1932

Abstract

As primary carriers of epigenetic information and gatekeepers of genomic DNA, nucleosomes are essential for proper growth and development of all eukaryotic cells. Although they are intrinsically dynamic, nucleosomes are actively reorganized by ATP-dependent chromatin remodelers. Chromatin remodelers contain helicase-like ATPase motor domains that can translocate along DNA, and a long-standing question in the field is how this activity is used to reposition or slide nucleosomes. In addition to ratcheting along DNA like their helicase ancestors, remodeler ATPases appear to dictate specific alternating geometries of the DNA duplex, providing an unexpected means for moving DNA past the histone core. Emerging evidence supports twist-based mechanisms for ATP-driven repositioning of nucleosomes along DNA. In this review, we discuss core experimental findings and ideas that have shaped the view of how nucleosome sliding may be achieved.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-082520-080201
2021-05-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-082520-080201.html?itemId=/content/journals/10.1146/annurev-biophys-082520-080201&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aalfs JD, Narlikar GJ, Kingston RE. 2001. Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. J. Biol. Chem 276:34270–78
    [Google Scholar]
  2. 2. 
    Alfert A, Moreno N, Kerl K. 2019. The BAF complex in development and disease. Epigenet. Chromatin 12:19
    [Google Scholar]
  3. 3. 
    Allis CD, Jenuwein T. 2016. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17:487–500
    [Google Scholar]
  4. 4. 
    Aoyagi S, Hayes JJ. 2002. hSWI/SNF-catalyzed nucleosome sliding does not occur solely via a twist-diffusion mechanism. Mol. Cell. Biol. 22:7484–90
    [Google Scholar]
  5. 5. 
    Aoyagi S, Wade PA, Hayes JJ. 2003. Nucleosome sliding induced by the xMi-2 complex does not occur exclusively via a simple twist-diffusion mechanism. J. Biol. Chem. 278:30562–68
    [Google Scholar]
  6. 6. 
    Armache JP, Gamarra N, Johnson SL, Leonard JD, Wu S et al. 2019. Cryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control through the nucleosome. eLife 8:e46057
    [Google Scholar]
  7. 7. 
    Ayala R, Willhoft O, Aramayo RJ, Wilkinson M, McCormack EA et al. 2018. Structure and regulation of the human INO80-nucleosome complex. Nature 556:391–95
    [Google Scholar]
  8. 8. 
    Bartholomew B. 2014. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu. Rev. Biochem. 83:671–96
    [Google Scholar]
  9. 9. 
    Bazett-Jones DP, Côté J, Landel CC, Peterson CL, Workman JL. 1999. The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains. Mol. Cell. Biol. 19:1470–78
    [Google Scholar]
  10. 10. 
    Beard P. 1978. Mobility of histones on the chromosome of simian virus 40. Cell 15:955–67
    [Google Scholar]
  11. 11. 
    Becker PB, Hörz W. 2002. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71:247–73
    [Google Scholar]
  12. 12. 
    Becker PB, Workman JL. 2013. Nucleosome remodeling and epigenetics.. Cold Spring Harb. Perspect. Biol. 5:a017905
    [Google Scholar]
  13. 13. 
    Bilokapic S, Strauss M, Halic M. 2018. Histone octamer rearranges to adapt to DNA unwrapping. Nat. Struct. Mol. Biol. 25:101–8
    [Google Scholar]
  14. 14. 
    Bilokapic S, Strauss M, Halic M. 2018. Structural rearrangements of the histone octamer translocate DNA. Nat. Commun. 9:1330
    [Google Scholar]
  15. 15. 
    Blosser TR, Yang JG, Stone MD, Narlikar GJ, Zhuang X. 2009. Dynamics of nucleosome remodelling by individual ACF complexes. Nature 462:1022–27
    [Google Scholar]
  16. 16. 
    Bowman GD. 2019. Uncovering a new step in sliding nucleosomes. Trends Biochem. Sci. 44:643–45
    [Google Scholar]
  17. 17. 
    Bowman GD, Deindl S. 2019. Remodeling the genome with DNA twists. Science 366:35–36
    [Google Scholar]
  18. 18. 
    Brahma S, Udugama MI, Kim J, Hada A, Bhardwaj SK et al. 2017. INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers. Nat. Commun. 8:15616
    [Google Scholar]
  19. 19. 
    Brandani GB, Niina T, Tan C, Takada S 2018. DNA sliding in nucleosomes via twist defect propagation revealed by molecular simulations. Nucleic Acids Res 46:2788–801
    [Google Scholar]
  20. 20. 
    Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L et al. 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87:1249–60
    [Google Scholar]
  21. 21. 
    Chittori S, Hong J, Bai Y, Subramaniam S 2019. Structure of the primed state of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome. Nucleic Acids Res 47:9400–9
    [Google Scholar]
  22. 22. 
    Cho I, Tsai PF, Lake RJ, Basheer A, Fan HY. 2013. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair. PLOS Genet 9:e1003407
    [Google Scholar]
  23. 23. 
    Chua EY, Vasudevan D, Davey GE, Wu B, Davey CA 2012. The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res 40:6338–52
    [Google Scholar]
  24. 24. 
    Citterio E, Van Den Boom V, Schnitzler G, Kanaar R, Bonte E et al. 2000. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 20:7643–53
    [Google Scholar]
  25. 25. 
    Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78:273–304
    [Google Scholar]
  26. 26. 
    Clapier CR, Iwasa J, Cairns BR, Peterson CL. 2017. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18:407–22
    [Google Scholar]
  27. 27. 
    Côté J, Quinn J, Workman JL, Peterson CL. 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:53–60
    [Google Scholar]
  28. 28. 
    Crickard JB, Greene EC. 2019. Helicase mechanisms during homologous recombination in Saccharomyces cerevisiae. Annu. Rev. Biophys. 48:255–73
    [Google Scholar]
  29. 29. 
    Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. 2002. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319:1097–113
    [Google Scholar]
  30. 30. 
    Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N et al. 2010. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol. Cell 38:590–602
    [Google Scholar]
  31. 31. 
    Deindl S, Hwang WL, Hota SK, Blosser TR, Prasad P et al. 2013. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152:442–52
    [Google Scholar]
  32. 32. 
    Dürr H, Korner C, Muller M, Hickmann V, Hopfner KP. 2005. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121:363–73
    [Google Scholar]
  33. 33. 
    Edayathumangalam RS, Weyermann P, Dervan PB, Gottesfeld JM, Luger K. 2005. Nucleosomes in solution exist as a mixture of twist-defect states. J. Mol. Biol. 345:103–14
    [Google Scholar]
  34. 34. 
    Eisen JA, Sweder KS, Hanawalt PC 1995. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23:2715–23
    [Google Scholar]
  35. 35. 
    Engeholm M, de Jager M, Flaus A, Brenk R, van Noort J, Owen-Hughes T. 2009. Nucleosomes can invade DNA territories occupied by their neighbors. Nat. Struct. Mol. Biol. 16:151–58
    [Google Scholar]
  36. 36. 
    Eustermann S, Schall K, Kostrewa D, Lakomek K, Strauss M et al. 2018. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature 556:386–90
    [Google Scholar]
  37. 37. 
    Fan HY, He X, Kingston RE, Narlikar GJ. 2003. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell 11:1311–22
    [Google Scholar]
  38. 38. 
    Farnung L, Ochmann M, Cramer P. 2020. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. eLife 9:e56178
    [Google Scholar]
  39. 39. 
    Farnung L, Vos SM, Wigge C, Cramer P. 2017. Nucleosome-Chd1 structure and implications for chromatin remodelling. Nature 550:539–42
    [Google Scholar]
  40. 40. 
    Flaus A, Martin DM, Barton GJ, Owen-Hughes T 2006. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34:2887–905
    [Google Scholar]
  41. 41. 
    Flaus A, Owen-Hughes T. 2003. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol. 23:7767–79
    [Google Scholar]
  42. 42. 
    Flaus A, Richmond TJ. 1998. Positioning and stability of nucleosomes on MMTV 3′LTR sequences. J. Mol. Biol 275:427–41
    [Google Scholar]
  43. 43. 
    Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M. 2011. Open chromatin in pluripotency and reprogramming. Nat. Rev. Mol. Cell Biol. 12:36–47
    [Google Scholar]
  44. 44. 
    Gavin I, Horn PJ, Peterson CL. 2001. SWI/SNF chromatin remodeling requires changes in DNA topology. Mol. Cell 7:97–104
    [Google Scholar]
  45. 45. 
    Giaimo BD, Ferrante F, Herchenröther A, Hake SB, Borggrefe T. 2019. The histone variant H2A.Z in gene regulation. Epigenet. Chromatin 12:37
    [Google Scholar]
  46. 46. 
    Gorbalenya AE, Koonin EV. 1993. Helicases: amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol. 3:419–29
    [Google Scholar]
  47. 47. 
    Gottesfeld JM, Belitsky JM, Melander C, Dervan PB, Luger K. 2002. Blocking transcription through a nucleosome with synthetic DNA ligands. J. Mol. Biol. 321:249–63
    [Google Scholar]
  48. 48. 
    Gu M, Rice CM. 2010. Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. PNAS 107:521–28
    [Google Scholar]
  49. 49. 
    Hall MA, Shundrovsky A, Bai L, Fulbright RM, Lis JT, Wang MD. 2009. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat. Struct. Mol. Biol. 16:124–29
    [Google Scholar]
  50. 50. 
    Han Y, Reyes AA, Malik S, He Y 2020. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature 579:452–55
    [Google Scholar]
  51. 51. 
    Harada BT, Hwang WL, Deindl S, Chatterjee N, Bartholomew B, Zhuang X. 2016. Stepwise nucleosome translocation by RSC remodeling complexes. eLife 5:e10051
    [Google Scholar]
  52. 52. 
    Hargreaves DC, Crabtree GR 2011. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420
    [Google Scholar]
  53. 53. 
    Harp JM, Hanson BL, Timm DE, Bunick GJ. 2000. Asymmetries in the nucleosome core particle at 2.5 Å resolution. Acta Crystallogr. D 56:1513–34
    [Google Scholar]
  54. 54. 
    Hauk G, Bowman GD. 2011. Structural insights into regulation and action of SWI2/SNF2 ATPases. Curr. Opin. Struct. Biol. 21:719–27
    [Google Scholar]
  55. 55. 
    Havas K, Flaus A, Phelan M, Kingston R, Wade PA et al. 2000. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103:1133–42
    [Google Scholar]
  56. 56. 
    Hwang WL, Deindl S, Harada BT, Zhuang X. 2014. Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA. Nature 512:213–17
    [Google Scholar]
  57. 57. 
    Imbalzano AN, Kwon H, Green MR, Kingston RE. 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:481–85
    [Google Scholar]
  58. 58. 
    Ito T, Levenstein ME, Fyodorov DV, Kutach AK, Kobayashi R, Kadonaga JT 1999. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev 13:1529–39
    [Google Scholar]
  59. 59. 
    Jaskelioff M, Gavin IM, Peterson CL, Logie C. 2000. SWI-SNF-mediated nucleosome remodeling: role of histone octamer mobility in the persistence of the remodeled state. Mol. Cell. Biol. 20:3058–68
    [Google Scholar]
  60. 60. 
    Kadoch C, Crabtree GR. 2015. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1:e1500447
    [Google Scholar]
  61. 61. 
    Kassabov SR, Zhang B, Persinger J, Bartholomew B. 2003. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11:391–403
    [Google Scholar]
  62. 62. 
    Kim S, Brostromer E, Xing D, Jin J, Chong S et al. 2013. Probing allostery through DNA. Science 339:816–19
    [Google Scholar]
  63. 63. 
    Kirk J, Lee JY, Lee Y, Shin S, Lee E et al. 2018. Yeast Chd1p remodels nucleosomes with unique DNA unwrapping and translocation dynamics. bioRxiv 376806. https://doi.org/10.1101/376806
    [Crossref] [Google Scholar]
  64. 64. 
    Kornberg RD, Lorch Y. 1995. Interplay between chromatin structure and transcription. Curr. Opin. Cell Biol. 7:371–75
    [Google Scholar]
  65. 65. 
    Kornberg RD, Lorch Y 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–94
    [Google Scholar]
  66. 66. 
    Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR 1994. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370:477–81
    [Google Scholar]
  67. 67. 
    Längst G, Becker PB. 2001. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8:1085–92
    [Google Scholar]
  68. 68. 
    Längst G, Becker PB. 2004. Nucleosome remodeling: one mechanism, many phenomena. ? Biochim. Biophys. Acta 1677:58–63
    [Google Scholar]
  69. 69. 
    Lee JY, Yang W 2006. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell 127:1349–60
    [Google Scholar]
  70. 70. 
    Levendosky RF, Bowman GD. 2019. Asymmetry between the two acidic patches dictates the direction of nucleosome sliding by the ISWI chromatin remodeler. eLife 8:e45472
    [Google Scholar]
  71. 71. 
    Li M, Xia X, Tian Y, Jia Q, Liu X et al. 2019. Mechanism of DNA translocation underlying chromatin remodelling by Snf2. Nature 567:409–13
    [Google Scholar]
  72. 72. 
    Li W, Mills AA. 2014. Architects of the genome: CHD dysfunction in cancer, developmental disorders and neurological syndromes. Epigenomics 6:381–95
    [Google Scholar]
  73. 73. 
    Lia G, Praly E, Ferreira H, Stockdale C, Tse-Dinh YC et al. 2006. Direct observation of DNA distortion by the RSC complex. Mol. Cell 21:417–25
    [Google Scholar]
  74. 74. 
    Linder P, Jankowsky E. 2011. From unwinding to clamping—the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12:505–16
    [Google Scholar]
  75. 75. 
    Liu X, Li M, Xia X, Li X, Chen Z. 2017. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 544:440–45
    [Google Scholar]
  76. 76. 
    Lorch Y, Cairns BR, Zhang M, Kornberg RD. 1998. Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Cell 94:29–34
    [Google Scholar]
  77. 77. 
    Lorch Y, Davis B, Kornberg RD. 2005. Chromatin remodeling by DNA bending, not twisting. PNAS 102:1329–32
    [Google Scholar]
  78. 78. 
    Lowary PT, Widom J. 1998. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276:19–42
    [Google Scholar]
  79. 79. 
    Ludwigsen J, Klinker H, Mueller-Planitz F 2013. No need for a power stroke in ISWI-mediated nucleosome sliding. EMBO Rep 14:1092–97
    [Google Scholar]
  80. 80. 
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–60
    [Google Scholar]
  81. 81. 
    Makde RD, England JR, Yennawar HP, Tan S 2010. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467:562–66
    [Google Scholar]
  82. 82. 
    McKnight JN, Jenkins KR, Nodelman IM, Escobar T, Bowman GD. 2011. Extranucleosomal DNA binding directs nucleosome sliding by Chd1.. Mol. Cell. Biol. 31:4746–59
    [Google Scholar]
  83. 83. 
    Meersseman G, Pennings S, Bradbury EM. 1992. Mobile nucleosomes—a general behavior. EMBO J 11:2951–59
    [Google Scholar]
  84. 84. 
    Mills AA. 2017. The chromodomain helicase DNA-binding chromatin remodelers: family traits that protect from and promote cancer. Cold Spring Harb. Perspect. Med. 7:a026450
    [Google Scholar]
  85. 85. 
    Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C. 2004. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–48
    [Google Scholar]
  86. 86. 
    Narlikar GJ, Phelan ML, Kingston RE. 2001. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8:1219–30
    [Google Scholar]
  87. 87. 
    Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. 2013. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:490–503
    [Google Scholar]
  88. 88. 
    Ngo TT, Zhang Q, Zhou R, Yodh JG, Ha T. 2015. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160:1135–44
    [Google Scholar]
  89. 89. 
    Nodelman IM, Bowman GD 2013. Nucleosome sliding by Chd1 does not require rigid coupling between DNA-binding and ATPase domains. EMBO Rep 14:1098–103
    [Google Scholar]
  90. 90. 
    Ong MS, Richmond TJ, Davey CA. 2007. DNA stretching and extreme kinking in the nucleosome core. J. Mol. Biol. 368:1067–74
    [Google Scholar]
  91. 91. 
    Owen-Hughes T, Utley RT, Côté J, Peterson CL, Workman JL. 1996. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273:513–16
    [Google Scholar]
  92. 92. 
    Patel A, Chakravarthy S, Morrone S, Nodelman IM, McKnight JN, Bowman GD 2013. Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler. Nucleic Acids Res 41:1637–48
    [Google Scholar]
  93. 93. 
    Pazin MJ, Kamakaka RT, Kadonaga JT. 1994. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266:2007–11
    [Google Scholar]
  94. 94. 
    Pennings S, Meersseman G, Bradbury EM. 1991. Mobility of positioned nucleosomes on 5 S rDNA. J. Mol. Biol. 220:101–10
    [Google Scholar]
  95. 95. 
    Peterson CL, Herskowitz I. 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–83
    [Google Scholar]
  96. 96. 
    Qiu Y, Levendosky RF, Chakravarthy S, Patel A, Bowman GD, Myong S. 2017. The Chd1 chromatin remodeler shifts nucleosomal DNA bidirectionally as a monomer. Mol. Cell 6876–88.e6
    [Google Scholar]
  97. 97. 
    Ranjan A, Wang F, Mizuguchi G, Wei D, Huang Y, Wu C 2015. H2A histone-fold and DNA elements in nucleosome activate SWR1-mediated H2A.Z replacement in budding yeast. eLife 4:e06845
    [Google Scholar]
  98. 98. 
    Richmond TJ, Davey CA. 2003. The structure of DNA in the nucleosome core. Nature 423:145–50
    [Google Scholar]
  99. 99. 
    Sabantsev A, Levendosky RF, Zhuang X, Bowman GD, Deindl S. 2019. Direct observation of coordinated DNA movements on the nucleosome during chromatin remodelling. Nat. Commun. 10:1720
    [Google Scholar]
  100. 100. 
    Saha A, Wittmeyer J, Cairns BR 2002. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev 16:2120–34
    [Google Scholar]
  101. 101. 
    Saha A, Wittmeyer J, Cairns BR. 2005. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat. Struct. Mol. Biol. 12:747–55
    [Google Scholar]
  102. 102. 
    Saikrishnan K, Powell B, Cook NJ, Webb MR, Wigley DB. 2009. Mechanistic basis of 5′-3′ translocation in SF1B helicases. Cell 137:849–59
    [Google Scholar]
  103. 103. 
    Schiessel H, Widom J, Bruinsma RF, Gelbart WM. 2001. Polymer reptation and nucleosome repositioning. Phys. Rev. Lett. 86:4414–17
    [Google Scholar]
  104. 104. 
    Schwanbeck R, Xiao H, Wu C 2004. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279:39933–41
    [Google Scholar]
  105. 105. 
    Sharma A, Jenkins KR, Héroux A, Bowman GD. 2011. Crystal structure of the chromodomain helicase DNA-binding protein 1 (Chd1) DNA-binding domain in complex with DNA. J. Biol. Chem. 286:42099–104
    [Google Scholar]
  106. 106. 
    Singleton MR, Dillingham MS, Gaudier M, Kowalczykowski SC, Wigley DB 2004. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432:187–93
    [Google Scholar]
  107. 107. 
    Singleton MR, Dillingham MS, Wigley DB. 2007. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76:23–50
    [Google Scholar]
  108. 108. 
    Sinha KK, Gross JD, Narlikar GJ. 2017. Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler. Science 355:eaaa3761
    [Google Scholar]
  109. 109. 
    Sirinakis G, Clapier CR, Gao Y, Viswanathan R, Cairns BR, Zhang Y. 2011. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J 30:2364–72
    [Google Scholar]
  110. 110. 
    Sokpor G, Xie Y, Rosenbusch J, Tuoc T. 2017. Chromatin remodeling BAF (SWI/SNF) complexes in neural development and disorders. Front. Mol. Neurosci 10:243
    [Google Scholar]
  111. 111. 
    Spadafora C, Oudet P, Chambon P. 1979. Rearrangement of chromatin structure induced by increasing ionic strength and temperature. Eur. J. Biochem. 100:225–35
    [Google Scholar]
  112. 112. 
    Strohner R, Wachsmuth M, Dachauer K, Mazurkiewicz J, Hochstatter J et al. 2005. A “loop recapture” mechanism for ACF-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 12:683–90
    [Google Scholar]
  113. 113. 
    Studitsky VM, Clark DJ, Felsenfeld G. 1994. A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76:371–82
    [Google Scholar]
  114. 114. 
    Studitsky VM, Kassavetis GA, Geiduschek EP, Felsenfeld G. 1997. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278:1960–63
    [Google Scholar]
  115. 115. 
    Studitsky VM, Walter W, Kireeva M, Kashlev M, Felsenfeld G. 2004. Chromatin remodeling by RNA polymerases. Trends Biochem. Sci. 29:127–35
    [Google Scholar]
  116. 116. 
    Sundaramoorthy R, Hughes AL, El-Mkami H, Norman DG, Ferreira H, Owen-Hughes T. 2018. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome. eLife 7:e35720
    [Google Scholar]
  117. 117. 
    Suto RK, Edayathumangalam RS, White CL, Melander C, Gottesfeld JM et al. 2003. Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J. Mol. Biol. 326:371–80
    [Google Scholar]
  118. 118. 
    Tan S, Davey CA. 2011. Nucleosome structural studies. Curr. Opin. Struct. Biol. 21:128–36
    [Google Scholar]
  119. 119. 
    Thomä NH, Czyzewski BK, Alexeev AA, Mazin AV, Kowalczykowski SC, Pavletich NP. 2005. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat. Struct. Mol. Biol. 12:350–56
    [Google Scholar]
  120. 120. 
    Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL. 1998. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–21
    [Google Scholar]
  121. 121. 
    Tsukiyama T, Palmer J, Landel CC, Shiloach J, Wu C 1999. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomycescerevisiae. Genes Dev 13:686–97
    [Google Scholar]
  122. 122. 
    Tsukiyama T, Wu C. 1995. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83:1011–20
    [Google Scholar]
  123. 123. 
    van Holde K, Yager T. 2003. Models for chromatin remodeling: a critical comparison. Biochem. Cell Biol. 81:169–72
    [Google Scholar]
  124. 124. 
    van Holde KE, Yager TD. 1985. Nucleosome motion: evidence and models. Structure and Function of the Genetic Apparatus C Nicolini, POP Ts'o 35–53 New York: Plenum Press
    [Google Scholar]
  125. 125. 
    Vasudevan D, Chua EYD, Davey CA. 2010. Crystal structures of nucleosome core particles containing the “601” strong positioning sequence. J. Mol. Biol. 403:1–10
    [Google Scholar]
  126. 126. 
    Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB 1999. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97:75–84
    [Google Scholar]
  127. 127. 
    Viswanathan R, Auble DT. 2011. One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes. ? Biochim. Biophys. Acta 1809:488–96
    [Google Scholar]
  128. 128. 
    Wagner FR, Dienemann C, Wang H, Stützer A, Tegunov D et al. 2020. Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 579:448–51
    [Google Scholar]
  129. 129. 
    Wang J, Hogan M, Austin RH. 1982. DNA motions in the nucleosome core particle. PNAS 79:5896–900
    [Google Scholar]
  130. 130. 
    Wang W, Xu J, Limbo O, Fei J, Kassavetis GA et al. 2019. Molecular basis of chromatin remodeling by Rhp26, a yeast CSB ortholog. PNAS 116:6120–29
    [Google Scholar]
  131. 131. 
    Whitehouse I, Stockdale C, Flaus A, Szczelkun MD, Owen-Hughes T. 2003. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol. 23:1935–45
    [Google Scholar]
  132. 132. 
    Willhoft O, Ghoneim M, Lin CL, Chua EYD, Wilkinson M et al. 2018. Structure and dynamics of the yeast SWR1-nucleosome complex. Science 362:eaat7716
    [Google Scholar]
  133. 133. 
    Winger J, Bowman GD. 2017. The direction that the Chd1 chromatin remodeler slides nucleosomes can be influenced by DNA sequence. J. Mol. Biol. 429:808–22
    [Google Scholar]
  134. 134. 
    Winger J, Nodelman IM, Levendosky RF, Bowman GD. 2018. A twist defect mechanism for ATP-dependent translocation of nucleosomal DNA. eLife 7:e34100
    [Google Scholar]
  135. 135. 
    Xu J, Lahiri I, Wang W, Wier A, Cianfrocco MA et al. 2017. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature 551:653–57
    [Google Scholar]
  136. 136. 
    Xue Y, Wong J, Moreno GT, Young MK, Côté J, Wang W. 1998. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell 2:851–61
    [Google Scholar]
  137. 137. 
    Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C et al. 2011. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472:448–53
    [Google Scholar]
  138. 138. 
    Yan L, Chen Z. 2020. A unifying mechanism of DNA translocation underlying chromatin remodeling. Trends Biochem. Sci. 45:217–27
    [Google Scholar]
  139. 139. 
    Yan L, Wu H, Li X, Gao N, Chen Z 2019. Structures of the ISWI-nucleosome complex reveal a conserved mechanism of chromatin remodeling. Nat. Struct. Mol. Biol. 26:258–66
    [Google Scholar]
  140. 140. 
    Ye Y, Wu H, Chen K, Clapier CR, Verma N et al. 2019. Structure of the RSC complex bound to the nucleosome. Science 366:838–43
    [Google Scholar]
  141. 141. 
    Zhang Y, Smith CL, Saha A, Grill SW, Mihardja S et al. 2006. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol. Cell 24:559–68
    [Google Scholar]
  142. 142. 
    Zofall M, Persinger J, Kassabov SR, Bartholomew B. 2006. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13:339–46
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-082520-080201
Loading
/content/journals/10.1146/annurev-biophys-082520-080201
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error