1932

Abstract

Social media data have been increasingly used to study biomedical and health-related phenomena. From cohort-level discussions of a condition to population-level analyses of sentiment, social media have provided scientists with unprecedented amounts of data to study human behavior associated with a variety of health conditions and medical treatments. Here we review recent work in mining social media for biomedical, epidemiological, and social phenomena information relevant to the multilevel complexity of human health. We pay particular attention to topics where social media data analysis has shown the most progress, including pharmacovigilance and sentiment analysis, especially for mental health. We also discuss a variety of innovative uses of social media data for health-related applications as well as important limitations of social media data access and use.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-030320-040844
2020-07-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/3/1/annurev-biodatasci-030320-040844.html?itemId=/content/journals/10.1146/annurev-biodatasci-030320-040844&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Correia RB, de Araújo Kohler LP, Mattos MM, Rocha LM 2019. City-wide electronic health records reveal gender and age biases in administration of known drug–drug interactions. NPJ Digit. Med. 2:74
    [Google Scholar]
  2. 2. 
    Christakis NA, Fowler JH. 2010. Social network sensors for early detection of contagious outbreaks. PLOS ONE 5:e12948
    [Google Scholar]
  3. 3. 
    Correia RB, Li L, Rocha LM 2016. Monitoring potential drug interactions and reactions via network analysis of Instagram user timelines. Pac. Symp. Biocomput. 21:492–503
    [Google Scholar]
  4. 4. 
    Choudhury MD, Counts S, Horvitz E 2013. Social media as a measurement tool of depression in populations. Proceedings of the 5th Annual ACM Web Science Conference47–56 New York: Assoc. Comput. Mach.
    [Google Scholar]
  5. 5. 
    Lazer D, Pentland A, Adamic L, Aral S, Barabási AL et al. 2009. Computational social science. Science 323:721–23
    [Google Scholar]
  6. 6. 
    Salathé M, Bengtsson L, Bodnar TJ, Brewer DD, Brownstein JS et al. 2012. Digital epidemiology. PLOS Comput. Biol. 8:e1002616
    [Google Scholar]
  7. 7. 
    Varol O, Ferrara E, Ogan CL, Menczer F, Flammini A 2014. Evolution of online user behavior during a social upheaval. Proceedings of the 2014 ACM Conference on Science81–90 New York: Assoc. Comput. Mach.
    [Google Scholar]
  8. 8. 
    Kallus N. 2014. Predicting crowd behavior with big public data. WWW '14 Companion: Proceedings of the 23rd International Conference on the World Wide Web625–30 New York: Assoc. Comput. Mach.
    [Google Scholar]
  9. 9. 
    Shao C, Hui PM, Wang L, Jiang X, Flammini A et al. 2018. Anatomy of an online misinformation network. PLOS ONE 13:e0196087
    [Google Scholar]
  10. 10. 
    Bollen J, Mao H, Zeng X 2011. Twitter mood predicts the stock market. J. Comput. Sci. 2:1–8
    [Google Scholar]
  11. 11. 
    Kautz H. 2013. Data mining social media for public health applications Paper presented at the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013 Beijing, China: Aug. 5–9
  12. 12. 
    Bakshy E, Messing S, Adamic LA 2015. Exposure to ideologically diverse news and opinion on Facebook. Science 348:1130–32
    [Google Scholar]
  13. 13. 
    Pescosolido BA, Martin JK. 2015. The stigma complex. Annu. Rev. Sociol. 41:87–116
    [Google Scholar]
  14. 14. 
    Fan R, Varol O, Varamesh A, Barron A, van de Leemput IA et al. 2018. The minute-scale dynamics of online emotions reveal the effects of affect labeling. Nat. Hum. Behav. 3:92–100
    [Google Scholar]
  15. 15. 
    Paul MJ, Sarker A, Brownstein JS, Nikfarjam A, Scotch M et al. 2016. Social media mining for public health monitoring and surveillance. Pac. Symp. Biocomput. 21:468–79
    [Google Scholar]
  16. 16. 
    Hawn C. 2009. Take two aspirin and tweet me in the morning: how Twitter, Facebook, and other social media are reshaping health care. Health Aff 28:361–68
    [Google Scholar]
  17. 17. 
    Seltzer E, Jean N, Kramer-Golinkoff E, Asch D, Merchant R 2015. The content of social media's shared images about Ebola: a retrospective study. Public Health 129:1273–77
    [Google Scholar]
  18. 18. 
    Sullivan R, Sarker A, O'Connor K, Goodin A, Karlsrud M, Gonzalez G 2016. Finding potentially unsafe nutritional supplements from user reviews with topic modeling. Pac. Symp. Biocomput. 21:528–39
    [Google Scholar]
  19. 19. 
    Hobbs WR, Burke M, Christakis NA, Fowler JH 2016. Online social integration is associated with reduced mortality risk. PNAS 113:12980–84
    [Google Scholar]
  20. 20. 
    Chan EH, Sahai V, Conrad C, Brownstein JS 2011. Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance. PLOS Negl. Trop. Dis. 5:e1206
    [Google Scholar]
  21. 21. 
    Goel S, Hofman JM, Lahaie S, Pennock DM, Watts DJ 2010. Predicting consumer behavior with web search. PNAS 107:17486–90
    [Google Scholar]
  22. 22. 
    Lazer D, Kennedy R, King G, Vespignani A 2014. The parable of Google Flu: traps in big data analysis. Science 343:1203–5
    [Google Scholar]
  23. 23. 
    Signorini A, Segre AM, Polgreen PM 2011. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza a H1N1 pandemic. PLOS ONE 6:e19467
    [Google Scholar]
  24. 24. 
    Chunara R, Andrews JR, Brownstein JS 2012. Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. Am. J. Trop. Med. Hyg. 86:39–45
    [Google Scholar]
  25. 25. 
    McGough SF, Brownstein JS, Hawkins JB, Santillana M 2017. Forecasting Zika incidence in the 2016 Latin America outbreak combining traditional disease surveillance with search, social media, and news report data. PLOS Negl. Trop. Dis. 11:e0005295
    [Google Scholar]
  26. 26. 
    Ireland ME, Schwartz HA, Chen Q, Ungar LH, Albarracín D 2015. Future-oriented tweets predict lower county-level HIV prevalence in the United States. Health Psychol 34:1252–60
    [Google Scholar]
  27. 27. 
    Hamed AA, Wu X, Erickson R, Fandy T 2015. Twitter K-H networks in action: advancing biomedical literature for drug search. J. Biomed. Inform. 56:157–68
    [Google Scholar]
  28. 28. 
    Yang H, Yang CC. 2013. Harnessing social media for drug-drug interactions detection. 2013 IEEE International Conference on Healthcare Informatics22–29 New York: IEEE
    [Google Scholar]
  29. 29. 
    Sarker A, Ginn R, Nikfarjam A, O'Connor K, Smith K et al. 2015. Utilizing social media data for pharmacovigilance: a review. J. Biomed. Inform. 54:202–12
    [Google Scholar]
  30. 30. 
    Pain J, Levacher J, Quinqunel A, Belz A 2016. Analysis of Twitter data for postmarketing surveillance in pharmacovigilance. Proceedings of the 2nd Workshop on Noisy User-generated Text94–101 Osaka, Jpn.: COLING 2016 Organ. Commit.
    [Google Scholar]
  31. 31. 
    Sarker A, O'Connor K, Ginn R, Scotch M, Smith K et al. 2016. Social media mining for toxicovigilance: automatic monitoring of prescription medication abuse from Twitter. Drug Saf 39:231–40
    [Google Scholar]
  32. 32. 
    Gkotsis G, Oellrich A, Velupillai S, Liakata M, Hubbard TJP et al. 2017. Characterisation of mental health conditions in social media using informed deep learning. Sci. Rep. 7:45141
    [Google Scholar]
  33. 33. 
    Eichstaedt JC, Smith RJ, Merchant RM, Ungar LH, Crutchley P et al. 2018. Facebook language predicts depression in medical records. PNAS 115:11203–8
    [Google Scholar]
  34. 34. 
    De Choudhury M, Gamon M, Counts S, Horvitz E 2013. Predicting depression via social media. Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media128–37 Menlo Park, CA: Assoc. Adv. Artif. Intell.
    [Google Scholar]
  35. 35. 
    Wood IB, Varela PL, Bollen J, Rocha LM, Gonçalves-Sá J 2017. Human sexual cycles are driven by culture and match collective moods. Sci. Rep. 7:17973
    [Google Scholar]
  36. 36. 
    Salathé M, Khandelwal S. 2011. Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control. PLOS Comput. Biol. 7:e1002199
    [Google Scholar]
  37. 37. 
    Salathé M, Vu DQ, Khandelwal S, Hunter DR 2013. The dynamics of health behavior sentiments on a large online social network. EPJ Data Sci 2:4
    [Google Scholar]
  38. 38. 
    Statista 2019. Number of monthly active Twitter users worldwide from 1st quarter 2010 to 1st quarter 2019 (in millions) Social Media Stat., accessed Nov. 29. https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
  39. 39. 
    Statista 2019. Number of monthly active Instagram users from January 2013 to June 2018 (in millions) Social Media Stat., accessed Nov. 29. https://www.statista.com/statistics/253577/number-of-monthly-active-instagram-users/
  40. 40. 
    Statista 2019. Most popular social networks of teenagers in the United States from Fall 2012 to Spring 2019. Social Media Stat., accessed Nov. 29. https://www.statista.com/statistics/250172/social-network-usage-ofus-teens-and-young-adults/
  41. 41. 
    Statista 2019. Number of monthly active Facebook users worldwide as of 3rd quarter 2019 (in millions) Social Media Stat. accessed Nov. 29. https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
  42. 42. 
    Statista 2019. Facebook—statistics & facts Social Media Stat. accessed Nov. 29. https://www.statista.com/topics/751/facebook/
  43. 43. 
    NIH (Natl. Inst. Health) 2014. Early stage development of technologies in biomedical computing, informatics, and big data science (R01) Funding Oppor. Announc., Natl. Inst. Health Bethesda, MD: https://grants.nih.gov/grants/guide/pa-files/PA-14-155.html 29
  44. 44. 
    NIH (Natl. Inst. Health) 2014. Extended development, hardening and dissemination of technologies in biomedical computing, informatics and big data science (R01) Funding Oppor. Announc., Natl. Inst. Health Bethesda, MD: https://grants.nih.gov/grants/guide/pa-files/PA-14-156.html
  45. 45. 
    Choudhury MD, De S. 2014. Mental health discourse on reddit: self-disclosure, social support, and anonymity. Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media71–80 Menlo Park, CA: Assoc. Adv. Artif. Intell.
    [Google Scholar]
  46. 46. 
    Park A, Conway M. 2017. Tracking health related discussions on Reddit for public health applications. AMIA Annu. Symp. Proc. 2017:1362–71
    [Google Scholar]
  47. 47. 
    Zomick J, Levitan SI, Serper M 2019. Linguistic analysis of schizophrenia in Reddit posts. Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology74–83 Minneapolis, MN: Assoc. Comput. Linguist.
    [Google Scholar]
  48. 48. 
    Fernandez-Luque L, Elahi N, Grajales FJ 3rd 2009. An analysis of personal medical information disclosed in YouTube videos created by patients with multiple sclerosis. Medical Informatics in a United and Healthy Europe K-P Adlassnig, B Blobel, J Mantas, I Masic 292–96 Amsterdam: IOS
    [Google Scholar]
  49. 49. 
    Syed-Abdul S, Fernandez-Luque L, Jian WS, Li YC, Crain S et al. 2013. Misleading health-related information promoted through video-based social media: anorexia on YouTube. J. Med. Internet Res. 15:e30
    [Google Scholar]
  50. 50. 
    Pescosolido BA, Olafsdottir S, Sporns O, Perry BL, Meslin EM et al. 2016. The social symbiome framework: linking genes-to-global cultures in public health using network science. Handbook of Applied System Science25–48 ZP Neal New York: Routledge
    [Google Scholar]
  51. 51. 
    Fernández-Luque L, Bau T. 2015. Health and social media: perfect storm of information. Healthc. Inform. Res. 21:67–73
    [Google Scholar]
  52. 52. 
    Patel R, Belousov M, Jani M, Dasgupta N, Winakor C et al. 2018. Frequent discussion of insomnia and weight gain with glucocorticoid therapy: an analysis of Twitter posts. NPJ Dig. Med. 1:20177
    [Google Scholar]
  53. 53. 
    Cooper V, Metcalf L, Versnel J, Upton J, Walker S, Horne R 2015. Patient-reported side effects, concerns and adherence to corticosteroid treatment for asthma, and comparison with physician estimates of side-effect prevalence: a UK-wide, cross-sectional study. NPJ Prim. Care Respir. Med. 25:15026
    [Google Scholar]
  54. 54. 
    Börner K. 2011. Plug-and-play macroscopes. Commun. ACM 54:60–69
    [Google Scholar]
  55. 55. 
    Alber M, Tepole AB, Cannon WR, De S, Dura-Bernal S et al. 2019. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Dig. Med. 2:115
    [Google Scholar]
  56. 56. 
    Sultana J, Cutroneo P, Trifirò G 2013. Clinical and economic burden of adverse drug reactions. J. Pharmacol. Pharmacother. 4:S73–77
    [Google Scholar]
  57. 57. 
    Becker ML, Kallewaard M, Caspers PW, Visser LE, Leufkens HG, Stricker BH 2007. Hospitalisations and emergency department visits due to drug-drug interactions: a literature review. Pharmacoepidemiol. Drug Saf. 16:641–51
    [Google Scholar]
  58. 58. 
    FDA (US Food Drug Admin.) 2019. Questions and answers on FDA's Adverse Event Reporting System (FAERS) Fact Sheet, US Food Drug Admin. Silver Spring, MD: https://www.fda.gov/drugs/surveillance/questions-and-answers-fdas-adverse-event-reporting-system-faers
  59. 59. 
    Alatawi YM, Hansen RA. 2017. Empirical estimation of under-reporting in the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). Expert Opin. Drug Saf. 16:761–67
    [Google Scholar]
  60. 60. 
    Basch E. 2010. The missing voice of patients in drug-safety reporting. N. Engl. J. Med. 362:865–69
    [Google Scholar]
  61. 61. 
    Rao AL, Hong ES. 2016. Understanding depression and suicide in college athletes: emerging concepts and future directions. Br. J. Sports Med. 50:136–37
    [Google Scholar]
  62. 62. 
    Druckman JN, Rothschild JE. 2018. Playing with pain: social class and pain reporting among college student-athletes. Sport J 21: https://thesportjournal.org/article/playing-with-pain-social-class-and-pain-reporting-among-college-student-athletes/
    [Google Scholar]
  63. 63. 
    White R, Harpaz R, Shah N, DuMouchel W, Horvitz E 2014. Toward enhanced pharmacovigilance using patient-generated data on the internet. Clin. Pharmacol. Ther. 96:239–46
    [Google Scholar]
  64. 64. 
    Topaz M, Lai K, Dhopeshwarkar N, Seger DL, Sa'adon R et al. 2016. Clinicians' reports in electronic health records versus patients' concerns in social media: a pilot study of adverse drug reactions of aspirin and atorvastatin. Drug Saf 39:241–50
    [Google Scholar]
  65. 65. 
    Correia RB. 2019. Prediction of drug interaction and adverse reactions, with data from electronic health records, clinical reporting, scientific literature, and social media, using complexity science methods PhD Thesis Luddy Sch. Inform. Comput. Eng., Indiana Univ. Bloomington, IN:
  66. 66. 
    Lardon J, Abdellaoui R, Bellet F, Asfari H, Souvignet J et al. 2015. Adverse drug reaction identification and extraction in social media: a scoping review. J. Med. Internet Res. 17:e171
    [Google Scholar]
  67. 67. 
    Ofoghi B, Mann M, Verspoor K 2016. Towards early discovery of salient health threats: a social media emotion classification technique. Pac. Symp. Biocomput. 21:504–15
    [Google Scholar]
  68. 68. 
    Weber I, Achananuparp P. 2016. Insights from machine-learned diet success prediction. Pac. Symp. Biocomput. 21:540–51
    [Google Scholar]
  69. 69. 
    Aphinyanaphongs Y, Lulejian A, Brown DP, Bonneau R, Krebs P 2016. Text classification for automatic detection of e-cigarette use and use for smoking cessation from Twitter: a feasibility pilot. Pac. Symp. Biocomput. 21:480–91
    [Google Scholar]
  70. 70. 
    Sap M, Kern ML, Eichstaedt JC, Kapelner A, Agrawal M et al. 2016. Predicting individual well-being through the language of social media. Pac. Symp. Biocomput. 21:516–27
    [Google Scholar]
  71. 71. 
    Sarker A, Gonzalez-Hernandez G. 2017. Overview of the Second Social Media Mining for Health (SMM4H) shared tasks at AMIA 2017. Proceedings of the 2nd Social Media Mining for Health Research and Applications Workshop Co-Located with the American Medical Informatics Association Annual Symposium (AMIA 2017) A Sarker, G Gonzalez 43–48 http://ceur-ws.org/Vol-1996/paper8.pdf
  72. 72. 
    Weissenbacher D, Sarker A, Magge A, O'Connor ADK, Paul M, Gonzalez-Hernandez G 2019. Overview of the Fourth Social Media Mining for Health (#SMM4H) shared task at ACL 2019. Proceedings of the 4th Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task21–30 Stroudsburg, PA: Assoc. Comput. Linguist.
    [Google Scholar]
  73. 73. 
    Chee B, Karahalios KG, Schatz B 2009. Social visualization of health messages. Proceedings of the 42nd Hawaii International Conference on System Sciences Los Alamitos, CA: IEEE Comput. Soc.
    [Google Scholar]
  74. 74. 
    Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzalez G 2010. Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts to health-related social networks. Proceedings of the 2010 Workshop on Biomedical Natural Language Processing117–25 Stroudburg, PA: Assoc. Comput. Linguist.
    [Google Scholar]
  75. 75. 
    Nikfarjam A, Gonzalez GH. 2011. Pattern mining for extraction of mentions of adverse drug reactions from user comments. AMIA Annu. Symp. Proc. 2011:1019–26
    [Google Scholar]
  76. 76. 
    Benton A, Ungar L, Hill S, Hennessy S, Mao J et al. 2011. Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J. Biomed. Inform. 44:989–96
    [Google Scholar]
  77. 77. 
    Sampathkumar H, Luo B, Chen XW 2012. Mining adverse drug side-effects from online medical forums. 2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology (HISB) Pap. 150 New York: IEEE
    [Google Scholar]
  78. 78. 
    Yates A, Goharian N. 2013. ADRTrace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites. Advances in Information Retrieval P Serdyukov, P Braslavski, SO Kuznetsov, J Kamps, S Rüger et al.816–19 Berlin: Springer-Verlag
    [Google Scholar]
  79. 79. 
    Patki A, Sarker A, Pimpalkhute P, Nikfarjam A, Ginn R et al. 2014. Mining adverse drug reaction signals from social media: going beyond extraction Paper presented at BioLINK SIG 2014 Boston, MA: July 11–12
  80. 80. 
    Chee B, Berlin R, Schatz B 2009. Measuring population health using personal health messages. AMIA Annu. Symp. Proc. 2009:92–96
    [Google Scholar]
  81. 81. 
    Yang CC, Yang H, Jiang L, Zhang M 2012. Social media mining for drug safety signal detection. Proceedings of the 2012 International Workshop on Smart Health and Wellbeing33–40 New York: Assoc. Comput. Mach.
    [Google Scholar]
  82. 82. 
    Yang M, Kiang M, Shang W 2015. Filtering big data from social media–building an early warning system for adverse drug reactions. J. Biomed. Inform. 54:230–40
    [Google Scholar]
  83. 83. 
    Wu HY, Karnik S, Subhadarshini A, Wang Z, Philips S et al. 2013. An integrated pharmacokinetics ontology and corpus for text mining. BMC Bioinform 14:35
    [Google Scholar]
  84. 84. 
    Kolchinsky A, Lourenço A, Wu H-Y, Li L, Rocha LM 2015. Extraction of pharmacokinetic evidence of drug–drug interactions from the literature. PLOS ONE 10:e0122199
    [Google Scholar]
  85. 85. 
    Zhang P, Wu H, Chiang C, Wang L, Binkheder S et al. 2018. Translational biomedical informatics and pharmacometrics approaches in the drug interactions research. CPT Pharmacocmetr. Syst. Pharmacol. 7:90–102
    [Google Scholar]
  86. 86. 
    Wu HY, Shendre A, Zhang S, Zhang P, Wang L et al. 2019. Translational knowledge discovery between drug interactions and pharmacogenetics. Clin. Pharmacol. Ther. 107:886–902
    [Google Scholar]
  87. 87. 
    Klein A, Sarker A, Rouhizadeh M, O'Connor K, Gonzalez G 2017. Detecting personal medication intake in Twitter: an annotated corpus and baseline classification system. Proceedings of the BioNLP 2017 Workshop136–42 Stroudsburg, PA: Assoc. Comput. Linguist.
    [Google Scholar]
  88. 88. 
    Alvaro N, Miyao Y, Collier N 2017. TwiMed: Twitter and Pubmed comparable corpus of drugs, diseases, symptoms, and their relations. JMIR Public Health Surveill 3:e24
    [Google Scholar]
  89. 89. 
    Blei DM, Lafferty JD. 2009. Topic models. Text Mining71–94 Boca Raton, FL: Chapman & Hall
    [Google Scholar]
  90. 90. 
    Wall ME, Rechtsteiner A, Rocha LM 2003. Singular value decomposition and principal component analysis. A Practical Approach to Microarray Data Analysis DP Berrar, W Dubitzky, M Granzow 91–109 New York: Springer
    [Google Scholar]
  91. 91. 
    Goldberg Y, Levy O. 2014. word2vec explained: deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv:1402.3722 [cs.CL]
  92. 92. 
    Jiang Z, Li L, Huang D, Jin L 2015. Training word embeddings for deep learning in biomedical text mining tasks. 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) J Huan, IM Schapranow, S Miyano, I Yoo, A Shehu et al.625–28 New York: IEEE
    [Google Scholar]
  93. 93. 
    Lavertu A, Altman RB. 2019. RedMed: extending drug lexicons for social media applications. J. Biomed. Inform. 99:103307
    [Google Scholar]
  94. 94. 
    Bermeitinger B, Hrycej T, Handschuh S 2019. Singular value decomposition and neural networks. Artificial Neural Networks and Machine Learning—ICANN 2019 IV Tetko, V Kůrková, P Karpov, F Theis 153–64 Cham, Switz.: Springer
    [Google Scholar]
  95. 95. 
    Cai C, Ke D, Xu Y, Su K 2014. Fast learning of deep neural networks via singular value decomposition. PRICAI 2014: Trends in Artificial Intelligence DN Pham, SB Park 820–26 Cham, Switz.: Springer
    [Google Scholar]
  96. 96. 
    Nikfarjam A, Sarker A, O'Connor K, Ginn R, Gonzalez G 2015. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J. Am. Med. Inform. Assoc. 22:671–81
    [Google Scholar]
  97. 97. 
    Nguyen T, Larsen ME, O'Dea B, Phung D, Venkatesh S, Christensen H 2017. Estimation of the prevalence of adverse drug reactions from social media. Int. J. Med. Inform. 102:130–37
    [Google Scholar]
  98. 98. 
    Kuhn M, Letunic I, Jensen LJ, Bork P 2016. The SIDER database of drugs and side effects. Nucleic Acids Res 44:D1075–79
    [Google Scholar]
  99. 99. 
    Yang H, Yang CC. 2015. Mining a weighted heterogeneous network extracted from healthcare-specific social media for identifying interactions between drugs. 2015 IEEE International Conference on Data Mining Workshop (ICDMW)196–203 New York: IEEE
    [Google Scholar]
  100. 100. 
    Kim SJ, Marsch LA, Hancock JT, Das AK 2017. Scaling up research on drug abuse and addiction through social media big data. J. Med. Internet Res. 19:e353
    [Google Scholar]
  101. 101. 
    West JH, Hall PC, Hanson CL, Prier K, Giraud-Carrier C et al. 2012. Temporal variability of problem drinking on Twitter. Open J. Prev. Med. 2:43–48
    [Google Scholar]
  102. 102. 
    Yakushev A, Mityagin S. 2014. Social networks mining for analysis and modeling drugs usage. Procedia Comput. Sci. 29:2462–71
    [Google Scholar]
  103. 103. 
    Shutler L, Nelson LS, Portelli I, Blachford C, Perrone J 2015. Drug use in the Twittersphere: qualitative contextual analysis of tweets about prescription drugs. J. Addict. Dis. 34:303–10
    [Google Scholar]
  104. 104. 
    Chary M, Genes N, Giraud-Carrier C, Hanson C, Nelson LS, Manini AF 2017. Epidemiology from tweets: estimating misuse of prescription opioids in the USA from social media. J. Med. Toxicol. 13:278–86
    [Google Scholar]
  105. 105. 
    Yang Z, Nguyen L, Jin F 2018. Predicting opioid relapse using social media data. arXiv:1811.12169 [cs.SI]
  106. 106. 
    van Hoof JJ, Bekkers J, van Vuuren M 2014. Son, you're smoking on Facebook! College students' disclosures on social networking sites as indicators of real-life risk behaviors. Comput. Hum. Behav. 34:249–57
    [Google Scholar]
  107. 107. 
    Daniulaityte R, Carlson R, Brigham G, Cameron D, Sheth A 2015. "Sub is a weird drug:'' a Web-based study of lay attitudes about use of buprenorphine to self treat opioid withdrawal symptoms. Am. J. Addict. 24:403–9
    [Google Scholar]
  108. 108. 
    Brantley SJ, Argikar AA, Lin YS, Nagar S, Paine MF 2014. Herb–drug interactions: challenges and opportunities for improved predictions. Drug Metab. Dispos. 42:301–17
    [Google Scholar]
  109. 109. 
    Blendon RJ, DesRoches CM, Benson JM, Brodie M, Altman DE 2001. Americans' views on the use and regulation of dietary supplements. Arch. Intern. Med. 161:805–10
    [Google Scholar]
  110. 110. 
    Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W et al. 2012. Anticipating critical transitions. Science 338:344–48
    [Google Scholar]
  111. 111. 
    van de Leemput IA, Wichers M, Cramer AOJ, Borsboom D, Tuerlinckx F et al. 2014. Critical slowing down as early warning for the onset and termination of depression. PNAS 111:87–92
    [Google Scholar]
  112. 112. 
    Pak A, Paroubek P. 2010. Twitter as a corpus for sentiment analysis and opinion mining. Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)1320–26 Paris: Eur. Lang. Resour. Assoc.
    [Google Scholar]
  113. 113. 
    Zimbra D, Abbasi A, Zeng D, Chen H 2018. The state-of-the-art in Twitter sentiment analysis: a review and benchmark evaluation. ACM Trans. Manag. Inform. Syst. 9:5
    [Google Scholar]
  114. 114. 
    Reece AG, Reagan AJ, Lix KLM, Dodds PS, Danforth CM, Langer EJ 2017. Forecasting the onset and course of mental illness with Twitter data. Sci. Rep. 7:13006
    [Google Scholar]
  115. 115. 
    Bradley MM, Lang PJ. 1999. Affective Norms for English Words (ANEW): instruction manual and affective ratings Instr. Man., Natl. Inst. Mental Health Cent. Stud. Emot. Atten., Univ. Florida Gainesville, FL:
  116. 116. 
    ten Thij M, Bollen J, Rocha LM 2019. Detecting eigenmoods in individual human emotion. Book of Abstracts of the 8th International Conference on Complex Networks and their Applications H Cherifi, S Gaito, J Gonçalves-Sá, J Fernando Mendes, E Moro et al.166–68 Lisbon, Port.: Int. Conf. Complex Netw. Appl.
    [Google Scholar]
  117. 117. 
    Pennebaker JW, Boyd RL, Jordan K, Blackburn K 2015. The development and psychometric properties of LIWC2015 Psychom. Man., Dep. Psych., Univ. Texas Austin:
  118. 118. 
    Liu B. 2012. Sentiment Analysis and Opinion Mining Williston, VT: Morgan & Claypool
  119. 119. 
    Pang B, Lee L. 2008. Opinion mining and sentiment analysis. Found. Trends Inform. Retr. 2:1–135
    [Google Scholar]
  120. 120. 
    Nasukawa T, Yi J. 2003. Sentiment analysis: capturing favorability using natural language processing. K-CAP '03: Proceedings of the 2nd International Conference on Knowledge Capture70–77 New York: Assoc. Comput. Mach.
    [Google Scholar]
  121. 121. 
    Dodds PS, Danforth CM. 2010. Measuring the happiness of large-scale written expression: songs, blogs, and presidents. J. Happiness Stud. 11:441–56
    [Google Scholar]
  122. 122. 
    Esuli A, Sebastiani F. 2006. SENTIWORDNET: a publicly available lexical resource for opinion mining. Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC'06)417–22 Paris: Eur. Lang. Resour. Assoc.
    [Google Scholar]
  123. 123. 
    Dodds PS, Clark EM, Desu S, Frank MR, Reagan AJ et al. 2015. Human language reveals a universal positivity bias. PNAS 112:2389–94
    [Google Scholar]
  124. 124. 
    Dodds PS, Harris KD, Kloumann IM, Bliss CA, Danforth CM 2011. Temporal patterns of happiness and information in a global social network: hedonometrics and Twitter. PLOS ONE 6:e26752
    [Google Scholar]
  125. 125. 
    Golder SA, Macy MW. 2011. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333:1878–81
    [Google Scholar]
  126. 126. 
    Bollen J, Pepe A, Mao H 2011. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM 2011)450–53 Menlo Park, CA: Assoc. Adv. Artif. Intell.
    [Google Scholar]
  127. 127. 
    Stone PJ, Bales RF, Namenwirth JZ, Ogilvie DM 1962. The General Inquirer: a computer system for content analysis and retrieval based on the sentence as a unit of information. Behav. Sci. 7:484–98
    [Google Scholar]
  128. 128. 
    Warriner AB, Kuperman V, Brysbaert M 2013. Norms of valence, arousal, and dominance for 13,915 English lemmas. Behav. Res. Methods 45:1191–207
    [Google Scholar]
  129. 129. 
    Hutto C, Gilbert E. 2014. VADER: a parsimonious rule-based model for sentiment analysis of social media text. Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media216–25 Menlo Park, CA: Assoc. Adv. Artif. Intell.
    [Google Scholar]
  130. 130. 
    Wilson T, Hoffmann P, Somasundaran S, Kessler J, Wiebe J et al. 2005. OpinionFinder: a system for subjectivity analysis. Proceedings of HLT/EMNLP 2005 on Interactive Demonstrations34–35 Stroudsburg, PA: Assoc. Comput. Linguist.
    [Google Scholar]
  131. 131. 
    Ribeiro FN, Araújo M, Gonçalves P, Gonçalves MA, Benevenuto F 2016. SentiBench: a benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Sci 5:23
    [Google Scholar]
  132. 132. 
    Reagan AJ, Danforth CM, Tivnan B, Williams JR, Dodds PS 2017. Benchmarking sentiment analysis methods for large-scale texts: a case for using continuum-scored words and word shift graphs. EPJ Data Sci 6:28
    [Google Scholar]
  133. 133. 
    Douglas M, McNair ML, Droppleman LF. 1971. POMS manual for the Profile of Mood States Instr. Man., Educ. Indust. Test. Serv. San Diego, CA:
  134. 134. 
    Tausczik YR, Pennebaker JW. 2010. The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29:24–54
    [Google Scholar]
  135. 135. 
    Miller GA. 1995. WordNet: a lexical database for English. Commun. ACM 38:39–41
    [Google Scholar]
  136. 136. 
    Moilanen K, Pulman S. 2007. Sentiment composition. Proceedings of the Fourth International Conference on Recent Advances in Natural Language Processing (RANLP 2007)378–82 Stroudburg, PA: Assoc. Comput. Linguist.
    [Google Scholar]
  137. 137. 
    Saif H, He Y, Alani H 2012. Semantic sentiment analysis of Twitter. Proceedings of the 11th International Semantic Web Conference ISWC508–24 Berlin: Springer
    [Google Scholar]
  138. 138. 
    Hannak A, Anderson E, Barrett LF, Lehmann S, Mislove A, Riedewald M 2012. Tweetin' in the rain: exploring societal-scale effects of weather on mood. Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media479–82 Menlo Park, CA: Assoc. Adv. Artif. Intell.
    [Google Scholar]
  139. 139. 
    Robinson RL, Navea R, Ickes W 2013. Predicting final course performance from students' written self-introductions: a LIWC analysis. J. Lang. Soc. Psychol. 32:469–79
    [Google Scholar]
  140. 140. 
    Nadeau D, Sabourin C, Koninck JD, Matwin S, Turney PD 2006. Automatic dream sentiment analysis Poster presented at Workshop on Computational Aesthetics at the Twenty-First National Conference on Artificial Intelligence Boston, MA: July 16
  141. 141. 
    Pestian JP, Matykiewicz P, Linn-Gust M, South B, Uzuner O et al. 2012. Sentiment analysis of suicide notes: a shared task. Biomed. Inform. Insights 5:3–16
    [Google Scholar]
  142. 142. 
    Back MD, Küfner AC, Egloff B 2011. “Automatic or the people?” Anger on September 11, 2001, and lessons learned for the analysis of large digital data sets. Psychol. Sci. 22:837–38
    [Google Scholar]
  143. 143. 
    Kryvasheyeu Y, Chen H, Moro E, Hentenryck PV, Cebrian M 2015. Performance of social network sensors during hurricane sandy. PLOS ONE 10:e0117288
    [Google Scholar]
  144. 144. 
    Dzogang F, Lightman S, Cristianini N 2017. Circadian mood variations in Twitter content. Brain Neurosci. Adv. https://doi.org/10.1177/2398212817744501
    [Crossref] [Google Scholar]
  145. 145. 
    López A, Detz A, Ratanawongsa N, Sarkar U 2012. What patients say about their doctors online: a qualitative content analysis. J. Gen. Intern. Med. 27:685–92
    [Google Scholar]
  146. 146. 
    Segal J, Sacopulos M, Sheets V, Thurston I, Brooks K, Puccia R 2012. Online doctor reviews: Do they track surgeon volume, a proxy for quality of care. ? J. Med. Internet Res. 14:e50
    [Google Scholar]
  147. 147. 
    Cavazos-Rehg PA, Krauss M, Fisher SL, Salyer P, Grucza RA, Bierut LJ 2015. Twitter chatter about marijuana. J. Adolesc. Health 56:139–45
    [Google Scholar]
  148. 148. 
    Thompson L, Rivara FP, Whitehill JM 2015. Prevalence of marijuana-related traffic on Twitter, 2012–2013: a content analysis. Cyberpsychol. Behav. Soc. Netw. 18:311–19
    [Google Scholar]
  149. 149. 
    Coppersmith G, Dredze M, Harman C 2014. Quantifying mental health signals in Twitter. Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality51–60 Stroudsburg, PA: Assoc. Comput. Linguist.
    [Google Scholar]
  150. 150. 
    Wang Y, Weber I, Mitra P 2016. Quantified self meets social media: sharing of weight updates on Twitter. Proceedings of the 6th International Conference on Digital Health Conference (DH '16)93–97 New York: Assoc. Comput. Mach.
    [Google Scholar]
  151. 151. 
    Guntuku SC, Yaden DB, Kern ML, Ungar LH, Eichstaedt JC 2017. Detecting depression and mental illness on social media: an integrative review. Curr. Opin. Behav. Sci. 18:43–49
    [Google Scholar]
  152. 152. 
    Chen J, Chen H, Wu Z, Hu D, Pan JZ 2017. Forecasting smog-related health hazard based on social media and physical sensor. Inform. Syst. 64:281–91
    [Google Scholar]
  153. 153. 
    Oh O, Kwon K, Rao H 2010. An exploration of social media in extreme events: rumor theory and Twitter during the Haiti earthquake 2010. Proceedings of the 31st International Conference on Information Systems (ICIS 2010) Pap. 231. https://aisel.aisnet.org/icis2010_submissions/231/
  154. 154. 
    McCullom R. 2018. A murdered teen, two million tweets and an experiment to fight gun violence. Nature 561:20–22
    [Google Scholar]
  155. 155. 
    Lo AS, Esser MJ, Gordon KE 2010. Youtube: a gauge of public perception and awareness surrounding epilepsy. Epilepsy Behav 17:541–45
    [Google Scholar]
  156. 156. 
    Betton V, Borschmann R, Docherty M, Coleman S, Brown M, Henderson C 2015. The role of social media in reducing stigma and discrimination. Br. J. Psychiatry 206:443–44
    [Google Scholar]
  157. 157. 
    Ladea M, Bran M, Claudiu SM 2016. Online destigmatization of schizophrenia: a Romanian experience. Eur. Psychiatry 33:S276
    [Google Scholar]
  158. 158. 
    Lydecker JA, Cotter EW, Palmberg AA, Simpson C, Kwitowski M et al. 2016. Does this tweet make me look fat? A content analysis of weight stigma on Twitter. Eat. Weight Disord. 21:229–35
    [Google Scholar]
  159. 159. 
    Witzel CT, Guise A, Nutland W, Bourne A 2016. It starts with me: privacy concerns and stigma in the evaluation of a Facebook health promotion intervention. Sex. Health 13:228–33
    [Google Scholar]
  160. 160. 
    Pacheco DF, Pinheiro D, Cadeiras M, Menezes R 2017. Characterizing organ donation awareness from social media. 2017 IEEE 33rd International Conference on Data Engineering (ICDE)1541–48 New York: IEEE
    [Google Scholar]
  161. 161. 
    Engel J. 2003. Bringing epilepsy out of the shadows. Neurology 60:1412–12
    [Google Scholar]
  162. 162. 
    Kerson TS. 2012. Epilepsy postings on YouTube: exercising individuals' and organizations' right to appear. Soc. Work Health Care 51:927–43
    [Google Scholar]
  163. 163. 
    Fiest KM, Birbeck GL, Jacoby A, Jette N 2014. Stigma in epilepsy. Curr. Neurol. Neurosci. Rep. 14:444
    [Google Scholar]
  164. 164. 
    Sartorius N, Schulze H. 2005. Reducing the Stigma of Mental Illness: A Report from a Global Programme of the World Psychiatric Association Cambridge, UK: Cambridge Univ. Press
  165. 165. 
    Patel R, Chang T, Greysen SR, Chopra V 2015. Social media use in chronic disease: a systematic review and novel taxonomy. Am. J. Med. 128:1335–50
    [Google Scholar]
  166. 166. 
    McNeil K, Brna P, Gordon K 2012. Epilepsy in the Twitter era: a need to re-tweet the way we think about seizures. Epilepsy Behav 23:127–30
    [Google Scholar]
  167. 167. 
    Payton FC, Kvasny L. 2016. Online HIV awareness and technology affordance benefits for black female collegians—maybe not: the case of stigma. J. Inform. Health Biomed. 23:1121–26
    [Google Scholar]
  168. 168. 
    Silenzio VM, Duberstein PR, Tang W, Lu N, Tu X, Homan CM 2009. Connecting the invisible dots: reaching lesbian, gay, and bisexual adolescents and young adults at risk for suicide through online social networks. Soc. Sci. Med. 69:469–74
    [Google Scholar]
  169. 169. 
    Lupton D. 2016. The use and value of digital media for information about pregnancy and early motherhood: a focus group study. BMC Pregnancy Childbirth 16:1171
    [Google Scholar]
  170. 170. 
    Harpel T. 2018. Pregnant women sharing pregnancy-related information on Facebook: Web-based survey study. J. Med. Internet Res. 20:e115
    [Google Scholar]
  171. 171. 
    Bartholomew MK, Schoppe-Sullivan SJ, Glassman M, Dush CMK, Sullivan JM 2012. New parents' Facebook use at the transition to parenthood. Family Relations 61:455–69
    [Google Scholar]
  172. 172. 
    Llorente A, Garcia-Herranz M, Cebrian M, Moro E 2015. Social media fingerprints of unemployment. PLOS ONE 10:e0128692
    [Google Scholar]
  173. 173. 
    Ramagopalan SV, Simpson A, Sammon C 2020. Can real-world data really replace randomised clinical trials. ? BMC Med 18:13
    [Google Scholar]
  174. 174. 
    Pfeffer J, Mayer K, Morstatter F 2018. Tampering with Twitter's sample API. EPJ Data Sci 7:50
    [Google Scholar]
  175. 175. 
    Ruths D, Pfeffer J. 2014. Social media for large studies of behavior. Science 346:1063–64
    [Google Scholar]
  176. 176. 
    Jensen EA. 2017. Putting the methodological brakes on claims to measure national happiness through Twitter: methodological limitations in social media analytics. PLOS ONE 12:e0180080
    [Google Scholar]
  177. 177. 
    Shaban-Nejad A, Michalowski M, Buckeridge DL 2018. Health intelligence: how artificial intelligence transforms population and personalized health. NPJ Digit. Med. 1:53
    [Google Scholar]
  178. 178. 
    Perrin A, Anderson M. 2019. Share of U.S. adults using social media, including Facebook, is mostly unchanged since 2018. Fact Tank Pew Res. Cent., April 10. https://www.pewresearch.org/fact-tank/2019/04/10/share-of-u-s-adults-using-social-media-including-facebook-is-mostly-unchanged-since-2018/
    [Google Scholar]
  179. 179. 
    Lenormand M, Picornell M, Cantú-Ros OG, Tugores A, Louail T et al. 2014. Cross-checking different sources of mobility information. PLOS ONE 9:e105184
    [Google Scholar]
  180. 180. 
    Prieto VM, Matos S, Álvarez M, Cacheda F, Oliveira JL 2014. Twitter: a good place to detect health conditions. PLOS ONE 9:e86191
    [Google Scholar]
  181. 181. 
    Luckerson V. 2015. Here's how Facebook's news feed actually works. Time July 9. https://time.com/collection-post/3950525/facebook-news-feed-algorithm/
    [Google Scholar]
  182. 182. 
    Bagrow JP, Liu X, Mitchell L 2019. Information flow reveals prediction limits in online social activity. Nat. Hum. Behav. 3:122–28
    [Google Scholar]
  183. 183. 
    Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L 2009. Detecting influenza epidemics using search engine query data. Nature 457:1012–14
    [Google Scholar]
  184. 184. 
    Yang CC, Yang H, Jiang L, Zhang M 2012. Social media mining for drug safety signal detection. Proceedings of the 2012 International Workshop on Smart Health and Wellbeing33–40 New York: Assoc. Comput. Mach.
    [Google Scholar]
  185. 185. 
    Rocha LM, Börner K, Miller WR 2019. myAURA: personalized web service or epilepsy management Grant Announc., Grantome Database, accessed Nov. 29. https://hsrproject.nlm.nih.gov/view_hsrproj_record/20191123
  186. 186. 
    Miller WR, Gesselman AN, Garcia JR, Groves D, Buelow JM 2017. Epilepsy-related romantic and sexual relationship problems and concerns: indications from internet message boards. Epilepsy Behav 74:149–53
    [Google Scholar]
  187. 187. 
    CDC (Cent. Dis. Control Prev.) 2019. About chronic diseases Fact Sheet, Natl. Cent. Chron. Dis. Prev. Health Promot. Atlanta, GA: accessed Nov. 29. https://www.cdc.gov/chronicdisease/about
  188. 188. 
    Grady PA, Gough LL. 2014. Self-management: a comprehensive approach to management of chronic conditions. Am. J. Public Health 104:e25–31
    [Google Scholar]
  189. 189. 
    Cassidy JJ, Bernasek SM, Bakker R, Giri R, Peláez N et al. 2019. Repressive gene regulation synchronizes development with cellular metabolism. Cell 178:980–92
    [Google Scholar]
  190. 190. 
    Dolan RJ. 2002. Emotion, cognition, and behavior. Science 298:1191–94
    [Google Scholar]
  191. 191. 
    Nofsinger JR. 2005. Social mood and financial economics. J. Behav. Finance 6:144–60
    [Google Scholar]
  192. 192. 
    Ruiz R. 2016. Why scientists think your social media posts can help prevent suicide. Mashable June 26. https://mashable.com/2016/06/26/suicide-prevention-social-media/
    [Google Scholar]
  193. 193. 
    Margolis R, Derr L, Dunn M, Huerta M, Larkin J et al. 2014. The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J. Am. Med. Inform. Assoc. 21:957–58
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-030320-040844
Loading
/content/journals/10.1146/annurev-biodatasci-030320-040844
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error