1932

Abstract

Plant cell walls are dynamic structures that are synthesized by plants to provide durable coverings for the delicate cells they encase. They are made of polysaccharides, proteins, and other biomolecules and have evolved to withstand large amounts of physical force and to resist external attack by herbivores and pathogens but can in many cases expand, contract, and undergo controlled degradation and reconstruction to facilitate developmental transitions and regulate plant physiology and reproduction. Recent advances in genetics, microscopy, biochemistry, structural biology, and physical characterization methods have revealed a diverse set of mechanisms by which plant cells dynamically monitor and regulate the composition and architecture of their cell walls, but much remains to be discovered about how the nanoscale assembly of these remarkable structures underpins the majestic forms and vital ecological functions achieved by plants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-081519-035846
2020-04-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/71/1/annurev-arplant-081519-035846.html?itemId=/content/journals/10.1146/annurev-arplant-081519-035846&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Anderson CT. 2016. We be jammin': an update on pectin biosynthesis, trafficking and dynamics. J. Exp. Bot. 67:495–502
    [Google Scholar]
  2. 2. 
    Anderson CT. 2019. Pectic polysaccharides in plants: structure, biosynthesis, functions, and applications. Extracellular Sugar-Based Biopolymers Matrices E Cohen, H Merzendorfer 487–514 Cham, Switz.: Springer
    [Google Scholar]
  3. 3. 
    Anderson CT, Carroll A, Akhmetova L, Somerville C 2010. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–96
    [Google Scholar]
  4. 4. 
    Anderson CT, Wallace IS, Somerville CR 2012. Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls. PNAS 109:1329–34
    [Google Scholar]
  5. 5. 
    Arioli T, Peng L, Betzner A, Burn J, Wittke W et al. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–20
    [Google Scholar]
  6. 6. 
    Atanassov II, Pittman JK, Turner SR 2009. Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. J. Biol. Chem. 284:3833–41
    [Google Scholar]
  7. 7. 
    Atmodjo MA, Hao Z, Mohnen D 2013. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 64:747–79
    [Google Scholar]
  8. 8. 
    Bacete L, Mélida H, Miedes E, Molina A 2018. Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses. Plant J 93:614–36
    [Google Scholar]
  9. 9. 
    Bascom CS Jr., Hepler PK, Bezanilla M. 2018. Interplay between ions, the cytoskeleton, and cell wall properties during tip growth. Plant Physiol 176:28–40
    [Google Scholar]
  10. 10. 
    Bashline L, Li S, Anderson CT, Lei L, Gu Y 2013. The endocytosis of cellulose synthase in Arabidopsis is dependent on μ2, a clathrin-mediated endocytosis adaptin. Plant Physiol 163:150–60
    [Google Scholar]
  11. 11. 
    Bashline L, Li S, Gu Y 2014. The trafficking of the cellulose synthase complex in higher plants. Ann. Bot. 114:1059–67
    [Google Scholar]
  12. 12. 
    Bashline L, Li S, Zhu X, Gu Y 2015. The TWD40-2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis. PNAS 112:12870–75
    [Google Scholar]
  13. 13. 
    Baskin TI. 2005. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21:203–22
    [Google Scholar]
  14. 14. 
    Basu D, Tian L, Debrosse T, Poirier E, Emch K et al. 2016. Glycosylation of a fasciclin-like arabinogalactan-protein (SOS5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (FEI1/FEI2) pathway in Arabidopsis. PLOS ONE 11:e0145092
    [Google Scholar]
  15. 15. 
    Bischoff V, Desprez T, Mouille G, Vernhettes S, Gonneau M, Höfte H 2011. Phytochrome regulation of cellulose synthesis in Arabidopsis. Curr. Biol 21:1822–27
    [Google Scholar]
  16. 16. 
    Boevink P, Oparka K, Cruz SS, Martin B, Betteridge A, Hawes C 1998. Stacks on tracks: The plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–47
    [Google Scholar]
  17. 17. 
    Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406
    [Google Scholar]
  18. 18. 
    Borassi C, Sede AR, Mecchia MA, Salgado Salter JD, Marzol E et al. 2016. An update on cell surface proteins containing extensin-motifs. J. Exp. Bot. 67:477–87
    [Google Scholar]
  19. 19. 
    Bou Daher F, Chen Y, Bozorg B, Clough J, Jonsson H, Braybrook SA 2018. Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry. eLife 7:e38161
    [Google Scholar]
  20. 20. 
    Boyer JS. 2016. Enzyme-less growth in Chara and terrestrial plants. Front. Plant Sci. 7:866
    [Google Scholar]
  21. 21. 
    Brandizzi F. 2018. Transport from the endoplasmic reticulum to the Golgi in plants: Where are we now. Semin. Cell Dev. Biol. 80:94–105
    [Google Scholar]
  22. 22. 
    Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser MT, Persson S 2012. POM-POM2/CELLULOSE SYNTHASE INTERACTING1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24:163–77
    [Google Scholar]
  23. 23. 
    Broxterman SE, Schols HA. 2018. Characterisation of pectin-xylan complexes in tomato primary plant cell walls. Carbohydr. Polym. 197:269–76
    [Google Scholar]
  24. 24. 
    Broxterman SE, Schols HA. 2018. Interactions between pectin and cellulose in primary plant cell walls. Carbohydr. Polym. 192:263–72
    [Google Scholar]
  25. 25. 
    Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G 2010. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. PNAS 107:9452–57
    [Google Scholar]
  26. 26. 
    Cannon MC, Terneus K, Hall Q, Tan L, Wang Y et al. 2008. Self-assembly of the plant cell wall requires an extensin scaffold. PNAS 105:2226–31
    [Google Scholar]
  27. 27. 
    Caño-Delgado A, Penfield S, Smith C, Catley M, Bevan M 2003. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34:351–62
    [Google Scholar]
  28. 28. 
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–38
    [Google Scholar]
  29. 29. 
    Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A et al. 2008. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20:1519–37
    [Google Scholar]
  30. 30. 
    Chebli Y, Kaneda M, Zerzour R, Geitmann A 2012. The cell wall of the Arabidopsis pollen tube—spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160:1940–55
    [Google Scholar]
  31. 31. 
    Chen S, Ehrhardt DW, Somerville CR 2010. Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. PNAS 107:17188–93
    [Google Scholar]
  32. 32. 
    Chevalier L, Bernard S, Ramdani Y, Lamour R, Bardor M et al. 2010. Subcompartment localization of the side chain xyloglucan-synthesizing enzymes within Golgi stacks of tobacco suspension-cultured cells. Plant J 64:977–89
    [Google Scholar]
  33. 33. 
    Chou Y-H, Pogorelko G, Young ZT, Zabotina OA 2014. Protein–protein interactions among xyloglucan-synthesizing enzymes and formation of Golgi-localized multiprotein complexes. Plant Cell Physiol 56:255–67
    [Google Scholar]
  34. 34. 
    Chung KP, Zeng Y. 2017. An overview of protein secretion in plant cells. Methods Mol. Biol. 2017:19–32
    [Google Scholar]
  35. 35. 
    Claverie J, Balacey S, Lemaître-Guillier C, Brulé D, Chiltz A et al. 2018. The cell wall-derived xyloglucan is a new DAMP triggering plant immunity in Vitis vinifera and Arabidopsis thaliana. Front. Plant Sci 9:1725
    [Google Scholar]
  36. 36. 
    Cosgrove DJ. 2015. Plant expansins: diversity and interactions with plant cell walls. Curr. Opin. Plant Biol. 25:162–72
    [Google Scholar]
  37. 37. 
    Cosgrove DJ. 2018. Diffuse growth of plant cell walls. Plant Physiol 176:16–27
    [Google Scholar]
  38. 38. 
    Cosgrove DJ. 2018. Nanoscale structure, mechanics and growth of epidermal cell walls. Curr. Opin. Plant Biol. 46:77–86
    [Google Scholar]
  39. 39. 
    Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof Y-D et al. 2009. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–54
    [Google Scholar]
  40. 40. 
    Crowell EF, Gonneau M, Vernhettes S, Höfte H 2010. Regulation of anisotropic cell expansion in higher plants. C. R. Biol. 333:320–24
    [Google Scholar]
  41. 41. 
    Daher FB, Braybrook SA. 2015. How to let go: pectin and plant cell adhesion. Front. Plant Sci. 6:523
    [Google Scholar]
  42. 42. 
    Davis DJ, Kang B-H, Heringer AS, Wilkop TE, Drakakaki G 2016. Unconventional protein secretion in plants. Methods Mol. Biol. 2016:47–63
    [Google Scholar]
  43. 43. 
    DeBolt S, Gutierrez R, Ehrhardt DW, Somerville C 2007. Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyl cells following 2,6-dichlorobenzonitrile treatment. Plant Physiol 145:334–38
    [Google Scholar]
  44. 44. 
    Decreux A, Messiaen J. 2005. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:268–78
    [Google Scholar]
  45. 45. 
    Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z et al. 2007. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. PNAS 104:15572–77
    [Google Scholar]
  46. 46. 
    Dick-Perez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M 2011. Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000
    [Google Scholar]
  47. 47. 
    Diener AC, Ausubel FM. 2005. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305–21
    [Google Scholar]
  48. 48. 
    Diotallevi F, Mulder B. 2007. The cellulose synthase complex: a polymerization driven supramolecular motor. Biophys. J. 92:2666–73
    [Google Scholar]
  49. 49. 
    Domozych DS, Sorensen I, Popper ZA, Ochs J, Andreas A et al. 2014. Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol 165:105–18
    [Google Scholar]
  50. 50. 
    Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J et al. 2012. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res 22:413–24
    [Google Scholar]
  51. 51. 
    Driouich A, Follet-Gueye M-L, Bernard S, Kousar S, Chevalier L et al. 2012. Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants. Front. Plant Sci. 3:79
    [Google Scholar]
  52. 52. 
    Driouich A, Zhang GF, Staehelin LA 1993. Effect of brefeldin A on the structure of the Golgi apparatus and on the synthesis and secretion of proteins and polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells. Plant Physiol 101:1363–73
    [Google Scholar]
  53. 53. 
    Duan Q, Cheung AY. 2018. Context-specific dependence on FERONIA kinase activity. FEBS Lett 592:2392–94
    [Google Scholar]
  54. 54. 
    Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L et al. 2014. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun 5:3129
    [Google Scholar]
  55. 55. 
    Duan Q, Kita D, Li C, Cheung AY, Wu HM 2010. FERONIA receptor‐like kinase regulates RHO GTPase signaling of root hair development. PNAS 107:17821–26
    [Google Scholar]
  56. 56. 
    Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J 2019. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J 38:e100353
    [Google Scholar]
  57. 57. 
    Dupres V, Alsteens D, Wilk S, Hansen B, Heinisch JJ, Dufrêne YF 2009. The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat. Chem. Biol 5:857–62
    [Google Scholar]
  58. 58. 
    Ellinger D, Voigt CA. 2014. Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann. Bot. 114:1349–58
    [Google Scholar]
  59. 59. 
    Ellis C, Turner JG. 2001. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13:1025–33
    [Google Scholar]
  60. 60. 
    Endler A, Kesten C, Schneider R, Zhang Y, Ivakov A et al. 2015. A mechanism for sustained cellulose synthesis during salt stress. Cell 162:1353–64
    [Google Scholar]
  61. 61. 
    Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L et al. 2018. The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci. Signal 11:eaao3070
    [Google Scholar]
  62. 62. 
    Fagard M, Desnos T, Desprez T, Goubet F, Refregier G et al. 2000. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–23
    [Google Scholar]
  63. 63. 
    Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V et al. 2018. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 28:666–75.e5
    [Google Scholar]
  64. 64. 
    Feng W, Lindner H, Robbins NE II, Dinneny JR 2016. Growing out of stress: the role of cell- and organ-scale growth control in plant water-stress responses. Plant Cell 28:1769–82
    [Google Scholar]
  65. 65. 
    Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT et al. 2011. Nanostructure of cellulose microfibrils in spruce wood. PNAS 108:E1195–203
    [Google Scholar]
  66. 66. 
    Fry SC. 1988. The Growing Plant Cell Wall: Chemical and Metabolic Analysis New York: Longman
  67. 67. 
    Fry SC, York WS, Albersheim P, Darvill A, Hayashi T et al. 1993. An unambiguous nomenclature for xyloglucan‐derived oligosaccharides. Physiol. Plant. 89:1–3
    [Google Scholar]
  68. 68. 
    Fujimoto M, Suda Y, Vernhettes S, Nakano A, Ueda T 2015. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana. Plant Cell Physiol 56:287–98
    [Google Scholar]
  69. 69. 
    Gardiner JC. 2003. Control of cellulose synthase complex localization in developing xylem. Plant Cell 15:1740–48
    [Google Scholar]
  70. 70. 
    Ge Z, Bergonci T, Zhao Y, Zou Y, Du S et al. 2017. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358:1596–600
    [Google Scholar]
  71. 71. 
    Gendre D, McFarlane HE, Johnson E, Mouille G, Sjödin A et al. 2013. Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. Plant Cell 25:2633–46
    [Google Scholar]
  72. 72. 
    Gigli-Bisceglia N, Engelsdorf T, Hamann T 2019. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell. Mol. Life Sci. 2019:1–29
    [Google Scholar]
  73. 73. 
    Gigli-Bisceglia N, Engelsdorf T, Strnad M, Vaahtera L, Khan GA et al. 2018. Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner. Development 145:dev166678
    [Google Scholar]
  74. 74. 
    Gonneau M, Desprez T, Guillot A, Vernhettes S, Höfte H 2014. Catalytic subunit stoichiometry within the cellulose synthase complex. Plant Physiol 166:1709–12
    [Google Scholar]
  75. 75. 
    Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L et al. 2018. Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr. Biol 28:2452–58.E4
    [Google Scholar]
  76. 76. 
    Gorshkova T, Chernova T, Mokshina N, Ageeva M, Mikshina P 2018. Plant ‘muscles’: fibers with a tertiary cell wall. New Phytol 218:66–72
    [Google Scholar]
  77. 77. 
    Grantham NJ, Wurman-Rodrich J, Terrett OM, Lyczakowski JJ, Stott K et al. 2017. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat. Plants 3:859–65
    [Google Scholar]
  78. 78. 
    Green PB. 1980. Organogenesis—a biophysical view. Annu. Rev. Plant Physiol. 31:51–82
    [Google Scholar]
  79. 79. 
    Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A et al. 2010. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. PNAS 107:12866–71
    [Google Scholar]
  80. 80. 
    Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW 2009. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11:797–806
    [Google Scholar]
  81. 81. 
    Häffner E, Karlovsky P, Splivallo R, Traczewska A, Diederichsen E 2014. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum. BMC Plant Biol 14:85
    [Google Scholar]
  82. 82. 
    Haigler CH, Brown RM. 1986. Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134:111–20
    [Google Scholar]
  83. 83. 
    Halebian M, Morris K, Smith C 2017. Structure and assembly of clathrin cages. Subcell Biochem 83:551–67
    [Google Scholar]
  84. 84. 
    Hamann T. 2015. The plant cell wall integrity maintenance mechanism—a case study of a cell wall plasma membrane signaling network. Phytochemistry 112:100–9
    [Google Scholar]
  85. 85. 
    Harpaz-Saad S, McFarlane HE, Xu S, Divi UK, Forward B et al. 2011. Cellulose synthesis via the FEI2 RLK/SOS5 pathway and CELLULOSE SYNTHASE 5 is required for the structure of seed coat mucilage in Arabidopsis. Plant J 68:941–53
    [Google Scholar]
  86. 86. 
    Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR 2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–11
    [Google Scholar]
  87. 87. 
    Hashimoto-Sugimoto M, Higaki T, Yaeno T, Nagami A, Irie M et al. 2013. A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nat. Commun. 4:2215
    [Google Scholar]
  88. 88. 
    Hatfield RD, Rancour DM, Marita JM 2016. Grass cell walls: a story of cross-linking. Front. Plant Sci. 7:2056
    [Google Scholar]
  89. 89. 
    He M, Lan M, Zhang B, Zhou Y, Wang Y et al. 2018. Rab-H1b is essential for trafficking of cellulose synthase and for hypocotyl growth in Arabidopsis thaliana. J. Integr. Plant Biol 60:1051–69
    [Google Scholar]
  90. 90. 
    Hematy K, Sado PE, Van Tuinen A, Rochange S, Desnos T et al. 2007. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr. Biol. 17:922–31
    [Google Scholar]
  91. 91. 
    Hernández-Blanco C, Feng DX, Hu J, Sánchez-Vallet A, Deslandes L et al. 2007. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19:890–903
    [Google Scholar]
  92. 92. 
    Herth W. 1980. Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: evidence for a gap between polymerization and microfibril formation. J. Cell Biol. 87:442–50
    [Google Scholar]
  93. 93. 
    Hervé C, Marcus SE, Knox JP 2011. Monoclonal antibodies, carbohydrate-binding modules, and the detection of polysaccharides in plant cell walls. Methods Mol. Biol. 2011:103–13
    [Google Scholar]
  94. 94. 
    Hill JL Jr., Hammudi MB, Tien M. 2014. The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell 26:4834–42
    [Google Scholar]
  95. 95. 
    Hill JL Jr., Josephs C, Barnes WJ, Anderson CT, Tien M. 2018. Longevity in vivo of primary cell wall cellulose synthases. Plant Mol. Biol. 96:279–89
    [Google Scholar]
  96. 96. 
    Höfte H. 2015. The yin and yang of cell wall integrity control: brassinosteroid and FERONIA signaling. Plant Cell Physiol 56:224–31
    [Google Scholar]
  97. 97. 
    Hongo S, Sato K, Yokoyama R, Nishitani K 2012. Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell 24:2624–34
    [Google Scholar]
  98. 98. 
    Humphrey TV, Bonetta DT, Goring DR 2007. Sentinels at the wall: cell wall receptors and sensors. New Phytol 176:7–21
    [Google Scholar]
  99. 99. 
    Ito Y, Uemura T, Nakano A 2014. Formation and maintenance of the Golgi body in plant cells. Int. Rev. Cell Mol. Biol. 310:221–87
    [Google Scholar]
  100. 100. 
    Johnston SL, Prakash R, Chen NJ, Kumagai MH, Turano HM et al. 2013. An enzyme activity capable of endotransglycosylation of heteroxylan polysaccharides is present in plant primary cell walls. Planta 237:173–87
    [Google Scholar]
  101. 101. 
    Kang B-H, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA 2011. Electron tomography of RabA4b- and PI-4Kβ1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12:313–29
    [Google Scholar]
  102. 102. 
    Keegstra K, Talmadge KW, Bauer WD, Albersheim P 1973. The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51:188–97
    [Google Scholar]
  103. 103. 
    Kesten C, Wallmann A, Schneider R, McFarlane HE, Diehl A et al. 2019. The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants. Nat. Commun. 10:857
    [Google Scholar]
  104. 104. 
    Kohorn BD. 2000. Plasma membrane-cell wall contacts. Plant Physiol 124:31–38
    [Google Scholar]
  105. 105. 
    Kohorn BD. 2016. Cell wall-associated kinases and pectin perception. J. Exp. Bot. 67:489–94
    [Google Scholar]
  106. 106. 
    Kohorn BD, Johansen S, Shishido A, Todorova T, Martinez R et al. 2009. Pectin activation of MAP kinase and gene expression is WAK2 dependent. Plant J 60:974–82
    [Google Scholar]
  107. 107. 
    Kubicki JD, Yang H, Sawada D, O'Neill H, Oehme D, Cosgrove D 2018. The shape of native plant cellulose microfibrils. Sci. Rep. 8:13983
    [Google Scholar]
  108. 108. 
    Kumar M, Wightman R, Atanassov I, Gupta A, Hurst CH et al. 2016. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization. Science 353:166–69
    [Google Scholar]
  109. 109. 
    Kuramae R, Saito T, Isogai A 2014. TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses. React. Funct. Polym. 85:126–33
    [Google Scholar]
  110. 110. 
    Lang I, Barton DA, Overall RL 2004. Membrane-wall attachments in plasmolysed plant cells. Protoplasma 224:231–43
    [Google Scholar]
  111. 111. 
    Lei L, Singh A, Bashline L, Li S, Yingling YG, Gu Y 2015. CELLULOSE SYNTHASE INTERACTIVE1 is required for fast recycling of cellulose synthase complexes to the plasma membrane in Arabidopsis. Plant Cell 27:2926–40
    [Google Scholar]
  112. 112. 
    Levin DE. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–75
    [Google Scholar]
  113. 113. 
    Li C, Wu H-M, Cheung AY 2016. FERONIA and her pals: functions and mechanisms. Plant Physiol 171:2379–92
    [Google Scholar]
  114. 114. 
    Li C, Yeh F-L, Cheung AY, Duan Q, Kita D et al. 2015. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4:e06587
    [Google Scholar]
  115. 115. 
    Li S, Lei L, Somerville CR, Gu Y 2012. Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. PNAS 109:185–90
    [Google Scholar]
  116. 116. 
    Lund CH, Bromley JR, Stenbæk A, Rasmussen RE, Scheller HV, Sakuragi Y 2015. A reversible Renilla luciferase protein complementation assay for rapid identification of protein–protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus. J. Exp. Bot. 66:85–97
    [Google Scholar]
  117. 117. 
    Lunn D, Gaddipati SR, Tucker GA, Lycett GW 2013. Null mutants of individual RABA genes impact the proportion of different cell wall components in stem tissue of Arabidopsis thaliana. PLOS ONE 8:e75724
    [Google Scholar]
  118. 118. 
    Luo Y, Scholl S, Doering A, Zhang Y, Irani NG et al. 2015. V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nat. Plants 1:15094
    [Google Scholar]
  119. 119. 
    Malinovsky FG, Fangel JU, Willats WGT 2014. The role of the cell wall in plant immunity. Front. Plant Sci. 5:178
    [Google Scholar]
  120. 120. 
    Mansoori N, Timmers J, Desprez T, Alvim-Kamei CL, Dees DC et al. 2014. KORRIGAN1 interacts specifically with integral components of the cellulose synthase machinery. PLOS ONE 9:e112387
    [Google Scholar]
  121. 121. 
    McFarlane HE, Watanabe Y, Gendre D, Carruthers K, Levesque-Tremblay G et al. 2013. Cell wall polysaccharides are mislocalized to the vacuole in echidna mutants. Plant Cell Physiol 54:1867–80
    [Google Scholar]
  122. 122. 
    Meents MJ, Watanabe Y, Samuels AL 2018. The cell biology of secondary cell wall biosynthesis. Ann. Bot. 121:1107–25
    [Google Scholar]
  123. 123. 
    Mendu V, Griffiths JS, Persson S, Stork J, Downie AB et al. 2011. Subfunctionalization of cellulose synthases in seed coat epidermal cells mediates secondary radial wall synthesis and mucilage attachment. Plant Physiol 157:441–53
    [Google Scholar]
  124. 124. 
    Merz D, Richter J, Gonneau M, Sanchez-Rodriguez C, Eder T et al. 2017. T-DNA alleles of the receptor kinase THESEUS1 with opposing effects on cell wall integrity signaling. J. Exp. Bot. 68:4583–93
    [Google Scholar]
  125. 125. 
    Mettlen M, Chen P-H, Srinivasan S, Danuser G, Schmid SL 2018. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem. 87:871–96
    [Google Scholar]
  126. 126. 
    Miart F, Desprez T, Biot E, Morin H, Belcram K et al. 2014. Spatio-temporal analysis of cellulose synthesis during cell plate formation in Arabidopsis. Plant J 77:71–84
    [Google Scholar]
  127. 127. 
    Mohnen D. 2008. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11:266–77
    [Google Scholar]
  128. 128. 
    Morgan JLW, Strumillo J, Zimmer J 2013. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–86
    [Google Scholar]
  129. 129. 
    Mutwil M, Debolt S, Persson S 2008. Cellulose synthesis: a complex complex. Curr. Opin. Plant Biol. 11:252–57
    [Google Scholar]
  130. 130. 
    Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A et al. 2017. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544:65–70
    [Google Scholar]
  131. 131. 
    Nebenführ A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM et al. 1999. Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–41
    [Google Scholar]
  132. 132. 
    Newman RH, Hill SJ, Harris PJ 2013. Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–67
    [Google Scholar]
  133. 133. 
    Ng F, Tang BL. 2016. Unconventional protein secretion in animal cells. Methods Mol. Biol. 2016:31–46
    [Google Scholar]
  134. 134. 
    Nissen KS, Willats WGT, Malinovsky FG 2016. Understanding CrRLK1L function: cell walls and growth control. Trends Plant Sci 21:516–27
    [Google Scholar]
  135. 135. 
    Nixon BT, Mansouri K, Singh A, Du J, Davis JK et al. 2016. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci. Rep. 6:28696
    [Google Scholar]
  136. 136. 
    Oikawa A, Lund CH, Sakuragi Y, Scheller HV 2013. Golgi-localized enzyme complexes for plant cell wall biosynthesis. Trends Plant Sci 18:49–58
    [Google Scholar]
  137. 137. 
    Okekeogbu IO, Pattathil S, Gonzalez Fernandez-Nino SM, Aryal UK, Penning BW et al. 2019. Glycome and proteome components of Golgi membranes are common between two angiosperms with distinct cell-wall structures. Plant Cell 31:1094–112
    [Google Scholar]
  138. 138. 
    Paez Valencia J, Goodman K, Otegui MS 2016. Endocytosis and endosomal trafficking in plants. Annu. Rev. Plant Biol. 67:309–35
    [Google Scholar]
  139. 139. 
    Paredez AR, Somerville CR, Ehrhardt DW 2006. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–95
    [Google Scholar]
  140. 140. 
    Park YB, Cosgrove DJ. 2012. Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis. Plant Physiol 158:465–75
    [Google Scholar]
  141. 141. 
    Peaucelle A, Wightman R, Höfte H 2015. The control of growth symmetry breaking in the Arabidopsis hypocotyl. Curr. Biol. 25:1746–52
    [Google Scholar]
  142. 142. 
    Pelletier S, Van Orden J, Wolf S, Vissenberg K, Delacourt J et al. 2010. A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol 188:726–39
    [Google Scholar]
  143. 143. 
    Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M et al. 2007. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. PNAS 104:15566–71
    [Google Scholar]
  144. 144. 
    Phyo P, Wang T, Xiao C, Anderson CT, Hong M 2017. Effects of pectin molecular weight changes on the structure, dynamics, and polysaccharide interactions of primary cell walls of Arabidopsis thaliana: insights from solid-state NMR. Biomacromolecules 18:2937–50
    [Google Scholar]
  145. 145. 
    Polko JK, Barnes WJ, Voiniciuc C, Doctor S, Steinwand B et al. 2018. SHOU4 proteins regulate trafficking of cellulose synthase complexes to the plasma membrane. Curr. Biol. 28:3174–82
    [Google Scholar]
  146. 146. 
    Polko JK, Kieber JJ. 2019. The regulation of cellulose biosynthesis in plants. Plant Cell 31:282–96
    [Google Scholar]
  147. 147. 
    Popper ZA, Fry SC. 2005. Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension-cultured angiosperm cells. Ann. Bot. 96:91–99
    [Google Scholar]
  148. 148. 
    Popper ZA, Fry SC. 2008. Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. Planta 227:781–94
    [Google Scholar]
  149. 149. 
    Popper ZA, Michel G, Herve C, Domozych DS, Willats WG et al. 2011. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62:567–90
    [Google Scholar]
  150. 150. 
    Qu S, Zhang X, Song Y, Lin J, Shan X 2017. THESEUS1 positively modulates plant defense responses against Botrytis cinerea through GUANINE EXCHANGE FACTOR4 signaling. J. Integr. Plant Biol. 59:797–804
    [Google Scholar]
  151. 151. 
    Rabouille C. 2017. Pathways of unconventional protein secretion. Trends Cell Biol 27:230–40
    [Google Scholar]
  152. 152. 
    Raman R, Venkataraman M, Ramakrishnan S, Lang W, Raguram S, Sasisekharan R 2006. Advancing glycomics: implementation strategies at the consortium for functional glycomics. Glycobiology 16:82R–90R
    [Google Scholar]
  153. 153. 
    Refregier G, Pelletier S, Jaillard D, Höfte H 2004. Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells in Arabidopsis. Plant Physiol 135:959–68
    [Google Scholar]
  154. 154. 
    Rennie EA, Scheller HV. 2014. Xylan biosynthesis. Curr. Opin. Biotechnol. 26:100–7
    [Google Scholar]
  155. 155. 
    Robinson DG, Ding Y, Jiang L 2016. Unconventional protein secretion in plants: a critical assessment. Protoplasma 253:31–43
    [Google Scholar]
  156. 156. 
    Rongpipi S, Ye D, Gomez ED, Gomez EW 2018. Progress and opportunities in the characterization of cellulose—an important regulator of cell wall growth and mechanics. Front. Plant Sci. 9:1894
    [Google Scholar]
  157. 157. 
    Roudier F, Schindelman G, DeSalle R, Benfey PN 2002. The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiol 130:538–48
    [Google Scholar]
  158. 158. 
    Rounds CM, Lubeck E, Hepler PK, Winship LJ 2011. Propidium iodide competes with Ca2+ to label pectin in pollen tubes and Arabidopsis root hairs. Plant Physiol 157:175–87
    [Google Scholar]
  159. 159. 
    Rudolph U. 1987. Occurrence of rosettes in the ER membrane of young Funaria hygrometrica protonemata. Naturwissenschaften 74:439
    [Google Scholar]
  160. 160. 
    Rui Y, Xiao C, Yi H, Kandemir B, Wang JZ et al. 2017. POLYGALACTURONASE INVOLVED IN EXPANSION3 functions in seedling development, rosette growth, and stomatal dynamics in Arabidopsis thaliana. Plant Cell 29:2413–32
    [Google Scholar]
  161. 161. 
    Saez-Aguayo S, Ralet MC, Berger A, Botran L, Ropartz D et al. 2013. PECTIN METHYLESTERASE INHIBITOR6 promotes Arabidopsis mucilage release by limiting methylesterification of homogalacturonan in seed coat epidermal cells. Plant Cell 25:308–23
    [Google Scholar]
  162. 162. 
    Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J et al. 2013. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162:675–88
    [Google Scholar]
  163. 163. 
    Samuels AL, Giddings TH Jr., Staehelin LA 1995. Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J. Cell Biol. 130:1345–57
    [Google Scholar]
  164. 164. 
    Samuels AL, Rensing K, Douglas C, Mansfield S, Dharmawardhana D, Ellis B 2002. Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia. Planta 216:72–82
    [Google Scholar]
  165. 165. 
    Sanchez-Rodriguez C, Ketelaar K, Schneider R, Villalobos JA, Somerville CR et al. 2017. BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1. PNAS 114:3533–38
    [Google Scholar]
  166. 166. 
    Sanchez-Rodriguez C, Shi Y, Kesten C, Zhang D, Sancho-Andres G et al. 2018. The cellulose synthases are cargo of the TPLATE adaptor complex. Mol. Plant 11:346–49
    [Google Scholar]
  167. 167. 
    Schallus T, Jaeckh C, Fehér K, Palma AS, Liu Y et al. 2008. Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol. Biol. Cell 19:3404–14
    [Google Scholar]
  168. 168. 
    Scheible W-R, Pauly M. 2004. Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr. Opin. Plant Biol. 7:285–95
    [Google Scholar]
  169. 169. 
    Scheible W-R, Eshed R, Richmond T, Delmer D, Somerville C 2001. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis ixr1 mutants. PNAS 98:10079–84
    [Google Scholar]
  170. 170. 
    Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annu. Rev. Plant Biol. 61:263–89
    [Google Scholar]
  171. 171. 
    Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC et al. 2001. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15:1115–27
    [Google Scholar]
  172. 172. 
    Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y et al. 2014. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol 166:798–807
    [Google Scholar]
  173. 173. 
    Seifert GJ. 1994. Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr. Opin. Plant Biol. 7:277–84
    [Google Scholar]
  174. 174. 
    Senechal F, Graff L, Surcouf O, Marcelo P, Rayon C et al. 2014. Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3.5, a subtilisin-like serine protease. Ann. Bot. 114:1161–75
    [Google Scholar]
  175. 175. 
    Shedletzky E, Shmuel M, Delmer DP, Lamport DTA 1990. Adaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network. Plant Physiol 94:980–87
    [Google Scholar]
  176. 176. 
    Sherrier DJ, Vandenbosch KA. 1994. Secretion of cell wall polysaccharides in Vicia root hairs. Plant J 5:185–95
    [Google Scholar]
  177. 177. 
    Shinohara N, Sunagawa N, Tamura S, Yokoyama R, Ueda M et al. 2017. The plant cell-wall enzyme AtXTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide. Sci. Rep. 7:46099
    [Google Scholar]
  178. 178. 
    Showalter AM, Basu D. 2016. Extensin and arabinogalactan-protein biosynthesis: glycosyltransferases, research challenges, and biosensors. Front. Plant Sci. 7:814
    [Google Scholar]
  179. 179. 
    Sinclair R, Rosquete MR, Drakakaki G 2018. Post-Golgi trafficking and transport of cell wall components. Front. Plant Sci. 9:1784
    [Google Scholar]
  180. 180. 
    Somerville C. 2006. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22:53–78
    [Google Scholar]
  181. 181. 
    Speicher TL, Li PZ, Wallace IS 2018. Phosphoregulation of the plant cellulose synthase complex and cellulose synthase-like proteins. Plants 7:52
    [Google Scholar]
  182. 182. 
    Staehelin LA, Giddings TH Jr., Kiss JZ, Sack FD 1990. Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples. Protoplasma 157:75–91
    [Google Scholar]
  183. 183. 
    Staehelin LA, Kang BH. 2008. Nanoscale architecture of endoplasmic reticulum export sites and of Golgi membranes as determined by electron tomography. Plant Physiol 147:1454–68
    [Google Scholar]
  184. 184. 
    Steinwand BJ, Kieber JJ. 2010. The role of receptor-like kinases in regulating cell wall function. Plant Physiol 153:479–84
    [Google Scholar]
  185. 185. 
    Steinwand BJ, Xu S, Polko JK, Doctor SM, Westafer M, Kieber JJ 2014. Alterations in auxin homeostasis suppress defects in cell wall function. PLOS ONE 9:e98193
    [Google Scholar]
  186. 186. 
    Taiz L. 1984. Plant cell expansion: regulation of cell wall mechanical properties. Annu. Rev. Plant Physiol. 35:585–657
    [Google Scholar]
  187. 187. 
    Tan L, Eberhard S, Pattathil S, Warder C, Glushka J et al. 2013. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–87
    [Google Scholar]
  188. 188. 
    Taylor NG. 2007. Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites—a potential role in regulating protein degradation. Plant Mol. Biol. 64:161–71
    [Google Scholar]
  189. 189. 
    Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR 2003. Interactions among three distinct CesA proteins essential for cellulose synthesis. PNAS 100:1450–55
    [Google Scholar]
  190. 190. 
    Taylor NG, Laurie S, Turner SR 2000. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–39
    [Google Scholar]
  191. 191. 
    Thomas LH, Forsyth VT, Martel A, Grillo I, Altaner CM, Jarvis MC 2015. Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses. BMC Plant Biol 15:153
    [Google Scholar]
  192. 192. 
    Thomas LH, Forsyth VT, Sturcova A, Kennedy CJ, May RP et al. 2013. Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–76
    [Google Scholar]
  193. 193. 
    Thompson JE, Fry SC. 2000. Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta 211:275–86
    [Google Scholar]
  194. 194. 
    Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K 2009. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21:1212–29
    [Google Scholar]
  195. 195. 
    Tsang DL, Edmond C, Harrington JL, Nühse TS 2011. Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiol 156:596–604
    [Google Scholar]
  196. 196. 
    Vain T, Crowell EF, Timpano H, Biot E, Desprez T et al. 2014. The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol 165:1521–32
    [Google Scholar]
  197. 197. 
    van de Meene AML, Doblin MS, Bacic A 2017. The plant secretory pathway seen through the lens of the cell wall. Protoplasma 254:75–94
    [Google Scholar]
  198. 198. 
    Van der Does D, Boutrot F, Engelsdorf T, Rhodes J, McKenna JF et al. 2017. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLOS Genet 13:e1006832
    [Google Scholar]
  199. 199. 
    Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W 2010. Lignin biosynthesis and structure. Plant Physiol 153:895–905
    [Google Scholar]
  200. 200. 
    Verhertbruggen Y, Marcus SE, Chen J, Knox JP 2013. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress. Plant Cell Physiol 54:1278–88
    [Google Scholar]
  201. 201. 
    Viotti C. 2016. ER to Golgi-dependent protein secretion: the conventional pathway. Methods Mol. Biol. 2016:3–29
    [Google Scholar]
  202. 202. 
    Vogel J. 2008. Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 11:301–7
    [Google Scholar]
  203. 203. 
    Voiniciuc C, Pauly M, Usadel B 2018. Monitoring polysaccharide dynamics in the plant cell wall. Plant Physiol 176:2590–600
    [Google Scholar]
  204. 204. 
    Voxeur A, Höfte H. 2016. Cell wall integrity signaling in plants: “To grow or not to grow that's the question. .” Glycobiology 26:950–60
    [Google Scholar]
  205. 205. 
    Wang P, Chen X, Goldbeck C, Chung E, Kang B-H 2017. A distinct class of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan in the root border cell. Plant J 92:596–610
    [Google Scholar]
  206. 206. 
    Wang T, Park YB, Caporini MA, Rosay M, Zhong L et al. 2013. Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. PNAS 110:16444–49
    [Google Scholar]
  207. 207. 
    Wang X, Chung KP, Lin W, Jiang L 2017. Protein secretion in plants: conventional and unconventional pathways and new techniques. J. Exp. Bot. 69:21–37
    [Google Scholar]
  208. 208. 
    Wightman R, Turner S. 2010. Trafficking of the cellulose synthase complex in developing xylem vessels. Biochem. Soc. Trans. 38:755–60
    [Google Scholar]
  209. 209. 
    Wilkop T, Pattathil S, Ren G, Davis DJ, Bao W et al. 2019. A hybrid approach enabling large-scale glycomic analysis of post-Golgi vesicles reveals a transport route for polysaccharides. Plant Cell 31:627–44
    [Google Scholar]
  210. 210. 
    Wolf S. 2017. Plant cell wall signalling and receptor-like kinases. Biochem. J. 474:471–92
    [Google Scholar]
  211. 211. 
    Wolf S, Hematy K, Höfte H 2012. Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 63:381–407
    [Google Scholar]
  212. 212. 
    Wolf S, Höfte H. 2014. Growth control: a saga of cell walls, ROS, and peptide receptors. Plant Cell 26:1848–56
    [Google Scholar]
  213. 213. 
    Wormit A, Usadel B. 2018. The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int. J. Mol. Sci. 19:2878
    [Google Scholar]
  214. 214. 
    Wu B, Guo W. 2015. The exocyst at a glance. J. Cell Sci. 128:2957–64
    [Google Scholar]
  215. 215. 
    Xiao C, Barnes WJ, Zamil MS, Yi H, Puri VM, Anderson CT 2017. Activation tagging of Arabidopsis POLYGALACTURONASE INVOLVED IN EXPANSION2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. Plant J 89:1159–73
    [Google Scholar]
  216. 216. 
    Xiao C, Somerville C, Anderson CT 2014. POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis. Plant Cell 26:1018–35
    [Google Scholar]
  217. 217. 
    Xiao C, Zhang T, Zheng Y, Cosgrove DJ, Anderson CT 2016. Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis, altering cell growth and morphogenesis. Plant Physiol 170:234–49
    [Google Scholar]
  218. 218. 
    Xu SL, Rahman A, Baskin TI, Kieber JJ 2008. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20:3065–79
    [Google Scholar]
  219. 219. 
    Xu Y, Sechet J, Wu Y, Fu Y, Zhu L et al. 2018. Rice sucrose partitioning mediated by a putative pectin methyltransferase and homogalacturonan methylesterification. Plant Physiol 174:1595–608
    [Google Scholar]
  220. 220. 
    Young WW. 2004. Organization of Golgi glycosyltransferases in membranes: complexity via complexes. J. Membr. Biol. 198:1–13
    [Google Scholar]
  221. 221. 
    Zabotina OA. 2012. Xyloglucan and its biosynthesis. Front. Plant Sci. 3:134
    [Google Scholar]
  222. 222. 
    Zarsky V, Kulich I, Fendrych M, Pecenkova T 2013. Exocyst complexes multiple functions in plant cells secretory pathways. Curr. Opin. Plant Biol. 16:726–33
    [Google Scholar]
  223. 223. 
    Zhang GF, Driouich A, Staehelin LA 1996. Monensin-induced redistribution of enzymes and products from Golgi stacks to swollen vesicles. Eur. J. Cell Biol. 71:332–40
    [Google Scholar]
  224. 224. 
    Zhang GF, Staehelin LA. 1992. Functional compartmentation of the Golgi apparatus of plant cells: immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells. Plant Physiol 99:1070–83
    [Google Scholar]
  225. 225. 
    Zhang T, Zheng Y, Cosgrove DJ 2016. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85:179–92
    [Google Scholar]
  226. 226. 
    Zhang Y, Nikolovski N, Sorieul M, Vellosillo T, McFarlane HE et al. 2016. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nat. Commun 7:11656
    [Google Scholar]
  227. 227. 
    Zhu C, Ganguly A, Baskin TI, McClosky DD, Anderson CT et al. 2015. The Fragile Fiber1 kinesin contributes to cortical microtubule-mediated trafficking of cell wall components. Plant Physiol 167:780–92
    [Google Scholar]
  228. 228. 
    Zhu X, Li S, Pan S, Xin X, Gu Y 2018. CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. PNAS 115:E3578–87
    [Google Scholar]
  229. 229. 
    Zykwinska AW, Ralet MC, Garnier CD, Thibault JF 2005. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-081519-035846
Loading
/content/journals/10.1146/annurev-arplant-081519-035846
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error