cortical area selective for visual processing of the human body. Science 293:2470–73
    [Google Scholar]
  51. Epstein R, Harris A, Stanley D, Kanwisher N 1999. The parahippocampal place area: recognition, navigation, or encoding. ? Neuron 23:115–25
    [Google Scholar]
  52. Farah MJ. 1990. Visual Agnosia: Disorders of Object Recognition and What They Tell Us About Normal Vision Cambridge, MA: MIT Press
  53. Farah MJ. 1992. Is an object an object an object? Cognitive and neuropsychological investigations of domain specificity in visual object recognition. Curr. Dir. Psychol. Sci. 1:164–69
    [Google Scholar]
  54. Farroni T, Johnson MH, Menon E, Zulian L, Faraguna D, Csibra G 2005. Newborns’ preference for face-relevant stimuli: effects of contrast polarity. PNAS 102:17245–50
    [Google Scholar]
  55. Fausey CM, Jayaraman S, Smith LB 2016. From faces to hands: changing visual input in the first two years. Cognition 152:101–7
    [Google Scholar]
  56. Flanagan JG. 2006. Neural map specification by gradients. Curr. Opin. Neurobiol. 16:59–66
    [Google Scholar]
  57. Frank MC, Vul E, Johnson SP 2009. Development of infants’ attention to faces during the first year. Cognition 110:160–70
    [Google Scholar]
  58. Fukuchi-Shimogori T, Grove EA. 2001. Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071–74
    [Google Scholar]
  59. Gauthier I. 2000. What constrains the organization of the ventral temporal cortex?. Trends Cogn. Sci. 4:1–2
    [Google Scholar]
  60. Gauthier I, Bukach C. 2007. Should we reject the expertise hypothesis?. Cognition 103:322–30
    [Google Scholar]
  61. Gauthier I, Palmeri TJ. 2002. Visual neurons: categorization-based selectivity. Curr. Biol. 12:R282–84
    [Google Scholar]
  62. Germine LT, Duchaine B, Nakayama K 2011. Where cognitive development and aging meet: Face learning ability peaks after age 30. Cognition 118:201–10
    [Google Scholar]
  63. Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL et al. 2007. Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat. Neurosci. 10:512–22
    [Google Scholar]
  64. Golarai G, Hong S, Haas BW, Galaburda AM, Mills DL et al. 2010a. The fusiform face area is enlarged in Williams syndrome. J. Neurosci. 30:6700–12
    [Google Scholar]
  65. Golarai G, Liberman A, Grill-Spector K 2015. Experience shapes the development of neural substrates of face processing in human ventral temporal cortex. Cereb. Cortex 27:1–16
    [Google Scholar]
  66. Golarai G, Liberman A, Yoon JM, Grill-Spector K 2010b. Differential development of the ventral visual cortex extends through adolescence. Front. Hum. Neurosci. 3:80
    [Google Scholar]
  67. Gomez J, Barnett M, Grill-Spector K 2019. Pokémon suggests eccentricity drives organization of visual cortex. Nat. Hum. Behav 3:611–24
    [Google Scholar]
  68. Gomez J, Natu V, Jeska B, Barnett M, Grill-Spector K 2018. Development differentially sculpts receptive fields across early and high-level human visual cortex. Nat. Commun. 9:788
    [Google Scholar]
  69. Goren CC, Sarty M, Wu PY 1975. Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56:544–49
    [Google Scholar]
  70. Grill-Spector K, Knouf N, Kanwisher N 2004. The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7:555–62
    [Google Scholar]
  71. Hafed ZM, Chen CY. 2016. Sharper, stronger, faster upper visual field representation in primate superior colliculus. Curr. Biol. 26:1647–58
    [Google Scholar]
  72. Halit H, de Haan M, Johnson MH 2003. Cortical specialisation for face processing: face-sensitive event-related potential components in 3- and 12-month-old infants. Neuroimage 19:1180–93
    [Google Scholar]
  73. Hasson U, Levy I, Behrmann M, Hendler T, Malach R 2002. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34:479–90
    [Google Scholar]
  74. Horton JC, Adams DL. 2005. The cortical column: a structure without a function. Philos. Trans. R. Soc. B 360:837–62
    [Google Scholar]
  75. Horton JC, Hocking DR. 1997. Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J. Neurosci. 17:3684–709
    [Google Scholar]
  76. Hubel DH, LeVay S, Wiesel TN 1975. Mode of termination of retinotectal fibers in macaque monkey: an autoradiographic study. Brain Res 96:25–40
    [Google Scholar]
  77. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54
    [Google Scholar]
  78. Hubel DH, Wiesel TN. 1965. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28:229–89
    [Google Scholar]
  79. Hubel DH, Wiesel TN. 1970. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206:419–36
    [Google Scholar]
  80. Hubel DH, Wiesel TN. 1974. Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158:267–93
    [Google Scholar]
  81. Hubel DH, Wiesel TN, LeVay S 1977. Plasticity of ocular dominance columns in monkey striate cortex. Philos. Trans. R. Soc. B 278:377–409
    [Google Scholar]
  82. Issa EB, DiCarlo JJ. 2012. Precedence of the eye region in neural processing of faces. J. Neurosci. 32:16666–82
    [Google Scholar]
  83. Janssens T, Zhu Q, Popivanov ID, Vanduffel W 2014. Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex. J. Neurosci. 34:10156–67
    [Google Scholar]
  84. Jayaraman S, Fausey CM, Smith LB 2015. The faces in infant-perspective scenes change over the first year of life. PLOS ONE 10:e0123780
    [Google Scholar]
  85. Johnson MH, Dziurawiec S, Ellis H, Morton J 1991. Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition 40:1–19
    [Google Scholar]
  86. Johnson MH, Griffin R, Csibra G, Halit H, Farroni T et al. 2005. The emergence of the social brain network: evidence from typical and atypical development. Dev. Psychopathol. 17:599–619
    [Google Scholar]
  87. Kaas JH. 1997. Topographic maps are fundamental to sensory processing. Brain Res. Bull. 44:107–12
    [Google Scholar]
  88. Kaas JH, Nelson RJ, Sur M, Lin C-S, Merzenich MM 1979. Multiple representations of the body within the primary somatosensory cortex of primates. Science 204:521–23
    [Google Scholar]
  89. Kanwisher N, McDermott J, Chun MM 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:4302–11
    [Google Scholar]
  90. Katz LC, Shatz CJ. 1996. Synaptic activity and the construction of cortical circuits. Science 274:1133–38
    [Google Scholar]
  91. Kelly DJ, Liu S, Ge L, Quinn PC, Slater AM et al. 2007. Cross-race preferences for same-race faces extend beyond the African versus Caucasian contrast in 3-month-old infants. Infancy 11:87–95
    [Google Scholar]
  92. Kelly DJ, Quinn PC, Slater AM, Lee K, Gibson A et al. 2005. Three-month-olds, but not newborns, prefer own-race faces. Dev. Sci. 8:F31–36
    [Google Scholar]
  93. Kobatake E, Tanaka K. 1994. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J. Neurophysiol. 71:856–67
    [Google Scholar]
  94. Kolster H, Janssens T, Orban GA, Vanduffel W 2014. The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. J. Neurosci. 34:10168–91
    [Google Scholar]
  95. Konorski J. 1967. Integrative Activity of the Brain: An Interdisciplinary Approach Chicago: Univ. Chicago Press
  96. Kornack DR, Rakic P. 1998. Changes in cell-cycle kinetics during the development and evolution of primate neocortex. PNAS 95:1242–46
    [Google Scholar]
  97. Kornblith S, Cheng X, Ohayon S, Tsao DY 2013. A network for scene processing in the macaque temporal lobe. Neuron 79:766–81
    [Google Scholar]
  98. Kremkow J, Jin J, Wang Y, Alonso JM 2016. Principles underlying sensory map topography in primary visual cortex. Nature 533:52–57
    [Google Scholar]
  99. Krubitzer L. 2007. The magnificent compromise: cortical field evolution in mammals. Neuron 56:201–8
    [Google Scholar]
  100. Lafer-Sousa R, Conway BR. 2013. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat. Neurosci. 16:1870–78
    [Google Scholar]
  101. Law MI, Constantine-Paton M. 1981. Anatomy and physiology of experimentally produced striped tecta. J. Neurosci. 1:741–59
    [Google Scholar]
  102. Levitt JB, Yoshioka T, Lund JS 1994. Intrinsic cortical connections in macaque visual area V2: evidence for integration between different functional streams. J. Comp. Neurol. 342:551–70
    [Google Scholar]
  103. Levy I, Hasson U, Avidan G, Hendler T, Malach R 2001. Center-periphery organization of human object areas. Nat. Neurosci. 4:533–39
    [Google Scholar]
  104. Livingstone MS. 1996. Ocular dominance columns in New World monkeys. J. Neurosci. 16:2086–96
    [Google Scholar]
  105. Livingstone MS, Hubel DH. 1984a. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4:309–56
    [Google Scholar]
  106. Livingstone MS, Hubel DH. 1984b. Specificity of intrinsic connections in primate primary visual cortex. J. Neurosci. 4:2830–35
    [Google Scholar]
  107. Livingstone MS, Hubel DH. 1987. Connections between layer 4B of area 17 and the thick cytochrome-oxidase stripes of area 18 in the squirrel monkey. J. Neurosci. 7:3371–77
    [Google Scholar]
  108. Livingstone MS, Nori S, Freeman DC, Hubel DH 1995. Stereopsis and binocularity in the squirrel monkey. Vis. Res. 35:345–54
    [Google Scholar]
  109. Livingstone MS, Vincent JL, Arcaro MJ, Srihasam K, Schade PF, Savage T 2017. Development of the macaque face-patch system. Nat. Commun. 8:14897
    [Google Scholar]
  110. Long B, Yu C-P, Konkle T 2018. Mid-level visual features underlie the high-level categorical organization of the ventral stream. PNAS 115:E9015–24
    [Google Scholar]
  111. Magrou L, Barone P, Markov NT, Killackey HP, Giroud P et al. 2018. How areal specification shapes the local and interareal circuits in a macaque model of congenital blindness. Cereb. Cortex 28:3017–34
    [Google Scholar]
  112. Mahon BZ, Anzellotti S, Schwarzbach J, Zampini M, Caramazza A 2009. Category-specific organization in the human brain does not require visual experience. Neuron 63:397–405
    [Google Scholar]
  113. Mahon BZ, Caramazza A. 2011. What drives the organization of object knowledge in the brain. ? Trends Cogn. Sci. 15:97–103
    [Google Scholar]
  114. Malach R, Levy I, Hasson U 2002. The topography of high-order human object areas. Trends Cogn. Sci. 6:176–84
    [Google Scholar]
  115. McKone E, Crookes K, Jeffery L, Dilks DD 2012. A critical review of the development of face recognition: Experience is less important than previously believed. Cogn. Neuropsychol. 29:174–212
    [Google Scholar]
  116. Meinhardt H, Gierer A. 2000. Pattern formation by local self-activation and lateral inhibition. Bioessays 22:753–60
    [Google Scholar]
  117. Morton J, Johnson MH. 1991. CONSPEC and CONLERN: a two-process theory of infant face recognition. Psychol. Rev. 98:164–81
    [Google Scholar]
  118. Moscovitch M, Winocur G, Behrmann M 1997. What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. J. Cogn. Neurosci. 9:555–604
    [Google Scholar]
  119. Mur M, Ruff DA, Bodurka J, De Weerd P, Bandettini PA, Kriegeskorte N 2012. Categorical, yet graded—single-image activation profiles of human category-selective cortical regions. J. Neurosci. 32:8649–62
    [Google Scholar]
  120. Nasr S, Liu N, Devaney KJ, Yue X, Rajimehr R et al. 2011. Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31:13771–85
    [Google Scholar]
  121. Nasr S, Polimeni JR, Tootell RB 2016. Interdigitated color- and disparity-selective columns within human visual cortical areas V2 and V3. J. Neurosci. 36:1841–57
    [Google Scholar]
  122. O'Leary DD, Yates PA, McLaughlin T 1999. Molecular development of sensory maps: representing sights and smells in the brain. Cell 96:255–69
    [Google Scholar]
  123. Otsuka Y, Nakato E, Kanazawa S, Yamaguchi MK, Watanabe S, Kakigi R 2007. Neural activation to upright and inverted faces in infants measured by near infrared spectroscopy. Neuroimage 34:399–406
    [Google Scholar]
  124. Oyuyang Q, Swinney HL. 1991. Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352:610–12
    [Google Scholar]
  125. Painter KJ, Maini PK, Othmer HG 1999. Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. PNAS 96:5549–54
    [Google Scholar]
  126. Pascalis O, de Haan M, Nelson CA, de Schonen S 1998. Long-term recognition memory for faces assessed by visual paired comparison in 3- and 6-month-old infants. J. Exp. Psychol. Learn. Mem. Cogn. 24:249–60
    [Google Scholar]
  127. Pascalis O, De Schonen S, Morton J, Deruelle C 1995. Mother's face recognition by neonates: a replication and an extension. Infant Behav. Dev. 18:79–85
    [Google Scholar]
  128. Peña B, Pérez-García C, Sanz-Anchelergues A, Míguez DG, Muñuzuri AP 2003. Transverse instabilities in chemical Turing patterns of stripes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68:056206
    [Google Scholar]
  129. Penn AA, Riquelme PA, Feller MB, Shatz CJ 1998. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279:2108–12
    [Google Scholar]
  130. Perrett DI, Mistlin AJ, Chitty AJ 1987. Visual neurones responsive to faces. Trends Neurosci 10:358–64
    [Google Scholar]
  131. Pinsk MA, Desimone K, Moore T, Gross CG, Kastner S 2005. Representations of faces and body parts in macaque temporal cortex: a functional MRI study. PNAS 102:6996–7001
    [Google Scholar]
  132. Plaut DC, Behrmann M. 2011. Complementary neural representations for faces and words: a computational exploration. Cogn. Neuropsychol. 28:251–75
    [Google Scholar]
  133. Ponce CR, Hartmann TS, Livingstone MS 2017. End-stopping predicts curvature tuning along the ventral stream. J. Neurosci. 37:648–59
    [Google Scholar]
  134. Powell LJ, Kosakowski HL, Saxe R 2018. Social origins of cortical face areas. Trends Cogn. Sci. 22:752–63
    [Google Scholar]
  135. Puce A, Allison T, Asgari M, Gore JC, McCarthy G 1996. Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J. Neurosci. 16:5205–15
    [Google Scholar]
  136. Quartz SR, Sejnowski TJ. 1997. The neural basis of cognitive development: a constructivist manifesto. Behav. Brain Sci. 20:537–56
    [Google Scholar]
  137. Quinn PC, Yahr J, Kuhn A, Slater AM, Pascalils O 2002. Representation of the gender of human faces by infants: a preference for female. Perception 31:1109–21
    [Google Scholar]
  138. Rajimehr R, Bilenko NY, Vanduffel W, Tootell RB 2014. Retinotopy versus face selectivity in macaque visual cortex. J. Cogn. Neurosci. 26:2691–700
    [Google Scholar]
  139. Rakic P, Suñer I, Williams RW 1991. A novel cytoarchitectonic area induced experimentally within the primate visual cortex. PNAS 88:2083–87
    [Google Scholar]
  140. Reich L, Szwed M, Cohen L, Amedi A 2011. A ventral visual stream reading center independent of visual experience. Curr. Biol. 21:363–68
    [Google Scholar]
  141. Rice GE, Watson DM, Hartley T, Andrews TJ 2014. Low-level image properties of visual objects predict patterns of neural response across category-selective regions of the ventral visual pathway. J. Neurosci. 34:8837–44
    [Google Scholar]
  142. Robbins R, McKone E. 2007. No face-like processing for objects-of-expertise in three behavioural tasks. Cognition 103:34–79
    [Google Scholar]
  143. Rodman HR, Skelly JP, Gross CG 1991. Stimulus selectivity and state dependence of activity in inferior temporal cortex of infant monkeys. PNAS 88:7572–75
    [Google Scholar]
  144. Sangrioli S, de Schonen S 2004. Recognition of own-race and other-race faces by three-month-old infants. J. Child Psychol. Psychiatry 45:1219–27
    [Google Scholar]
  145. Scherf KS, Behrmann M, Humphreys K, Luna B 2007. Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Dev. Sci. 10:F15–30
    [Google Scholar]
  146. Scherf KS, Luna B, Avidan G, Behrmann M 2011. “What” precedes “which”: developmental neural tuning in face- and place-related cortex. Cereb. Cortex 21:1963–80
    [Google Scholar]
  147. Sengpiel F, Stawinski P, Bonhoeffer T 1999. Influence of experience on orientation maps in cat visual cortex. Nat. Neurosci. 2:727–32
    [Google Scholar]
  148. Shatz CJ, Stryker MP. 1988. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242:87–89
    [Google Scholar]
  149. Simion F, Di Giorgio E 2015. Face perception and processing in early infancy: inborn predispositions and developmental changes. Front. Psychol. 9:969
    [Google Scholar]
  150. Simion F, Farroni T, Cassia VM, Turati C, Barba BD 2002a. Newborns’ local processing in schematic facelike configurations. Br. J. Dev. Psychol. 20:465–78
    [Google Scholar]
  151. Simion F, Valenza E, Cassia VM, Turati C, Umilta C 2002b. Newborns’ preference for up-down asymmetrical configurations. Dev. Sci. 5:427–34
    [Google Scholar]
  152. Sincich LC, Horton JC. 2002. Divided by cytochrome oxidase: a map of the projections from V1 to V2 in macaques. Science 295:1734–37
    [Google Scholar]
  153. Siuda-Krzywicka K, Bola L, Paplinska M, Sumera E, Jednorog K et al. 2016. Massive cortical reorganization in sighted Braille readers. eLife 5:e10762
    [Google Scholar]
  154. Soriano J, Rudiger S, Pullarkat P, Ott A 2009. Mechanogenetic coupling of Hydra symmetry breaking and driven Turing instability model. Biophys. J. 96:1649–60
    [Google Scholar]
  155. Sprague JM, Berlucchi G, Rizzolatti G 1973. The role of the superior colliculus and pretectum in vision and visually-guided behavior. Handbook of Sensory Physiology R Jung 27–101 Berlin: Springer-Verlag
    [Google Scholar]
  156. Srihasam K, Mandeville JB, Morocz IA, Sullivan KJ, Livingstone MS 2012. Behavioral and anatomical consequences of early versus late symbol training in macaques. Neuron 73:608–19
    [Google Scholar]
  157. Srihasam K, Vincent JL, Livingstone MS 2014. Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat. Neurosci. 17:1776–83
    [Google Scholar]
  158. Striem-Amit E, Ovadia-Caro S, Caramazza A, Margulies DS, Villringer A, Amedi A 2015. Functional connectivity of visual cortex in the blind follows retinotopic organization principles. Brain 138:1679–95
    [Google Scholar]
  159. Tanaka JW, Farah MJ. 1993. Parts and wholes in face recognition. Q. J. Exp. Psychol. A 46:225–45
    [Google Scholar]
  160. Tanaka S, Ribot J, Imamura K, Tani T 2006. Orientation-restricted continuous visual exposure induces marked reorganization of orientation maps in early life. Neuroimage 30:462–77
    [Google Scholar]
  161. Tanigawa H, Lu HD, Roe AW 2010. Functional organization for color and orientation in macaque V4. Nat. Neurosci. 13:1542–48
    [Google Scholar]
  162. Tarr MJ, Cheng YD. 2003. Learning to see faces and objects. Trends Cogn. Sci. 7:23–30
    [Google Scholar]
  163. Tarr MJ, Gauthier I. 2000. FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nat. Neurosci. 3:764–69
    [Google Scholar]
  164. Teinonen T, Fellman V, Naatanen R, Alku P, Huotilainen M 2009. Statistical language learning in neonates revealed by event-related brain potentials. BMC Neurosci 10:21
    [Google Scholar]
  165. Tessier-Lavigne M, Goodman CS. 1996. The molecular biology of axon guidance. Science 274:1123–33
    [Google Scholar]
  166. Tigges J, Tigges M. 1979. Ocular dominance columns in the striate cortex of chimpanzee (Pan troglodytes). Brain Res 166:386–90
    [Google Scholar]
  167. Tootell RB, Nasr S, Yue X 2012. Selectivity for different shapes drives ‘face selective’ and ‘scene selective’ areas in human visual cortex. SFN Abstr 2012:624.04
    [Google Scholar]
  168. Tootell RB, Silverman MS, De Valois RL, Jacobs GH 1983. Functional organization of the second cortical visual area in primates. Science 220:737–39
    [Google Scholar]
  169. Tootell RB, Switkes E, Silverman MS, Hamilton SL 1988. Functional anatomy of macaque striate cortex. II. Retinotopic organization. J. Neurosci. 8:1531–68
    [Google Scholar]
  170. Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB 2003. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6:989–95
    [Google Scholar]
  171. Tsao DY, Freiwald WA, Tootell RB, Livingstone MS 2006. A cortical region consisting entirely of face-selective cells. Science 311:670–74
    [Google Scholar]
  172. Tsao DY, Moeller S, Freiwald WA 2008. Comparing face patch systems in macaques and humans. PNAS 105:19514–19
    [Google Scholar]
  173. Turati C, Di Giorgio E, Bardi L, Simion F 2010. Holistic face processing in newborns, 3-month-old infants, and adults: evidence from the composite face effect. Child Dev 81:1894–905
    [Google Scholar]
  174. Turati C, Macchi Cassia V, Simion F, Leo I 2006. Newborns’ face recognition: role of inner and outer facial features. Child Dev 77:297–311
    [Google Scholar]
  175. Turati C, Simion F, Milani I, Umilta C 2002. Newborns’ preference for faces: What is crucial. ? Dev. Psychol. 38:875–82
    [Google Scholar]
  176. Turing A. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237:37–52
    [Google Scholar]
  177. van den Hurk J, Van Baelen M, Op de Beeck HP 2017. Development of visual category selectivity in ventral visual cortex does not require visual experience. PNAS 114:E4501–10
    [Google Scholar]
  178. Van der Loos H, Woolsey TA 1973. Somatosensory cortex: structural alterations following early injury to sense organs. Science 179:395–98
    [Google Scholar]
  179. Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RB et al. 2001. Mapping visual cortex in monkeys and humans using surface-based atlases. Vis. Res. 41:1359–78
    [Google Scholar]
  180. Wallace DJ, Greenberg DS, Sawinski J, Rulla S, Notaro G, Kerr JN 2013. Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498:65–69
    [Google Scholar]
  181. Wang P, Cottrell GW. 2017. Central and peripheral vision for scene recognition: a neurocomputational modeling exploration. J. Vis. 17:49
    [Google Scholar]
  182. Waters D, Campbell R, Capek CM, Woll B, David AS et al. 2007. Fingerspelling, signed language, text and picture processing in deaf native signers: the role of the mid-fusiform gyrus. Neuroimage 35:1287–302
    [Google Scholar]
  183. Wiesel TN, Hubel DH. 1974. Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neurol. 158:307–18
    [Google Scholar]
  184. Wilmer JB, Germine L, Chabris CF, Chatterjee G, Williams M et al. 2010. Human face recognition ability is specific and highly heritable. PNAS 107:5238–41
    [Google Scholar]
  185. Yin R. 1969. Looking at upside-down faces. J. Exp. Psychol. 81:141–45
    [Google Scholar]
  186. Young AW, Hellawell D, Hay DC 1987. Configurational information in face perception. Perception 16:747–59
    [Google Scholar]
  187. Yovel G, Kanwisher N. 2004. Face perception: domain specific, not process specific. Neuron 44:889–98
    [Google Scholar]
  188. Yue X, Pourladian IS, Tootell RB, Ungerleider LG 2014. Curvature-processing network in macaque visual cortex. PNAS 111:E3467–75
    [Google Scholar]
  189. Zeki SM. 1969. Representation of central visual fields in prestriate cortex of monkey. Brain Res 14:271–91
    [Google Scholar]
  190. Zeki SM. 1973. Colour coding in rhesus monkey prestriate cortex. Brain Res 53:422–27
    [Google Scholar]
  191. Zeki SM. 1974a. Cells responding to changing image size and disparity in the cortex of the rhesus monkey. J. Physiol. 242:827–41
    [Google Scholar]
  192. Zeki SM. 1974b. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol. 236:549–73
    [Google Scholar]
  193. Zeki SM, Shipp S. 1989. Modular connections between areas V2 and V4 of macaque visual cortex. Eur. J. Neurosci. 1:494–506
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014917
Loading
/content/journals/10.1146/annurev-vision-091718-014917
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error