1932

Abstract

Gene regulation arises out of dynamic competition between nucleosomes, transcription factors, and other chromatin proteins for the opportunity to bind genomic DNA. The timescales of nucleosome assembly and binding of factors to DNA determine the outcomes of this competition at any given locus. Here, we review how these properties of chromatin proteins and the interplay between the dynamics of different factors are critical for gene regulation. We discuss how molecular structures of large chromatin-associated complexes, kinetic measurements, and high resolution mapping of protein–DNA complexes in vivo set the boundary conditions for chromatin dynamics, leading to models of how the steady state behaviors of regulatory elements arise.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-032620-104508
2022-06-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-032620-104508.html?itemId=/content/journals/10.1146/annurev-biochem-032620-104508&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Leschziner AE, Saha A, Wittmeyer J, Zhang Y, Bustamante C et al. 2007. Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method. PNAS 104:124913–18
    [Google Scholar]
  2. 2.
    Rengachari S, Schilbach S, Aibara S, Dienemann C, Cramer P. 2021. Structure of the human Mediator–RNA polymerase II pre-initiation complex. Nature 594:7861129–33
    [Google Scholar]
  3. 3.
    Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT et al. 2015. The architecture of a eukaryotic replisome. Nat. Struct. Mol. Biol. 22:12976–82
    [Google Scholar]
  4. 4.
    Giaever GN, Wang JC. 1988. Supercoiling of intracellular DNA can occur in eukaryotic cells. Cell 55:5849–56
    [Google Scholar]
  5. 5.
    Lu F, Lionnet T. 2021. Transcription factor dynamics. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a040949
    [Crossref] [Google Scholar]
  6. 6.
    Rao S, Ahmad K, Ramachandran S 2021. Cooperative binding between distant transcription factors is a hallmark of active enhancers. Mol. Cell 81:81651–65.e4
    [Google Scholar]
  7. 7.
    Freeberg MA, Han T, Moresco JJ, Kong A, Yang Y-C et al. 2013. Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae. Genome Biol 14:2R13
    [Google Scholar]
  8. 8.
    Pelechano V, Chávez S, Pérez-Ortín JE. 2010. A complete set of nascent transcription rates for yeast genes. PLOS ONE 5:11e15442
    [Google Scholar]
  9. 9.
    Xiao JY, Hafner A, Boettiger AN. 2021. How subtle changes in 3D structure can create large changes in transcription. eLife 10:e64320
    [Google Scholar]
  10. 10.
    Steurer B, Janssens RC, Geverts B, Geijer ME, Wienholz F et al. 2018. Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA polymerase II. PNAS 115:19E4368–76
    [Google Scholar]
  11. 11.
    Sanchez A, Golding I. 2013. Genetic determinants and cellular constraints in noisy gene expression. Science 342:61631188–93
    [Google Scholar]
  12. 12.
    Libbrecht MW, Rodriguez OL, Weng Z, Bilmes JA, Hoffman MM, Noble WS. 2019. A unified encyclopedia of human functional DNA elements through fully automated annotation of 164 human cell types. Genome Biol 20:1180
    [Google Scholar]
  13. 13.
    Günesdogan U, Jäckle H, Herzig A. 2014. Histone supply regulates S phase timing and cell cycle progression. eLife 3:e02443
    [Google Scholar]
  14. 14.
    Alabert C, Barth TK, Reverón-Gómez N, Sidoli S, Schmidt A et al. 2015. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29:6585–90
    [Google Scholar]
  15. 15.
    Cusick ME, Lee KS, DePamphilis ML, Wassarman PM. 1983. Structure of chromatin at deoxyribonucleic acid replication forks: Nuclease hypersensitivity results from both prenucleosomal deoxyribonucleic acid and an immature chromatin structure. Biochemistry 22:163873–84
    [Google Scholar]
  16. 16.
    Yadav T, Whitehouse I. 2016. Replication-coupled nucleosome assembly and positioning by ATP-dependent chromatin-remodeling enzymes. Cell Rep 15:4715–23
    [Google Scholar]
  17. 17.
    Ramachandran S, Henikoff S. 2016. Transcriptional regulators compete with nucleosomes post-replication. Cell 165:3580–92
    [Google Scholar]
  18. 18.
    Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:6648251–60
    [Google Scholar]
  19. 19.
    Huang H, Strømme CB, Saredi G, Hödl M, Strandsby A et al. 2015. A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks. Nat. Struct. Mol. Biol. 22:8618–26
    [Google Scholar]
  20. 20.
    Petryk N, Dalby M, Wenger A, Stromme CB, Strandsby A et al. 2018. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361:64091389–92
    [Google Scholar]
  21. 21.
    Yu C, Gan H, Serra-Cardona A, Zhang L, Gan S et al. 2018. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361:64091386–89
    [Google Scholar]
  22. 22.
    Jackson V. 1990. In vivo studies on the dynamics of histone–DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 29:3719–31
    [Google Scholar]
  23. 23.
    Stillman B. 1986. Chromatin assembly during SV40 DNA replication in vitro. Cell 45:4555–65
    [Google Scholar]
  24. 24.
    Hodges AJ, Gallegos IJ, Laughery MF, Meas R, Tran L, Wyrick JJ 2015. Histone sprocket arginine residues are important for gene expression, DNA repair, and cell viability in Saccharomyces cerevisiae. Genetics 200:3795–806
    [Google Scholar]
  25. 25.
    Ramachandran S, Ahmad K, Henikoff S. 2017. Transcription and remodeling produce asymmetrically unwrapped nucleosomal intermediates. Mol. Cell 68:61038–53.e4
    [Google Scholar]
  26. 26.
    Liu WH, Roemer SC, Zhou Y, Shen Z-J, Dennehey BK et al. 2016. The Cac1 subunit of histone chaperone CAF-1 organizes CAF-1-H3/H4 architecture and tetramerizes histones. eLife 5:e18023
    [Google Scholar]
  27. 27.
    Mattiroli F, Gu Y, Yadav T, Balsbaugh JL, Harris MR et al. 2017. DNA-mediated association of two histone-bound complexes of yeast chromatin assembly factor-1 (CAF-1) drives tetrasome assembly in the wake of DNA replication. eLife 6:e22799
    [Google Scholar]
  28. 28.
    Lucchini R, Wellinger RE, Sogo JM. 2001. Nucleosome positioning at the replication fork. EMBO J 20:247294–302
    [Google Scholar]
  29. 29.
    Poirier MG, Oh E, Tims HS, Widom J. 2009. Dynamics and function of compact nucleosome arrays. Nat. Struct. Mol. Biol. 16:9938–44
    [Google Scholar]
  30. 30.
    Seale RL. 1978. Nucleosomes associated with newly replicated DNA have an altered conformation. PNAS 75:62717–21
    [Google Scholar]
  31. 31.
    Krietenstein N, Wal M, Watanabe S, Park B, Peterson CL et al. 2016. Genomic nucleosome organization reconstituted with pure proteins. Cell 167:3709–21.e12
    [Google Scholar]
  32. 32.
    Polach KJ, Widom J. 1995. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254:2130–49
    [Google Scholar]
  33. 33.
    Kubik S, O'Duibhir E, de Jonge WJ, Mattarocci S, Albert B et al. 2018. Sequence-directed action of RSC remodeler and general regulatory factors modulates +1 nucleosome position to facilitate transcription. Mol. Cell 71:189–102.e5
    [Google Scholar]
  34. 34.
    Vasseur P, Tonazzini S, Ziane R, Camasses A, Rando OJ, Radman-Livaja M. 2016. Dynamics of nucleosome positioning maturation following genomic replication. Cell Rep 16:102651–65
    [Google Scholar]
  35. 35.
    Stewart-Morgan KR, Reverón-Gómez N, Groth A 2019. Transcription restart establishes chromatin accessibility after DNA replication. Mol. Cell 75:2284–97.e6
    [Google Scholar]
  36. 36.
    Iurlaro M, Stadler MB, Masoni F, Jagani Z, Galli GG, Schübeler D. 2021. Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat. Genet. 53:279–87
    [Google Scholar]
  37. 37.
    Struhl K, Segal E. 2013. Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 20:3267–73
    [Google Scholar]
  38. 38.
    Polach KJ, Widom J. 1996. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258:5800–12
    [Google Scholar]
  39. 39.
    Bilokapic S, Strauss M, Halic M. 2018. Histone octamer rearranges to adapt to DNA unwrapping. Nat. Struct. Mol. Biol. 25:1101–8
    [Google Scholar]
  40. 40.
    Tan ZY, Cai S, Noble AJ, Chen JK, Shi J, Gan L. 2021. Heterogeneous non-canonical nucleosomes predominate in yeast cells in situ. bioRxiv 2021.04.04.438362. https://doi.org/10.1101/2021.04.04.438362
    [Crossref]
  41. 41.
    Rhee HS, Bataille AR, Zhang L, Pugh BF. 2014. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 159:61377–88
    [Google Scholar]
  42. 42.
    Deal RB, Henikoff JG, Henikoff S. 2010. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328:59821161–64
    [Google Scholar]
  43. 43.
    Schick S, Grosche S, Kohl KE, Drpic D, Jaeger MG et al. 2021. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 53:3269–78
    [Google Scholar]
  44. 44.
    Deaton AM, Gómez-Rodríguez M, Mieczkowski J, Tolstorukov MY, Kundu S et al. 2016. Enhancer regions show high histone H3.3 turnover that changes during differentiation. eLife 5:e15316
    [Google Scholar]
  45. 45.
    Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N et al. 2011. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol. Cell 44:6928–41
    [Google Scholar]
  46. 46.
    Ahmad K, Henikoff S. 2002. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9:61191–200
    [Google Scholar]
  47. 47.
    Grover P, Asa JS, Campos EI 2018. H3–H4 histone chaperone pathways. Annu. Rev. Genet. 52:109–30
    [Google Scholar]
  48. 48.
    Weber CM, Ramachandran S, Henikoff S. 2014. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol. Cell 53:5819–30
    [Google Scholar]
  49. 49.
    Mylonas C, Lee C, Auld AL, Cisse II, Boyer LA. 2021. A dual role for H2A.Z.1 in modulating the dynamics of RNA polymerase II initiation and elongation. Nat. Struct. Mol. Biol. 28:5435–42
    [Google Scholar]
  50. 50.
    Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. 2013. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:3490–503
    [Google Scholar]
  51. 51.
    McGinty RK, Tan S. 2021. Principles of nucleosome recognition by chromatin factors and enzymes. Curr. Opin. Struct. Biol. 71:16–26
    [Google Scholar]
  52. 52.
    Brahma S, Henikoff S. 2020. Epigenome regulation by dynamic nucleosome unwrapping. Trends Biochem. Sci. 45:113–26
    [Google Scholar]
  53. 53.
    Kubik S, Bruzzone MJ, Challal D, Dreos R, Mattarocci S et al. 2019. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat. Struct. Mol. Biol. 26:8744–54
    [Google Scholar]
  54. 54.
    Oberbeckmann E, Niebauer V, Watanabe S, Farnung L, Moldt M et al. 2021. Ruler elements in chromatin remodelers set nucleosome array spacing and phasing. Nat. Commun. 12:13232
    [Google Scholar]
  55. 55.
    Lomaev D, Mikhailova A, Erokhin M, Shaposhnikov AV, Moresco JJ et al. 2017. The GAGA factor regulatory network: identification of GAGA factor associated proteins. PLOS ONE 12:3e0173602
    [Google Scholar]
  56. 56.
    Nakayama T, Shimojima T, Hirose S. 2012. The PBAP remodeling complex is required for histone H3.3 replacement at chromatin boundaries and for boundary functions. Development 139:244582–90
    [Google Scholar]
  57. 57.
    Xiao H, Sandaltzopoulos R, Wang H-M, Hamiche A, Ranallo R et al. 2001. Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol. Cell 8:3531–43
    [Google Scholar]
  58. 58.
    Judd J, Duarte FM, Lis JT. 2020. Pioneer-like factor GAF cooperates with PBAP (SWI/SNF) and NURF (ISWI) to regulate transcription. Genes Dev 35:147–56
    [Google Scholar]
  59. 59.
    Wolffe AP. 2014. Chromatin: Structure and Function St Louis, MO: Elsevier Science
  60. 60.
    Zhu F, Farnung L, Kaasinen E, Sahu B, Yin Y et al. 2018. The interaction landscape between transcription factors and the nucleosome. Nature 562:772576–81
    [Google Scholar]
  61. 61.
    Brogaard K, Xi L, Wang J-P, Widom J. 2012. A map of nucleosome positions in yeast at base-pair resolution. Nature 486:7404496–501
    [Google Scholar]
  62. 62.
    Chereji RV, Ramachandran S, Bryson TD, Henikoff S. 2018. Precise genome-wide mapping of single nucleosomes and linkers in vivo. Genome Biol 19:119
    [Google Scholar]
  63. 63.
    Li G, Widom J. 2004. Nucleosomes facilitate their own invasion. Nat. Struct. Mol. Biol. 11:8763–69
    [Google Scholar]
  64. 64.
    Cui F, Zhurkin VB. 2014. Rotational positioning of nucleosomes facilitates selective binding of p53 to response elements associated with cell cycle arrest. Nucleic Acids Res 42:2836–47
    [Google Scholar]
  65. 65.
    Li Q, Wrange O. 1995. Accessibility of a glucocorticoid response element in a nucleosome depends on its rotational positioning. Mol. Cell. Biol. 15:84375–84
    [Google Scholar]
  66. 66.
    Dodonova SO, Zhu F, Dienemann C, Taipale J, Cramer P. 2020. Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function. Nature 580:7805669–72
    [Google Scholar]
  67. 67.
    Michael AK, Grand RS, Isbel L, Cavadini S, Kozicka Z et al. 2020. Mechanisms of OCT4-SOX2 motif readout on nucleosomes. Science 368:64981460–65
    [Google Scholar]
  68. 68.
    Meers MP, Janssens DH, Henikoff S. 2019. Pioneer factor-nucleosome binding events during differentiation are motif encoded. Mol. Cell 75:3562–75.e5
    [Google Scholar]
  69. 69.
    Krebs AR, Imanci D, Hoerner L, Gaidatzis D, Burger L, Schübeler D. 2017. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters. Mol. Cell 67:3411–22.e4
    [Google Scholar]
  70. 70.
    Sönmezer C, Kleinendorst R, Imanci D, Barzaghi G, Villacorta L et al. 2021. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell 81:2255–67.e6
    [Google Scholar]
  71. 71.
    Abdulhay NJ, McNally CP, Hsieh LJ, Kasinathan S, Keith A et al. 2020. Massively multiplex single-molecule oligonucleosome footprinting. eLife 9:e59404
    [Google Scholar]
  72. 72.
    Stergachis AB, Debo BM, Haugen E, Churchman LS, Stamatoyannopoulos JA. 2020. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368:64981449–54
    [Google Scholar]
  73. 73.
    Voss TC, Hager GL. 2014. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat. Rev. Genet. 15:269–81
    [Google Scholar]
  74. 74.
    Moyle-Heyrman G, Tims HS, Widom J. 2011. Structural constraints in collaborative competition of transcription factors against the nucleosome. J. Mol. Biol. 412:4634–46
    [Google Scholar]
  75. 75.
    Mirny LA. 2010. Nucleosome-mediated cooperativity between transcription factors. PNAS 107:5222534–39
    [Google Scholar]
  76. 76.
    Kraushaar DC, Jin W, Maunakea A, Abraham B, Ha M, Zhao K 2013. Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3. Genome Biol 14:10R121
    [Google Scholar]
  77. 77.
    Jeronimo C, Poitras C, Robert F. 2019. Histone recycling by FACT and Spt6 during transcription prevents the scrambling of histone modifications. Cell Rep 28:51206–18.e8
    [Google Scholar]
  78. 78.
    Teves SS, Henikoff S. 2014. Transcription-generated torsional stress destabilizes nucleosomes. Nat. Struct. Mol. Biol. 21:188–94
    [Google Scholar]
  79. 79.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:5950289–93
    [Google Scholar]
  80. 80.
    Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:71665–80
    [Google Scholar]
  81. 81.
    Bintu B, Mateo LJ, Su J-H, Sinnott-Armstrong NA, Parker M et al. 2018. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:6413eaau1783
    [Google Scholar]
  82. 82.
    Cardozo Gizzi AM, Cattoni DI, Nollmann M. 2020. TADs or no TADS: lessons from single-cell imaging of chromosome architecture. J. Mol. Biol. 432:3682–93
    [Google Scholar]
  83. 83.
    Hansen AS, Cattoglio C, Darzacq X, Tjian R. 2018. Recent evidence that TADs and chromatin loops are dynamic structures. Nucl. Austin Tex. 9:120–32
    [Google Scholar]
  84. 84.
    Winick-Ng W, Kukalev A, Harabula I, Redondo LZ, Szabo D et al. 2020. Cell-type specialization in the brain is encoded by specific long-range chromatin topologies. Nature 599:684–91
    [Google Scholar]
  85. 85.
    Li L, Williams P, Ren W, Wang MY, Gao Z et al. 2021. YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nat. Chem. Biol. 17:2161–68
    [Google Scholar]
  86. 86.
    Lyu J, Shao R, Elsässer SJ. 2021. Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab1073
    [Crossref] [Google Scholar]
  87. 87.
    Spiegel J, Cuesta SM, Adhikari S, Hänsel-Hertsch R, Tannahill D, Balasubramanian S. 2021. G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol 22:1117
    [Google Scholar]
  88. 88.
    Liu J, Kouzine F, Nie Z, Chung H-J, Elisha-Feil Z et al. 2006. The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression. EMBO J 25:102119–30
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-032620-104508
Loading
/content/journals/10.1146/annurev-biochem-032620-104508
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error