1932

Abstract

Parasitoids depend on other insects for the development of their offspring. Their eggs are laid in or on a host insect that is consumed during juvenile development. Parasitoids harbor a diversity of microbial symbionts including viruses, bacteria, and fungi. In contrast to symbionts of herbivorous and hematophagous insects, parasitoid symbionts do not provide nutrients. Instead, they are involved in parasitoid reproduction, suppression of host immune responses, and manipulation of the behavior of herbivorous hosts. Moreover, recent research has shown that parasitoid symbionts such as polydnaviruses may also influence plant-mediated interactions among members of plant-associated communities at different trophic levels, such as herbivores, parasitoids, and hyperparasitoids. This implies that these symbionts have a much more extended phenotype than previously thought. This review focuses on the effects of parasitoid symbionts on direct and indirect species interactions and the consequences for community ecology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-024939
2020-01-07
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-024939.html?itemId=/content/journals/10.1146/annurev-ento-011019-024939&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adamo SA. 2019. Turning your victim into a collaborator: exploitation of insect behavioural control systems by parasitic manipulators. Curr. Opin. Insect Sci. 33:25–29
    [Google Scholar]
  2. 2. 
    Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T et al. 2002. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat. Genet. 32:402–7
    [Google Scholar]
  3. 3. 
    Asgari S. 2012. Venoms from endoparasitoids. See Ref 5217–31
  4. 4. 
    Asgari S, Rivers DB. 2011. Venom proteins from endoparasitoid wasps and their role in host–parasite interactions. Annu. Rev. Entomol. 56:313–35
    [Google Scholar]
  5. 5. 
    Beckage NE, Drezen JM, eds. 2012. Parasitoid Viruses: Symbionts and Pathogens Amsterdam: Elsevier
  6. 6. 
    Beckage NE, Tan FF, Schleifer KW, Lane RD, Cherubin LL 1994. Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm. Manduca sexta. Arch. Insect Biochem. Physiol. 26:165–95
    [Google Scholar]
  7. 7. 
    Bigot Y, Drezen JM, Sizaret PY, Rabouille A, Hamelin MH, Periquet G 1995. The genome segments of DpRV, a commensal reovirus of the wasp Diadromus pulchellus (Hymenoptera). Virology 210:109–19
    [Google Scholar]
  8. 8. 
    Bigot Y, Rabouille A, Doury G, Sizaret PY, Delbost F et al. 1997. Biological and molecular features of the relationships between Diadromus pulchellus ascovirus, a parasitoid hymenopteran wasp (Diadromus pulchellus) and its lepidopteran host, Acrolepiopsis assectella. J. Gen. Virol. 78:1149–63
    [Google Scholar]
  9. 9. 
    Bitra K, Zhang S, Strand MR 2011. Transcriptomic profiling of Microplitis demolitor bracovirus reveals host, tissue and stage-specific patterns of activity. J. Gen. Virol. 92:2060–71
    [Google Scholar]
  10. 10. 
    Brucker RM, Bordenstein SR. 2012. The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities. Evolution 66:349–62
    [Google Scholar]
  11. 11. 
    Brucker RM, Bordenstein SR. 2013. The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia. Science 341:667–69
    [Google Scholar]
  12. 12. 
    Burke GR, Strand MR. 2014. Systematic analysis of a wasp parasitism arsenal. Mol. Ecol. 23:890–901
    [Google Scholar]
  13. 13. 
    Burke GR, Thomas SA, Eum JH, Strand MR 2013. Mutualistic polydnaviruses share essential replication gene functions with pathogenic ancestors. PLOS Pathog 9:e1003348
    [Google Scholar]
  14. 14. 
    Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V et al. 2012. Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc. R. Soc. B 279:1791–96
    [Google Scholar]
  15. 15. 
    Chiel E, Zchori-Fein E, Inbar M, Gottlieb Y, Adachi-Hagimori T et al. 2009. Almost there: transmission routes of bacterial symbionts between trophic levels. PLOS ONE 4:e4767
    [Google Scholar]
  16. 16. 
    Cusumano A, Peri E, Colazza S 2016. Interspecific competition/facilitation among insect parasitoids. Curr. Opin. Insect Sci. 14:12–16
    [Google Scholar]
  17. 17. 
    Cusumano A, Zhu F, Volkoff AN, Verbaarschot P, Bloem J et al. 2018. Parasitic wasp–associated symbiont affects plant-mediated species interactions between herbivores. Ecol. Lett. 21:957–67
    [Google Scholar]
  18. 18. 
    Dani MP, Richards EH, Isaac RE, Edwards JP 2003. Antibacterial and proteolytic activity in venom from the endoparasitic wasp Pimpla hypochondriaca (Hymenoptera: Ichneumonidae). J. Insect Physiol. 49:945–54
    [Google Scholar]
  19. 19. 
    Darboux I, Cusson M, Volkoff A-N 2019. The dual life of ichnoviruses. Curr. Opin. Insect Sci. 32:47–53
    [Google Scholar]
  20. 20. 
    Dawkins R. 1982. The Extended Phenotype Oxford, UK: Oxford Univ. Press
  21. 21. 
    De Bary A. 1879. Die Erscheinung der Symbiose Strassburg, Ger: Trübner
  22. 22. 
    del Mar Fernandez M, Meeus I, Billiet A, Van Nieuwerburgh F, Deforce D et al. 2019. Influence of microbiota in the susceptibility of parasitic wasps to abamectin insecticide: deep sequencing, esterase and toxicity tests. Pest Manag. Sci. 75:79–86
    [Google Scholar]
  23. 23. 
    Dheilly NM, Maure F, Ravallec M, Galinier R, Doyon J et al. 2015. Who is the puppet master? Replication of a parasitic wasp–associated virus correlates with host behaviour manipulation. Proc. R. Soc. B 282:20142773
    [Google Scholar]
  24. 24. 
    Doremus T, Darboux I, Cusson M, Ravallec M, Jouan V et al. 2014. Specificities of ichnoviruses associated with campoplegine wasps: genome, genes and role in host–parasitoid interaction. Curr. Opin. Insect Sci. 6:44–51
    [Google Scholar]
  25. 25. 
    Doremus T, Urbach S, Jouan V, Cousserans F, Ravallec M et al. 2013. Venom gland extract is not required for successful parasitism in the polydnavirus-associated endoparasitoid Hyposoter didymator (Hym. Ichneumonidae) despite the presence of numerous novel and conserved venom proteins. Insect Biochem. Mol. Biol. 43:292–307
    [Google Scholar]
  26. 26. 
    Douglas AE. 2006. Phloem-sap feeding by animals: problems and solutions. J. Exp. Bot. 57:747–54
    [Google Scholar]
  27. 27. 
    Douglas AE. 2009. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23:38–47
    [Google Scholar]
  28. 28. 
    Douglas AE. 2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60:17–34
    [Google Scholar]
  29. 29. 
    Dover BA, Davies DH, Strand MR, Gray RS, Keeley LL, Vinson SB 1987. Ecdysteroid-titer reduction and developmental arrest of last-instar Heliothis virescens larvae by calyx fluid from the parasitoid Campoletis sonorensis. J. Insect Physiol 33:333–38
    [Google Scholar]
  30. 30. 
    Drezen JM, Chevignon G, Louis F, Huguet E 2014. Origin and evolution of symbiotic viruses associated with parasitoid wasps. Curr. Opin. Insect Sci. 6:35–43
    [Google Scholar]
  31. 31. 
    Drezen JM, Leobold M, Bezier A, Huguet E, Volkof AN, Herniou EA 2017. Endogenous viruses of parasitic wasps: variations on a common theme. Curr. Opin. Virol. 25:41–48
    [Google Scholar]
  32. 32. 
    Edson KM, Vinson SB, Stoltz DB, Summers MD 1981. Virus in a parasitoid wasp—suppression of the cellular immune response in the parasitoid's host. Science 211:582–83
    [Google Scholar]
  33. 33. 
    Engelstadter J, Hurst GDD. 2009. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. Syst. 40:127–49
    [Google Scholar]
  34. 34. 
    Federici BA, Bigot Y. 2003. Origin and evolution of polydnaviruses by symbiogenesis of insect DNA viruses in endoparasitic wasps. J. Insect Physiol. 49:419–32
    [Google Scholar]
  35. 35. 
    Forbes AA, Bagley RK, Beer MA, Hippee AC, Widmayer HA 2018. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol 18:21
    [Google Scholar]
  36. 36. 
    Frago E, Dicke M, Godfray HCJ 2012. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol. Evol. 27:705–11
    [Google Scholar]
  37. 37. 
    Gibson CM, Hunter MS. 2009. Inherited fungal and bacterial endosymbionts of a parasitic wasp and its cockroach host. Microb. Ecol. 57:542–49
    [Google Scholar]
  38. 38. 
    Gibson CM, Hunter MS. 2009. Negative fitness consequences and transmission dynamics of a heritable fungal symbiont of a parasitic wasp. Appl. Environ. Microbiol. 75:3115–19
    [Google Scholar]
  39. 39. 
    Gilbert SF, Sapp J, Tauber AI 2012. A symbiotic view of life: We have never been individuals. Q. Rev. Biol. 87:325–41
    [Google Scholar]
  40. 40. 
    Godfray HCJ. 1994. Parasitoids: Behavioral and Evolutionary Ecology Princeton, NJ: Princeton Univ. Press
  41. 41. 
    Gómez-Marco F, Urbaneja A, Jaques JA, Rugman-Jones PF, Stouthamer R, Tena A 2015. Untangling the aphid–parasitoid food web in citrus: Can hyperparasitoids disrupt biological control. ? Biol. Control 81:111–21
    [Google Scholar]
  42. 42. 
    Gothama AAA, Sikorowski PP, McLaughlin MR 1998. Replication of nonoccluded baculovirus associated with the parasitoid Microplitis croceipes (Hymenoptera: Braconidae) in Heliothis virescens (Lepidoptera: Noctuidae). Biol. Control 12:103–10
    [Google Scholar]
  43. 43. 
    Grosman AH, Janssen A, de Brito EF, Cordeiro EG, Colares F et al. 2008. Parasitoid increases survival of its pupae by inducing hosts to fight predators. PLOS ONE 3:e2276
    [Google Scholar]
  44. 44. 
    Hansen AK, Vorburger C, Moran NA 2012. Genomic basis of endosymbiont-conferred protection against an insect parasitoid. Genome Res 22:106–14
    [Google Scholar]
  45. 45. 
    Harvey JA, Kos M, Nakamatsu Y, Tanaka T, Dicke M et al. 2008. Do parasitized caterpillars protect their parasitoids from hyperparasitoids? A test of the ‘usurpation hypothesis’. Anim. Behav. 76:701–8
    [Google Scholar]
  46. 46. 
    Harvey JA, Poelman EH, Tanaka T 2013. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58:333–51
    [Google Scholar]
  47. 47. 
    Harvey JA, Wagenaar R, Bezemer TM 2009. Interactions to the fifth trophic level: Secondary and tertiary parasitoid wasps show extraordinary efficiency in utilizing host resources. J. Anim. Ecol. 78:686–92
    [Google Scholar]
  48. 48. 
    Hedges LM, Brownlie JC, O'Neill SL, Johnson KN 2008. Wolbachia and virus protection in insects. Science 322:702
    [Google Scholar]
  49. 49. 
    Heimpel GE, Mills NJ. 2017. Biological Control: Ecology and Applications Cambridge, UK: Cambridge Univ. Press
  50. 50. 
    Huigens ME, de Almeida RP, Boons PAH, Luck RF, Stouthamer R 2004. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc. R. Soc. B 271:509–15
    [Google Scholar]
  51. 51. 
    Jackson TA, McNeill MR. 1998. Premature death in parasitized Listronotus bonariensis adults can be caused by bacteria transmitted by the parasitoid Microctonus hyperodae. Biocontrol Sci. Technol 8:389–96
    [Google Scholar]
  52. 52. 
    Kaplan I. 2012. Trophic complexity and the adaptive value of damage-induced plant volatiles. PLOS Biol 10:e1001437
    [Google Scholar]
  53. 53. 
    Kaplan I, Carrillo J, Garvey M, Ode PJ 2016. Indirect plant–parasitoid interactions mediated by changes in herbivore physiology. Curr. Opin. Insect Sci. 14:112–19
    [Google Scholar]
  54. 54. 
    Keilin D, Tate P. 1943. The larval stages of the celery fly (Acidia heraclei) and of the braconid Adelura apii with notes upon an associated parasitic yeast-like fungus. Parasitology 35:27–36
    [Google Scholar]
  55. 55. 
    Kester KM, Jackson DM. 1996. When good bugs go bad: intraguild predation by Jalysus wickhami on the parasitoid, Cotesia congregata. Entomol. Exp. Appl. 81:271–76
    [Google Scholar]
  56. 56. 
    Lawrence PO. 2005. Morphogenesis and cytopathic effects of the Diachasmimorpha longicaudata entomopoxvirus in host haemocytes. J. Insect Physiol. 51:221–33
    [Google Scholar]
  57. 57. 
    Lawrence PO, Akin D. 1990. Virus-like particles from the poison glands of the parasitic wasp Biosteres longicaudatus (Hymenoptera, Braconidae). Can. J. Zool. 68:539–46
    [Google Scholar]
  58. 58. 
    Lebeck LM. 1989. Extracellular symbiosis of a yeast-like microorganism within Comperia merceti (Hymenoptera, Encyrtidae). Symbiosis 7:51–66
    [Google Scholar]
  59. 59. 
    Lepetit D, Gillet B, Hughes S, Kraaijeveld K, Varaldi J 2016. Genome sequencing of the behavior manipulating virus LbFV reveals a possible new virus family. Genome Biol. Evol. 8:3718–39
    [Google Scholar]
  60. 60. 
    Li SJ, Ahmed MZ, Lv N, Shi PQ, Wang XM et al. 2017. Plant-mediated horizontal transmission of Wolbachia between whiteflies. ISME J 11:1019–28
    [Google Scholar]
  61. 61. 
    Lu ZQ, Beck MH, Strand MR 2010. Egf1.5 is a second phenoloxidase cascade inhibitor encoded by Microplitis demolitor bracovirus. Insect Biochem. Mol. Biol. 40:497–505
    [Google Scholar]
  62. 62. 
    Martinez J, Duplouy A, Woolfit M, Vavre F, O'Neill SL, Varaldi J 2012. Influence of the virus LbFV and of Wolbachia in a host–parasitoid interaction. PLOS ONE 7:e35081
    [Google Scholar]
  63. 63. 
    McCutcheon JP, McDonald BR, Moran NA 2009. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. PNAS 106:15394–99
    [Google Scholar]
  64. 64. 
    Middeldorf J, Ruthmann A. 1984. Yeast-like endosymbionts in an ichneumonid wasp. Z. Naturforsch. C 39:322–26
    [Google Scholar]
  65. 65. 
    Moreau SJM. 2013. “It stings a bit but it cleans well”: venoms of Hymenoptera and their antimicrobial potential. J. Insect Physiol. 59:186–204
    [Google Scholar]
  66. 66. 
    Moreau SJM, Asgari S. 2015. Venom proteins from parasitoid wasps and their biological functions. Toxins 7:2385–412
    [Google Scholar]
  67. 67. 
    Mouton L, Dedeine F, Henri H, Boulétreau M, Profizi N, Vavre F 2004. Virulence multiple infections and regulation of symbiotic population in the Wolbachia–Asobara tabida symbiosis. Genetics 168:181–89
    [Google Scholar]
  68. 68. 
    Mouton L, Henri H, Boulétreau M, Vavre F 2003. Strain-specific regulation of intracellular Wolbachia density in multiply infected insects. Mol. Ecol. 12:3459–65
    [Google Scholar]
  69. 69. 
    Nedoluzhko AV, Sharko FS, Tsygankova SV, Boulygina ES, Sokolov AS et al. 2017. Metagenomic analysis of microbial community of a parasitoid wasp Megaphragma amalphitanum. Genom. Data 11:87–88
    [Google Scholar]
  70. 70. 
    Ode PJ, Harvey JA, Reichelt M, Gershenzon J, Gols R 2016. Differential induction of plant chemical defenses by parasitized and unparasitized herbivores: consequences for reciprocal, multitrophic interactions. Oikos 125:1398–407
    [Google Scholar]
  71. 71. 
    Oliver KM, Smith AH, Russell JA 2014. Defensive symbiosis in the real world—advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct. Ecol. 28:341–55
    [Google Scholar]
  72. 72. 
    Osborne SE, Leong YS, O'Neill SL, Johnson KN 2009. Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLOS Pathog 5:e1000656
    [Google Scholar]
  73. 73. 
    Patot S, Allemand R, Fleury F, Varaldi J 2012. An inherited virus influences the coexistence of parasitoid species through behaviour manipulation. Ecol. Lett. 15:603–10
    [Google Scholar]
  74. 74. 
    Pennacchio F, Falabella P, Vinson SB 1998. Regulation of Heliothis virescens prothoracic glands by Cardiochiles nigriceps polydnavirus. Arch. Insect Biochem. Physiol. 38:1–10
    [Google Scholar]
  75. 75. 
    Pichon A, Bezier A, Urbach S, Aury JM, Jouan V et al. 2015. Recurrent DNA virus domestication leading to different parasite virulence strategies. Sci. Adv. 1:e1501150
    [Google Scholar]
  76. 76. 
    Poelman EH, Bruinsma M, Zhu F, Weldegergis BT, Boursault AE et al. 2012. Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. PLOS Biol 10:e1001435
    [Google Scholar]
  77. 77. 
    Poelman EH, Gols R, Gumovsky AV, Cortesero AM, Dicke M, Harvey JA 2014. Food plant and herbivore host species affect the outcome of intrinsic competition among parasitoid larvae. Ecol. Entomol. 39:693–702
    [Google Scholar]
  78. 78. 
    Poelman EH, Gols R, Snoeren TAL, Muru D, Smid HM, Dicke M 2011. Indirect plant-mediated interactions among parasitoid larvae. Ecol. Lett. 14:670–76
    [Google Scholar]
  79. 79. 
    Poelman EH, Zheng SJ, Zhang Z, Heemskerk NM, Cortesero AM, Dicke M 2011. Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores. PNAS 108:19647–52
    [Google Scholar]
  80. 80. 
    Polenogova OV, Kabilov MR, Tyurin MV, Rotskaya UN, Krivopalov AV et al. 2019. Parasitoid envenomation alters the Galleria mellonella midgut microbiota and immunity, thereby promoting fungal infection. Sci. Rep. 9:4012
    [Google Scholar]
  81. 81. 
    Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE 1980. Interactions among three trophic levels—influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65
    [Google Scholar]
  82. 82. 
    Pruijssers AJ, Falabella P, Eum JH, Pennacchio F, Brown MR, Strand MR 2009. Infection by a symbiotic polydnavirus induces wasting and inhibits metamorphosis of the moth Pseudoplusia includens. J. Exp. Biol 212:2998–3006
    [Google Scholar]
  83. 83. 
    Renault S, Stasiak K, Federici B, Bigot Y 2005. Commensal and mutualistic relationships of reoviruses with their parasitoid wasp hosts. J. Insect Physiol. 51:137–48
    [Google Scholar]
  84. 84. 
    Roossinck MJ. 2011. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9:99–108
    [Google Scholar]
  85. 85. 
    Shelby KS, Webb BA. 1994. Polydnavirus infection inhibits synthesis of an insect plasma protein, arylphorin. J. Gen. Virol. 75:2285–92
    [Google Scholar]
  86. 86. 
    Shelby KS, Webb BA. 1999. Polydnavirus-mediated suppression of insect immunity. J. Insect Physiol. 45:507–14
    [Google Scholar]
  87. 87. 
    Shen XJ, Ye GY, Cheng XY, Yu CY, Yao HW, Hu C 2010. Novel antimicrobial peptides identified from an endoparasitic wasp cDNA library. J. Pept. Sci. 16:58–64
    [Google Scholar]
  88. 88. 
    Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H 2000. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86
    [Google Scholar]
  89. 89. 
    Stasiak K, Renault S, Federici BA, Bigot Y 2005. Characteristics of pathogenic and mutualistic relationships of ascoviruses in field populations of parasitoid wasps. J. Insect Physiol. 51:103–15
    [Google Scholar]
  90. 90. 
    Stoltz DB, Whitfield JB. 2009. Virology: making nice with viruses. Science 323:884–85
    [Google Scholar]
  91. 91. 
    Stouthamer R, Luck RF, Hamilton WD 1990. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. PNAS 87:2424–27
    [Google Scholar]
  92. 92. 
    Strand MR, Beck MH, Lavine MD, Clark KD 2006. Microplitis demolitor bracovirus inhibits phagocytosis by hemocytes from Pseudoplusia includens. Arch. Insect Biochem. Physiol 61:134–45
    [Google Scholar]
  93. 93. 
    Strand MR, Burke GR. 2013. Polydnavirus–wasp associations: evolution, genome organization, and function. Curr. Opin. Virol. 3:587–94
    [Google Scholar]
  94. 94. 
    Strand MR, Burke GR. 2014. Polydnaviruses: nature's genetic engineers. Annu. Rev. Virol. 1:333–54
    [Google Scholar]
  95. 95. 
    Strand MR, Burke GR. 2015. Polydnaviruses: from discovery to current insights. Virology 479:393–402
    [Google Scholar]
  96. 96. 
    Strand MR, Pech LL. 1995. Immunological basis for compatibility in parasitoid–host relationships. Annu. Rev. Entomol. 40:31–56
    [Google Scholar]
  97. 97. 
    Sullivan DJ, Volkl W. 1999. Hyperparasitism: multitrophic ecology and behavior. Annu. Rev. Entomol. 44:291–315
    [Google Scholar]
  98. 98. 
    Tan CW, Peiffer M, Hoover K, Rosa C, Acevedo FE, Felton GW 2018. Symbiotic polydnavirus of a parasite manipulates caterpillar and plant immunity. PNAS 115:5199–204
    [Google Scholar]
  99. 99. 
    Tanaka T, Agui N, Hiruma K 1987. The parasitoid Apanteles kariyai inhibits pupation of its host, Pseudaletia separata, via disruption of prothoracicotropic hormone release. Gen. Comp. Endocrinol. 67:364–74
    [Google Scholar]
  100. 100. 
    Teixeira L, Ferreira A, Ashburner M 2008. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLOS Biol 6:2753–63
    [Google Scholar]
  101. 101. 
    Thomas P, Kenny N, Eyles D, Moreira LA, O'Neill SL, Asgari S 2011. Infection with the wMel and wMelPop strains of Wolbachia leads to higher levels of melanization in the hemolymph of Drosophila melanogaster, Drosophila simulans and Aedes aegypti. Dev. Comp. Immunol 35:360–65
    [Google Scholar]
  102. 102. 
    Vaello T, Sarde SJ, Marcos-García MA, de Boer JG, Pineda A 2018. Modulation of plant-mediated interactions between herbivores of different feeding guilds: effects of parasitism and belowground interactions. Sci. Rep. 8:14424
    [Google Scholar]
  103. 103. 
    van Houte S, Ros VID, van Oers MM 2013. Walking with insects: molecular mechanisms behind parasitic manipulation of host behaviour. Mol. Ecol. 22:3458–75
    [Google Scholar]
  104. 104. 
    van Vugt JFA, Salverda M, de Jong JH, Stouthamer R 2003. The paternal sex ratio chromosome in the parasitic wasp Trichogramma kaykai condenses the paternal chromosomes into a dense chromatin mass. Genome 46:580–87
    [Google Scholar]
  105. 105. 
    Varaldi J, Fouillet P, Ravallec M, López-Ferber M, Boulétreau M, Fleury F 2003. Infectious behavior in a parasitoid. Science 302:1930
    [Google Scholar]
  106. 106. 
    Vavre F, Fleury F, Lepetit D, Fouillet P, Boulétreau M 1999. Phylogenetic evidence for horizontal transmission of Wolbachia in host–parasitoid associations. Mol. Biol. Evol. 16:1711–23
    [Google Scholar]
  107. 107. 
    Vavre F, Mouton L, Pannebakker BA 2009. Drosophila–parasitoid communities as model systems for host–Wolbachia interactions. Adv. Parasitol. 70:299–331
    [Google Scholar]
  108. 108. 
    Vinson SB, Stoltz DB. 1986. Cross-protection experiments with two parasitoid (Hymenoptera, Ichneumonidae) viruses. Ann. Entomol. Soc. Am. 79:216–18
    [Google Scholar]
  109. 109. 
    Wang F, Fang Q, Wang BB, Yan ZC, Hong J et al. 2017. A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host. PLOS Pathog 13:e1006201
    [Google Scholar]
  110. 110. 
    Wang ZZ, Ye XQ, Shi M, Li F, Wang ZH et al. 2018. Parasitic insect–derived miRNAs modulate host development. Nat. Commun. 9:2205
    [Google Scholar]
  111. 111. 
    Washburn JO, Haas-Stapleton EJ, Tan FF, Beckage NE, Volkman LE 2000. Co-infection of Manduca sexta larvae with polydnavirus from Cotesia congregata increases susceptibility to fatal infection by Autographa californica M nucleopolyhedrovirus. J. Insect Physiol. 46:179–90
    [Google Scholar]
  112. 112. 
    Webb BA, Strand MR, Dickey SE, Beck MH, Hilgarth RS et al. 2006. Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology 347:160–74
    [Google Scholar]
  113. 113. 
    Werren JH, Baldo L, Clark ME 2008. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6:741–51
    [Google Scholar]
  114. 114. 
    Whitfield JB, Asgari S. 2003. Virus or not? Phylogenetics of polydnaviruses and their wasp carriers. J. Insect Physiol. 49:397–405
    [Google Scholar]
  115. 115. 
    Whitfield JB, Austin AD, Fernandez-Triana JL 2018. Systematics, biology, and evolution of microgastrine parasitoid wasps. Annu. Rev. Entomol. 63:389–406
    [Google Scholar]
  116. 116. 
    Zhu F, Broekgaarden C, Weldegergis BT, Harvey JA, Vosman B et al. 2015. Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host using herbivore-induced plant volatiles. Mol. Ecol. 24:2886–99
    [Google Scholar]
  117. 117. 
    Zhu F, Cusumano A, Bloem J, Weldegergis BT, Villela A et al. 2018. Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. PNAS 115:5205–10
    [Google Scholar]
  118. 118. 
    Zhu F, Poelman EH, Dicke M 2014. Insect herbivore–associated organisms affect plant responses to herbivory. New Phytol 204:315–21
    [Google Scholar]
  119. 119. 
    Zouache K, Voronin D, Tran-Van V, Mavingui P 2009. Composition of bacterial communities associated with natural and laboratory populations of Asobara tabida infected with Wolbachia. Appl. Environ. Microbiol 75:3755–64
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-024939
Loading
/content/journals/10.1146/annurev-ento-011019-024939
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error