1932

Abstract

Species invasions are pervasive in Earth history, yet the ecological and evolutionary consequences vary greatly. Ancient invasion events can be organized in a hierarchy of increasing invasion intensity from ephemeral invasions to globally pervasive invasive regimes. Each level exhibits emergent properties exceeding the sum of interactions at lower levels. Hierarchy levels correspond to, but do not always exactly correlate with, geographic extent of invasion success. The ecological impacts of lower-level impacts can be negligible or result in temporary community accommodation. Invasion events at moderate to high levels of the hierarchy permanently alter ecological communities, regional faunas, and global ecosystems. The prevalence of invasive species results in evolutionary changes by fostering niche evolution, differential survival of ecologically generalized taxa, faunal homogenization, and suppressing speciation. These impacts can contribute to mass extinctions and biodiversity crises that alter the trajectory of ecological and evolutionary patterns of life. The fossil record provides a long-term record of how invasion impacts may scale up through time, which can augment ecological studies of modern species invasions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062638
2019-11-02
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110617-062638.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062638&mimeType=html&fmt=ahah

Literature Cited

  1. Aucoin CD, Brett CE. 2016. Refined stratigraphy of the Late Ordovician (Katian; Richmondian) Waynesville Formation across the northeastern and northwestern margin of the Cincinnati Arch. Stratigraphy 12:307–15
    [Google Scholar]
  2. Badgley C, Domingo MS, Barry JC, Morgan ME, Flynn LJ, Pilbeam D 2016. Continental gateways and the dynamics of mammalian faunas. C. R. Palevol 15:763–79
    [Google Scholar]
  3. Badgley C, Smiley TM, Terry R, Davis EB, DeSantis LRG et al. 2017. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32:211–26
    [Google Scholar]
  4. Bambach RK, Knoll AH, Wang SC 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522–42
    [Google Scholar]
  5. Bauer JE, Stigall AL. 2014. Phylogenetic paleobiogeography of Late Ordovician Laurentian brachiopods. Est. J. Earth Sci. 63:312–16
    [Google Scholar]
  6. Benton MJ, Dunhill AM, Lloyd GT, Marx FG 2011. Assessing the quality of the fossil record: insights from vertebrates. Comparing the Geological and Fossil Records: Implications for Biodiversity Studies AJ McGowan, AB Smith 63–94 London: Geol. Soc. Lond.
    [Google Scholar]
  7. Bergström SM, Löfgren A, Maletz J 2004. The GSSP of the second (upper) stage of the Lower Ordovician series: Diabasbrottet at Hunneberg, province of Vastergötland, southwestern Sweden. Episodes 27:265–72
    [Google Scholar]
  8. Blackburn TM, Lockwood JL, Cassey P 2015. The influence of numbers on invasion success. Mol. Ecol. 24:1942–53
    [Google Scholar]
  9. Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP et al. 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26:333–39
    [Google Scholar]
  10. Bradshaw CJ, Leroy B, Bellard C, Roiz D, Albert C et al. 2016. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7:12986
    [Google Scholar]
  11. Brame H-MR, Stigall AL. 2014. Controls on niche stability in geologic time: congruent responses to biotic and abiotic environmental changes among Cincinnatian (Late Ordovician) marine invertebrates. Paleobiology 40:70–90
    [Google Scholar]
  12. Brenchley PJ, Carden GAF, Marshall JD 1995. Environmental changes associated with the “first strike” of the Late Ordovician mass extinction. Mod. Geol. 20:69–82
    [Google Scholar]
  13. Brett CE, Aucoin CD, Dattilo BF, Freeman RL, Hartshorn KR et al. 2019. Revised sequence stratigraphy of the Upper Katian Stage (Cincinnatian) strata in the Cincinnati Arch reference area: geological and paleontological implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. In press
    [Google Scholar]
  14. Brett CE, Baird GC. 1997. Epiboles, outages, and ecological evolutionary bioevents: taphonomic, ecological, and biogeographic events. See Brett & Baird 1997 249–84
  15. Brett CE, Baird GC 1997. Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications New York: Columbia Univ. Press
  16. Brett CE, Ivany LC, Schopf KM 1996. Coordinated stasis: an overview. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127:1–20
    [Google Scholar]
  17. Brett CE, Thomka JR, Schwalbach CE, Aucoin CD, Malgieri TJ 2015. Faunal epiboles in the Upper Ordovician of north-central Kentucky: implications for high-resolution sequence and event stratigraphy and recognition of a major unconformity. Palaeoworld 24:149–59
    [Google Scholar]
  18. Briggs JC. 2007. Marine biogeography and ecology: invasions and introductions. J. Biogeogr. 34:193–98
    [Google Scholar]
  19. Chen Z-Q, Kaiho K, George AD 2005. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224:270–90
    [Google Scholar]
  20. Cody S, Richardson JE, Rull V, Ellis C, Pennington RT 2010. The Great American Biotic Interchange revisited. Ecography 33:326–32
    [Google Scholar]
  21. Congreve CR, Falk AR, Lamsdell JC 2017. Biological hierarchies and the nature of extinction. Biol. Rev. Camb. Philos. Soc. 93:811–26
    [Google Scholar]
  22. Crutzen PJ, Stoermer EF. 2000. The “Anthropocene. Glob. Chang. Newsl. 41:17–18
    [Google Scholar]
  23. Doughty CE. 2013. Preindustrial human impacts on global and regional environment. Annu. Rev. Environ. Resour. 38:507–27
    [Google Scholar]
  24. Droser ML, Bottjer DJ, Sheehan PM, McGhee GR Jr 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28:675–78
    [Google Scholar]
  25. Ebeling SK, Welk E, Auge H, Bruelheide H 2008. Predicting the spread of an invasive plant: combining experiments and ecological niche model. Ecography 31:709–19
    [Google Scholar]
  26. Eldredge N. 1996. Hierarchies in macroevolution. Evolutionary Paleobiology D Jablonski, DH Erwin, JH Lipps 42–61 Chicago, IL: Chicago Univ. Press
    [Google Scholar]
  27. Eldredge N. 2003. The sloshing bucket: how the physical realm controls evolution. Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function J Crutchfield, P Schuster 3–32 New York: Oxford Univ. Press
    [Google Scholar]
  28. Eldredge N. 2008. Hierarchies and the sloshing bucket: toward the unification of evolutionary biology. Evol. Educ. Outreach. 1:110–15
    [Google Scholar]
  29. Eldredge N, Salthe SN. 1984. Hierarchy and evolution. Oxf. Surv. Evol. Biol. 1:184–208
    [Google Scholar]
  30. Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D et al. 2005. The dynamics of evolutionary stasis. Paleobiology 31:133–45
    [Google Scholar]
  31. Ernst A. 2018. Diversity dynamics of Ordovician Bryozoa. Lethaia 51:198–206
    [Google Scholar]
  32. Erwin DH. 2006. Dates and rates: temporal resolution in the deep time stratigraphic record. Annu. Rev. Earth Planet. Sci. 34:569–90
    [Google Scholar]
  33. Finnegan S, Rasmussen CMØ, Harper DAT 2017. Identifying the most surprising victims of mass extinction events: an example using Late Ordovician brachiopods. Biol. Lett. 13:20170400
    [Google Scholar]
  34. Foote M. 2007. Symmetric waxing and waning of marine genera. Paleobiology 33:517–29
    [Google Scholar]
  35. Forseth IN, Innis AF. 2004. Kudzu (Pueraria montana): history, physiology, and ecology combine to make a major ecosystem threat. Crit. Rev. Plant Sci. 23:401–13
    [Google Scholar]
  36. Fritts TH, Rodda GH. 1998. The role of introduced species in the degradation of island ecosystems: a case history of Guam. Annu. Rev. Ecol. Syst. 29:113–40
    [Google Scholar]
  37. Galbreath KE, Hoberg EP. 2011. Return to Beringia: parasites reveal cryptic biogeographic history of North American pikas. Proc. R. Soc. B 279:371–78
    [Google Scholar]
  38. Gaston KJ, Blackburn TM. 1996. Global scale macroecology: interactions between population size, geographic range size and body size in the Anseriformes. J. Anim. Ecol. 65:701–14
    [Google Scholar]
  39. Gillespie RG, Brewer MS, Roderick GK 2017. Ancient biogeography of generalist predators on remote oceanic islands. J. Biogeogr. 44:1098–109
    [Google Scholar]
  40. Goldman D, Maletz J, Melchin MJ, Junxuan F 2013. Graptolite palaeobiogeography. Early Palaeozoic Biogeography and Palaeogeography DAT Harper, T Servais 415–28 London: Geol. Soc.
    [Google Scholar]
  41. Graham A. 2018. The role of land bridges, ancient environments, and migrations in the assembly of the North American flora. J. Syst. Evol. 56:405–29
    [Google Scholar]
  42. Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C 2014. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29:260–69
    [Google Scholar]
  43. Gurevitch J, Padilla DK. 2004. Are invasive species a major cause of extinctions. Trends Ecol. Evol. 19:470–74
    [Google Scholar]
  44. Harper DAT, Hammarlund EU, Rasmussen CMØ 2014. End Ordovician extinctions: a coincidence of causes. Gondwana Res 25:1294–307
    [Google Scholar]
  45. Harper DAT, Hints L. 2016. Hirnantian (Late Ordovician) brachiopod faunas across Baltoscandia: a global and regional context. Palaeogeogr. Palaeoclimatol. Palaeoecol. 444:71–83
    [Google Scholar]
  46. Harris F, Alley H, Fine R, Deline B 2019. Rare colonial corals from the Upper Ordovician Kope Formation of Kentucky and their role in ephemeral invasions in the Edenian. Palaeogeogr. Palaeoclimatol. Palaeoecol 533:109279
    [Google Scholar]
  47. Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S et al. 2004. The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett. 8:91–101
    [Google Scholar]
  48. Histon K. 2012. An Alpine immigrant: Phragmoceras Broderip, 1839 from the Silurian of the Carnic Alps (Austria). Geobios 45:41–48
    [Google Scholar]
  49. Hoberg EP, Cook JA, Agosta SJ, Boeger W, Galbreath KE et al. 2017. Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate. J. Helminthol. 91:409–21
    [Google Scholar]
  50. Hoffecker JF, Powers WR, Goebel T 1993. The colonization of Beringia and the peopling of the New World. Science 259:46–53
    [Google Scholar]
  51. Holland SM. 1997. Using time/environment analysis to recognize faunal events in the Upper Ordovician of the Cincinnati Arch. Paleontological Event Horizons: Ecological and Evolutionary Implications. Columbia University Press, New York CE Brett, GC Baird 309–34 New York: Columbia Univ. Press
    [Google Scholar]
  52. Holland SM. 2008. The type Cincinnatian Series: an overview. Stratigraphic Renaissance in the Cincinnati Arch: Implication for Upper Ordovician Paleontology and Paleoecology PI McLaughlin, DL Meyer, CE Brett 174–84 Cincinnati, OH: Cincinnati Mus. Cent.
    [Google Scholar]
  53. Holland SM, Patzkowsky ME. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian Series (Upper Ordovician), Cincinnati, Ohio region, USA. Palaios 22:392–407
    [Google Scholar]
  54. Jablonski D, Sepkoski JJ. 1996. Paleobiology, community ecology, and scales of ecological pattern. Ecology 77:1367–78
    [Google Scholar]
  55. Jin J. 1999. Evolution and extinction of the Late Ordovician epicontinental brachiopod fauna of North America. Acta Univ. Carol. Geol. 43:203–6
    [Google Scholar]
  56. Kammer TW, Baumiller TK, Ausich WI 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25:219–22
    [Google Scholar]
  57. Kidwell SM, Flessa KW. 1995. The quality of the fossil record: populations, species, and communities. Annu. Rev. Ecol. Syst. 24:269–99
    [Google Scholar]
  58. Kidwell SM, Holland SM. 2002. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Syst. 33:561–88
    [Google Scholar]
  59. Kitchen A, Miyamoto MM, Mulligan CJ 2008. A three-stage colonization model for the peopling of the Americas. PLOS ONE 3:e1596
    [Google Scholar]
  60. Klompmaker AA, Finnegan S. 2018. Extreme rarity of competitive exclusion in modern and fossil marine benthic ecosystems. Geology 46:723–26
    [Google Scholar]
  61. Lam AR, Stigall AL, Matzke NJ 2018. Dispersal in the Ordovician: speciation patterns and paleobiogeographic analyses of brachiopods and trilobites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 489:147–65
    [Google Scholar]
  62. Landau B, Vermeij G, da Silva CM 2008. Southern Caribbean Neogene palaeobiogeography revisited. New data from the Pliocene of Cubagua, Venezuela. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257:445–61
    [Google Scholar]
  63. Levine JM. 2000. Species diversity and biological invasions: relating local process to community pattern. Science 88:852–54
    [Google Scholar]
  64. Lieberman BS. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate Tectonics, and Evolution New York: Kluwer Acad.
  65. Lieberman BS, Miller W III, Eldredge N 2007. Paleontological patterns, macroecological dynamics and the evolutionary process. Evol. Biol. 34:28–48
    [Google Scholar]
  66. Lindstrom SC. 2001. The Bering Strait connection: dispersal and speciation in boreal macroalgae. J. Biogeogr. 28:243–51
    [Google Scholar]
  67. Lockwood J, Hoopes M, Marchetti M 2013. Invasion Ecology Oxford, UK: Blackwell. , 2nd ed..
  68. Mata TM, Haddad NM, Holyoak M 2013. How invader traits interact with resident communities and resource availability to determine invasion success. Oikos 122:149–60
    [Google Scholar]
  69. McGhee GR Jr 1996. The Late Devonian Mass Extinctions: The Frasnian/Famennian Crisis New York: Columbia Univ. Press
  70. McGhee GR Jr 1997. Late Devonian bioevents in the Appalachian Sea: immigration, extinction, and species replacements. See Brett & Baird 1997 493–508
  71. McGhee GR Jr, Clapham ME, Sheehan PM, Bottjer DJ, Droser ML. 2013. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr. Palaeoclimatol. Palaeoecol. 370:260–70
    [Google Scholar]
  72. McGhee GR Jr, Sheehan PM, Bottjer DJ, Droser ML. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211:289–97
    [Google Scholar]
  73. McGowran B. 2005. Biostratigraphy: Microfossils and Geological Time Cambridge, UK: Cambridge Univ. Press
  74. McKenna MC. 1983. Holarctic landmass rearrangement, cosmic events, and Cenozoic terrestrial organisms. Ann. Mo. Bot. Gard. 70:459–89
    [Google Scholar]
  75. Meiri M, Lister AM, Collins MJ, Tuross N, Goebel T et al. 2014. Faunal record identifies Bering isthmus conditions as constraint to end-Pleistocene migration to the New World. Proc. R. Soc. B 281:20132167
    [Google Scholar]
  76. Muscente AD, Prabhu A, Zhong H, Eleish A, Meyer MB et al. 2018. Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. PNAS 115:5217–22
    [Google Scholar]
  77. Myers CE, Lieberman BS. 2011. Sharks that pass in the night: using Geographical Information Systems to investigate competition in the Cretaceous Western Interior Seaway. Proc. Biol. Sci. 278:681–89
    [Google Scholar]
  78. Myers CE, Saupe EE. 2013. A macroevolutionary expansion of the modern synthesis and the importance of extrinsic abiotic factors. Palaeontology 56:1179–98
    [Google Scholar]
  79. Nylin S, Agosta S, Bensch S, Boeger WA, Braga MP et al. 2018. Embracing colonizations: a new paradigm for species association dynamics. Trends Ecol. Evol. 33:4–14
    [Google Scholar]
  80. Patzkowsky ME, Holland SM. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33:295–309
    [Google Scholar]
  81. Paul CRC. 1998. Adequacy, completeness, and the fossil record. The Adequacy of the Fossil Record SK Donovan, CRC Paul 1–28 Chichester, UK: Wiley
    [Google Scholar]
  82. Pearson DE, Ortega YK, Eren Ö, Hierro JL 2016. Quantifying “apparent” impact and distinguishing impact from invasiveness in multispecies plant invasions. Ecol. Appl. 26:162–73
    [Google Scholar]
  83. Petuch EJ. 1982. Geographical heterochrony: contemporaneous coexistence of neogene and recent molluscan faunas in the Americas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 37:277–312
    [Google Scholar]
  84. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C et al. 2001. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84:1–20
    [Google Scholar]
  85. Pimentel D, Zuniga R, Morrison D 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52:273–88
    [Google Scholar]
  86. Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M et al. 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18:1725–37
    [Google Scholar]
  87. Richardson DM, Pyšek P. 2006. Plant invasions: merging concepts of species invasiveness and community invasibility. Prog. Phys. Geog. 30:409–31
    [Google Scholar]
  88. Rode AL, Lieberman BS. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211:345–59
    [Google Scholar]
  89. Rode AL, Lieberman BS. 2005. Integrating evolution and biogeography: a case study involving Devonian crustaceans. J. Paleontol. 79:267–76
    [Google Scholar]
  90. Rong J-Y, Chen X, Harper DAT 2002. The latest Ordovician Hirnantia fauna (Brachiopoda) in time and space. Lethaia 35:231–49
    [Google Scholar]
  91. Rouget M, Robertson MP, Wilson JRU, Hui C, Essl F et al. 2016. Invasion debt—quantifying future biological invasions. Divers. Distrib. 22:445–56
    [Google Scholar]
  92. Sanders NJ, Gotelli NJ, Heller NE, Gordon DM 2003. Community disassembly by an invasive species. PNAS 100:2474–77
    [Google Scholar]
  93. Sanmartín I, Enghoff H, Ronquist F 2001. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc. 73:345–90
    [Google Scholar]
  94. Sax D, Stachowicz J, Brown J, Bruno J, Dawson M et al. 2007. Ecological and evolutionary insights from species invasions. Trends Ecol. Evol. 22:465–71
    [Google Scholar]
  95. Scarponi D, Kaufman D, Amorosi A, Kowalewski M 2013. Sequence stratigraphy and the resolution of the fossil record. Geology 41:239–42
    [Google Scholar]
  96. Schubert JK, Bottjer DJ. 1995. Aftermath of the Permian-Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the western USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 116:1–39
    [Google Scholar]
  97. Sheehan PM. 1973. The relation of Late Ordovician glaciation to the Ordovician-Silurian changeover in North American brachiopod faunas. Lethaia 6:147–54
    [Google Scholar]
  98. Sheehan PM. 2001. The Late Ordovician mass extinction. Annu. Rev. Earth Planet. Sci. 29:331–64
    [Google Scholar]
  99. Simberloff D. 2009. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40:81–102
    [Google Scholar]
  100. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA et al. 2013. Impacts of biological invasions: what's what and the way forward. Trends Ecol. Evol. 28:58–66
    [Google Scholar]
  101. Simpson GG. 1950. History of the fauna of Latin America. Am. Sci. 38:361–89
    [Google Scholar]
  102. Simpson GG. 1980. Splendid Isolation: The Curious History of South American Mammals New Haven, CT: Yale Univ. Press
  103. Smith FA, Smith REE, Lyons SK, Payne JL 2018. Body size downgrading of mammals over the Late Quaternary. Science 360:310–13
    [Google Scholar]
  104. Sorte CJB, Williams SL, Carlton JT 2010. Marine range shifts and species introductions: comparative spread rates and community impacts. Glob. Ecol. Biogeogr. 19:303–16
    [Google Scholar]
  105. Stehli FG, Webb SD. 1985. The Great American Biotic Interchange New York: Plenum
  106. Stigall AL. 2010a. Invasive species and biodiversity crises: testing the link in the Late Devonian. PLOS ONE 5:e15584
    [Google Scholar]
  107. Stigall AL. 2010b. Using GIS to assess the biogeographic impact of species invasions on native brachiopods during the Richmondian Invasion in the Type-Cincinnatian (Late Ordovician, Cincinnati region). Palaeontol. Electron. 13:5A
    [Google Scholar]
  108. Stigall AL. 2012a. Invasive species and evolution. Evol. Educ. Outreach 5:526–33
    [Google Scholar]
  109. Stigall AL. 2012b. Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction. GSA Today 22:4–9
    [Google Scholar]
  110. Stigall AL. 2012c. Using ecological niche modelling to evaluate niche stability in deep time. J. Biogeogr. 39:772–81
    [Google Scholar]
  111. Stigall AL. 2013. Analysing links between biogeography, niche stability and speciation: the impact of complex feedbacks on macroevolutionary patterns. Palaeontology 56:1225–38
    [Google Scholar]
  112. Stigall AL. 2014. When and how do species achieve niche stability over long time scales?. Ecography 37:1123–32
    [Google Scholar]
  113. Stigall AL. 2016. The impact of invasive species on speciation: lessons from the fossil record. Species in the Fossil Record WD Allmon, M Yaccobucci 340–65 Chicago, IL: Univ. Chicago Press
    [Google Scholar]
  114. Stigall AL. 2018. How is biodiversity produced? Examining speciation processes during the GOBE. Lethaia 51:165–72
    [Google Scholar]
  115. Stigall AL, Bauer JE, Lam AR, Wright DF 2017. Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record. Glob. Planet. Change 148:242–57
    [Google Scholar]
  116. Stigall AL, Edwards CT, Freeman RL, Rasmussen CMØ 2019. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 530:249–70
    [Google Scholar]
  117. Stigall AL, Fine R. 2018. Contrasting ecosystem impacts of biotic invasions in the Type Cincinnatian Series (Late Ordovician, Katian). Palaeoworld 28:166–72
    [Google Scholar]
  118. Stigall Rode AL, Lieberman BS 2005. Using environmental niche modeling to study the Late Devonian biodiversity crisis. Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach DJ Over, JR Morrow, PB Wignall 93–179 New York: Elsevier
    [Google Scholar]
  119. Strauss SY. 2014. Ecological and evolutionary responses in complex communities: implications for invasions and eco-evolutionary feedbacks. Oikos 123:257–66
    [Google Scholar]
  120. Temple JT. 1965. Upper Ordovician brachiopods from Poland and Britain. Acta Palaeontol. Pol. 10:379–427
    [Google Scholar]
  121. Turbelin AJ, Malamud BD, Francis RA 2017. Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 26:78–92
    [Google Scholar]
  122. Tyler CL, Leighton LR. 2011. Detecting competition in the fossil record: support for character displacement among Ordovician brachiopods. Palaeogeogr. Palaeoclimatol. Palaeoecol. 307:205–17
    [Google Scholar]
  123. Vermeij GJ. 1991a. Anatomy of an invasion: the Trans-Arctic Interchange. Paleobiology 17:281–307
    [Google Scholar]
  124. Vermeij GJ. 1991b. When biotas meet: understanding biotic interchange. Science 253:1099–104
    [Google Scholar]
  125. Vermeij GJ. 2005. One-way traffic in the western Atlantic: causes and consequences of Miocene to Early Pleistocene molluscan invasions in Florida and the Caribbean. Paleobiology 31:624–42
    [Google Scholar]
  126. Vrba ES. 1987. Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evol. Ecol. 1:283–300
    [Google Scholar]
  127. Vrba ES. 1992. Mammals as a key to evolutionary theory. J. Mammal. 73:1–28
    [Google Scholar]
  128. Vrba ES, Gould SJ. 1986. The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 12:217–28
    [Google Scholar]
  129. Waltari E, Hoberg EP, Lessa EP, Cook JA 2007. Eastward ho: phylogeographical perspectives on colonization of hosts and parasites across the Beringian nexus. J. Biogeogr. 34:561–74
    [Google Scholar]
  130. Webb SD. 2006. The Great American Biotic Interchange: patterns and processes. Ann. Mo. Bot. Gard. 93:245–47
    [Google Scholar]
  131. Weir JT, Bermingham E, Schluter D 2009. The Great American Biotic Interchange in birds. PNAS 106:21737–42
    [Google Scholar]
  132. Wiens JJ, Graham CH. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36:519–39
    [Google Scholar]
  133. Williamson M, Fitter A. 1996. The varying success of invaders. Ecology 77:61661–66
    [Google Scholar]
  134. Woodburne M. 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. J. Mamm. Evol. 17:245–64
    [Google Scholar]
  135. Wright AD. 1968. A westward expansion of the Upper Ashgillian Hirnantian fauna. Lethaia 1:365–67
    [Google Scholar]
  136. Wright DF, Stigall AL. 2013. Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonics, speciation, and biotic invasions. PLOS ONE 8:e68353
    [Google Scholar]
  137. Zalasiewicz J, Waters C, Summerhayes C, Williams M 2018. The Anthropocene. Geol. Today 34:177–81
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062638
Loading
/content/journals/10.1146/annurev-ecolsys-110617-062638
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error