1932

Abstract

Sugar translocation between cells and between subcellular compartments in plants requires either plasmodesmata or a diverse array of sugar transporters. Interactions between plants and associated microorganisms also depend on sugar transporters. The sugars will eventually be exported transporter (SWEET) family is made up of conserved and essential transporters involved in many critical biological processes. The functional significance and small size of these proteins have motivated crystallographers to successfully capture several structures of SWEETs and their bacterial homologs in different conformations. These studies together with molecular dynamics simulations have provided unprecedented insights into sugar transport mechanisms in general and into substrate recognition of glucose and sucrose in particular. This review summarizes our current understanding of the SWEET family, from the atomic to the whole-plant level. We cover methods used for their characterization, theories about their evolutionary origins, biochemical properties, physiological functions, and regulation. We also include perspectives on the future work needed to translate basic research into higher crop yields.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070621-093907
2022-05-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-070621-093907.html?itemId=/content/journals/10.1146/annurev-arplant-070621-093907&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdelrahman M, Burritt DJ, Gupta A, Tsujimoto H, Tran L-SP. 2020. Heat stress effects on source–sink relationships and metabolome dynamics in wheat. J. Exp. Bot. 71:2543–54
    [Google Scholar]
  2. 2.
    Abelenda JA, Bergonzi S, Oortwijn M, Sonnewald S, Du M et al. 2019. Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Curr. Biol. 29:71178–86.e6Describes how StSWEET11 and StSP6A interact to block sucrose leakage into apoplasmic space during tuberization.
    [Google Scholar]
  3. 3.
    An J, Zeng T, Ji C, de Graaf S, Zheng Z et al. 2019. A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. New Phytol. 224:1396–408
    [Google Scholar]
  4. 4.
    Andersson DI, Jerlström-Hultqvist J, Näsvall J. 2015. Evolution of new functions de novo and from preexisting genes. Cold Spring Harb. Perspect. Biol. 7:6a017996
    [Google Scholar]
  5. 5.
    Andrés F, Kinoshita A, Kalluri N, Fernández V, Falavigna VS et al. 2020. The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana. BMC Plant Biol. 20:153
    [Google Scholar]
  6. 6.
    Antony G, Zhou J, Huang S, Li T, Liu B et al. 2010. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:113864–76
    [Google Scholar]
  7. 7.
    Bazin J, Baerenfaller K, Gosai SJ, Gregory BD, Crespi M, Bailey-Serres J. 2017. Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. PNAS 114:46E10018–27
    [Google Scholar]
  8. 8.
    Benes B, Guan K, Lang M, Long SP, Lynch JP et al. 2020. Multiscale computational models can guide experimentation and targeted measurements for crop improvement. Plant J. 103:121–31
    [Google Scholar]
  9. 9.
    Beuchat G, Xue X, Chen L-Q. 2020. Review: The next steps in crop improvement: adoption of emerging strategies to identify bottlenecks in sugar flux. Plant Sci 301:110675
    [Google Scholar]
  10. 10.
    Bezrutczyk M, Hartwig T, Horschman M, Char SN, Yang J et al. 2018a. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytol 218:2594–603
    [Google Scholar]
  11. 11.
    Bezrutczyk M, Yang J, Eom J-S, Prior M, Sosso D et al. 2018b. Sugar flux and signaling in plant–microbe interactions. Plant J 93:4675–85
    [Google Scholar]
  12. 12.
    Bezrutczyk M, Zöllner NR, Kruse CPS, Hartwig T, Lautwein T et al. 2021. Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves. Plant Cell 33:3531–47
    [Google Scholar]
  13. 13.
    Bloch R. 1974. Human erythrocyte sugar transport. J. Biol. Chem. 249:113543–50
    [Google Scholar]
  14. 14.
    Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A. 2021. Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiol. 186:2836–52
    [Google Scholar]
  15. 15.
    Brown CJ, Trieber C, Overduin M. 2021. Structural biology of endogenous membrane protein assemblies in native nanodiscs. Curr. Opin. Struct. Biol. 69:70–77
    [Google Scholar]
  16. 16.
    Chardon F, Bedu M, Calenge F, Klemens PAW, Spinner L et al. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr. Biol. 23:8697–702
    [Google Scholar]
  17. 17.
    Chen H-Y, Huh J-H, Yu Y-C, Ho L-H, Chen L-Q et al. 2015. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J. 83:61046–58
    [Google Scholar]
  18. 18.
    Chen LQ. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 201:41150–55
    [Google Scholar]
  19. 19.
    Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB. 2015a. Transport of sugars. Annu. Rev. Biochem. 84:865–94
    [Google Scholar]
  20. 20.
    Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:7323527–32Describes the initial characterization of SWEETs as sugar uniporters and for pathogen nutrition.
    [Google Scholar]
  21. 21.
    Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE et al. 2015b. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27:3607–19First evidence of the function of SWEETs in seed filling in Arabidopsis.
    [Google Scholar]
  22. 22.
    Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S et al. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:6065207–11First characterization of SWEETs as the sugar effluxers in the phloem parenchyma cells during apoplasmic phloem loading.
    [Google Scholar]
  23. 23.
    Cheng KJ, Selvam B, Chen L-Q, Shukla D. 2019. Distinct substrate transport mechanism identified in homologous sugar transporters. J. Phys. Chem. B 123:408411–18
    [Google Scholar]
  24. 24.
    Chu Z, Yuan M, Yao L, Ge X, Yuan B et al. 2006. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 20:101250–55
    [Google Scholar]
  25. 25.
    Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M et al. 2014. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol. Plant Microbe Interact. 27:111186–98
    [Google Scholar]
  26. 26.
    Corratgé-Faillie C, Lacombe B. 2017. Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. J. Exp. Bot. 68:123107–13
    [Google Scholar]
  27. 27.
    Cox KL, Meng F, Wilkins KE, Li F, Wang P et al. 2017. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat. Commun. 8:115588
    [Google Scholar]
  28. 28.
    Dasgupta K, Khadilkar AS, Sulpice R, Pant B, Scheible W-R et al. 2014. Expression of sucrose transporter cDNAs specifically in companion cells enhances phloem loading and long-distance transport of sucrose but leads to an inhibition of growth and the perception of a phosphate limitation. Plant Physiol. 165:2715–31
    [Google Scholar]
  29. 29.
    Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N 2016. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiol. 170:31460–79
    [Google Scholar]
  30. 30.
    Eom J-S, Chen L-Q, Sosso D, Julius BT, Lin I et al. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr. Opin. Plant Biol. 25:53–62
    [Google Scholar]
  31. 31.
    Eom J-S, Luo D, Atienza-Grande G, Yang J, Ji C et al. 2019. Diagnostic kit for rice blight resistance. Nat. Biotechnol. 37:111372–79
    [Google Scholar]
  32. 32.
    Gao Y, Zhang C, Han X, Wang ZY, Ma L et al. 2018. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Mol. Plant Pathol. 19:92149–61
    [Google Scholar]
  33. 33.
    Gebauer P, Korn M, Engelsdorf T, Sonnewald U, Koch C, Voll LM. 2017. Sugar accumulation in leaves of Arabidopsis sweet11/sweet12 double mutants enhances priming of the salicylic acid-mediated defense response. Front. Plant Sci. 8:1378
    [Google Scholar]
  34. 34.
    Guan Y-F, Huang X-Y, Zhu J, Gao J-F, Zhang H-X, Yang Z-N. 2008. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147:2852–63
    [Google Scholar]
  35. 35.
    Guo W-J, Nagy R, Chen H-Y, Pfrunder S, Yu Y-C et al. 2014. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol 164:2777–89
    [Google Scholar]
  36. 36.
    Gupta K, Donlan JAC, Hopper JTS, Uzdavinys P, Landreh M et al. 2017. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541:7637421–24
    [Google Scholar]
  37. 37.
    Han L, Zhu Y, Liu M, Zhou Y, Lu G et al. 2017. Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter. PNAS 114:3810089–94Reports the first crystal structure of a clade III SWEET to interpret how SWEET transports sucrose versus glucose.
    [Google Scholar]
  38. 38.
    Ho L-H, Klemens PAW, Neuhaus HE, Ko H-Y, Hsieh S-Y, Guo W-J. 2019. SlSWEET1a is involved in glucose import to young leaves in tomato plants. J. Exp. Bot. 70:123241–54
    [Google Scholar]
  39. 39.
    Hsu PY, Calviello L, Wu H-YL, Li F-W, Rothfels CJ et al. 2016. Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. PNAS 113:45E7126–35
    [Google Scholar]
  40. 40.
    Hu Y-B, Sosso D, Qu X-Q, Chen L-Q, Ma L et al. 2016. Phylogenetic evidence for a fusion of archaeal and bacterial SemiSWEETs to form eukaryotic SWEETs and identification of SWEET hexose transporters in the amphibian chytrid pathogen Batrachochytrium dendrobatidis. FASEB J 30:103644–54
    [Google Scholar]
  41. 41.
    Huang C, Yu J, Cai Q, Chen Y, Li Y et al. 2020. Triple-localized WHIRLY2 influences leaf senescence and silique development via carbon allocation. Plant Physiol 184:31348–62
    [Google Scholar]
  42. 42.
    Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B. 2015. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J. 84:4694–703
    [Google Scholar]
  43. 43.
    Jia B, Zhu XF, Pu ZJ, Duan YX, Hao LJ et al. 2017. Integrative view of the diversity and evolution of SWEET and SemiSWEET sugar transporters. Front. Plant Sci. 8:2178
    [Google Scholar]
  44. 44.
    Jones AM, Xuan Y, Xu M, Wang R-S, Ho C-H et al. 2014. Border control—a membrane-linked interactome of Arabidopsis. Science 344:6185711–16
    [Google Scholar]
  45. 45.
    Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T et al. 2016. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat. Commun. 7:13245First report that SWEETs transport more than sugars.
    [Google Scholar]
  46. 46.
    Kim J-Y, Loo EP-I, Pang TY, Lercher M, Frommer WB, Wudick MM. 2021. Cellular export of sugars and amino acids: role in feeding other cells and organisms. Plant Physiol. 187:41893914
    [Google Scholar]
  47. 47.
    Kim J-Y, Symeonidi E, Pang TY, Denyer T, Weidauer D et al. 2021. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Plant Cell 33:3511–30
    [Google Scholar]
  48. 48.
    Klemens PA, Patzke K, Deitmer J, Spinner L, Le Hir R et al. 2013. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol 163:31338–52
    [Google Scholar]
  49. 49.
    Ko H-Y, Ho L-H, Neuhaus HE, Guo W-J. 2021. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. Plant Physiol. 187:4223045
    [Google Scholar]
  50. 50.
    Kryvoruchko IS, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu CI et al. 2016. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiol 171:1554–65
    [Google Scholar]
  51. 51.
    Kuanyshev N, Deewan A, Jagtap SS, Liu J, Selvam B et al. 2021. Identification and analysis of sugar transporters capable of co-transporting glucose and xylose simultaneously. Biotechnol. J. 16:2100238
    [Google Scholar]
  52. 52.
    Latorraca NR, Fastman NM, Venkatakrishnan AJ, Frommer WB, Dror RO, Feng L. 2017. Mechanism of substrate translocation in an alternating access transporter. Cell 169:196–107.e12Describes the mechanism of sugar transport switch by a combination of crystal structures and molecular dynamics simulations.
    [Google Scholar]
  53. 53.
    Le Hir R, Spinner L, Klemens PAW, Chakraborti D, de Marco F et al. 2015. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol. Plant 8:111687–90
    [Google Scholar]
  54. 54.
    Lee Y, Nishizawa T, Yamashita K, Ishitani R, Nureki O. 2015. Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter. Nat. Commun. 6:16112
    [Google Scholar]
  55. 55.
    Li P, Wang L, Liu H, Yuan M. 2022. Impaired SWEET-mediated sugar transportation impacts starch metabolism in developing rice seeds. Crop J. 10:198108
    [Google Scholar]
  56. 56.
    Li T, Huang S, Zhou J, Yang B. 2013. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. Mol. Plant 6:3781–89
    [Google Scholar]
  57. 57.
    Li T, Liu B, Spalding MH, Weeks DP, Yang B 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30:5390–92
    [Google Scholar]
  58. 58.
    Li X, Si W, Qin Q, Wu H, Jiang H. 2018. Deciphering evolutionary dynamics of SWEET genes in diverse plant lineages. Sci. Rep. 8:113440
    [Google Scholar]
  59. 59.
    Li Y, Liu H, Yao X, Wang J, Feng S et al. 2021. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development. Plant Physiol 186:1640–54
    [Google Scholar]
  60. 60.
    Li Y, Wang Y, Zhang H, Zhang Q, Zhai H et al. 2017. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum. Front. Plant Sci. 8:197
    [Google Scholar]
  61. 61.
    Lin IW, Sosso D, Chen L-Q, Gase K, Kim S-G et al. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:7497546–49
    [Google Scholar]
  62. 62.
    Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S 2011. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ 34:111958–69
    [Google Scholar]
  63. 63.
    Liu X, Zhang Y, Yang C, Tian Z, Li J 2016. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci. Rep. 6:124563
    [Google Scholar]
  64. 64.
    Lu J, Le Hir R, Gómez-Páez D-M, Coen O, Péchoux C et al. 2021. The nucellus: between cell elimination and sugar transport. Plant Physiol 185:2478–90
    [Google Scholar]
  65. 65.
    Ma L, Zhang D, Miao Q, Yang J, Xuan Y, Hu Y 2017. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant Cell Physiol 58:5863–73
    [Google Scholar]
  66. 66.
    Mathan J, Singh A, Ranjan A. 2021. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. Physiol. Plant. 171:4620–37
    [Google Scholar]
  67. 67.
    Niittylä T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX. 2007. Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol. Cell. Proteom. 6:101711–26
    [Google Scholar]
  68. 68.
    Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A et al. 2019. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37:111344–50Application of CRISPR-Cas9 to edit multiple TALE binding elements in the promoters of SWEETs for broad-spectrum resistance.
    [Google Scholar]
  69. 69.
    Park J, Chavez TM, Guistwhite JA, Gwon S, Frommer WB, Cheung LS 2022. Development and quantitative analysis of a biosensor based on the Arabidopsis SWEET1 sugar transporter. PNAS 119:e2119183119
    [Google Scholar]
  70. 70.
    Phukan UJ, Jeena GS, Tripathi V, Shukla RK 2018. MaRAP2-4, a waterlogging-responsive ERF from Mentha, regulates bidirectional sugar transporter AtSWEET10 to modulate stress response in Arabidopsis. Plant Biotechnol. J. 16:1221–33
    [Google Scholar]
  71. 71.
    Podolsky IA, Seppälä S, Xu H, Jin Y-S, O'Malley MA 2021. A SWEET surprise: Anaerobic fungal sugar transporters and chimeras enhance sugar uptake in yeast. Metab. Eng. 66:137–47
    [Google Scholar]
  72. 72.
    Rizza A, Tang B, Stanley CE, Grossmann G, Owen MR et al. 2021. Differential biosynthesis and cellular permeability explain longitudinal gibberellin gradients in growing roots. PNAS 118:8e1921960118
    [Google Scholar]
  73. 73.
    Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM. 2017. In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat. Plants 3:10803–13
    [Google Scholar]
  74. 74.
    Rodrigues J, Inzé D, Nelissen H, Saibo NJM. 2019. Source–sink regulation in crops under water deficit. Trends Plant Sci 24:7652–63
    [Google Scholar]
  75. 75.
    Römer P, Recht S, Strauß T, Elsaesser J, Schornack S et al. 2010. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol 187:41048–57
    [Google Scholar]
  76. 76.
    Rosa M, Prado C, Podazza G, Interdonato R, González JA et al. 2009. Soluble sugars—metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal. Behav. 4:5388–93
    [Google Scholar]
  77. 77.
    Ruan Y-L, Jin Y, Yang Y-J, Li G-J, Boyer JS 2010. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol. Plant 3:6942–55
    [Google Scholar]
  78. 78.
    Sami F, Yusuf M, Faizan M, Faraz A, Hayat S 2016. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109:54–61
    [Google Scholar]
  79. 79.
    Selvam B, Yu Y-C, Chen L-Q, Shukla D. 2019. Molecular basis of the glucose transport mechanism in plants. ACS Cent. Sci. 5:61085–96Describes mechanistic prediction of a complete transport cycle of glucose in a eukaryotic SWEET using molecular dynamics simulations.
    [Google Scholar]
  80. 80.
    Seo PJ, Park JM, Kang SK, Kim SG, Park CM. 2011. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233:1189–200
    [Google Scholar]
  81. 81.
    Slewinski TL, Meeley R, Braun DM. 2009. Sucrose transporter1 functions in phloem loading in maize leaves. J. Exp. Bot. 60:3881–92
    [Google Scholar]
  82. 82.
    Sosso D, Luo D, Li Q-B, Sasse J, Yang J et al. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat. Genet. 47:121489–93
    [Google Scholar]
  83. 83.
    Sosso D, van der Linde K, Bezrutczyk M, Schuler D, Schneider K et al. 2019. Sugar partitioning between Ustilago maydis and its host Zea mays L during infection. Plant Physiol 179:41373–85
    [Google Scholar]
  84. 84.
    Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. 2013. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonasoryzae pv. oryzae. New Phytol 200:3808–19
    [Google Scholar]
  85. 85.
    Sun J, Zheng N. 2015. Molecular mechanism underlying the plant NRT1.1 dual-affinity nitrate transporter. Front. Physiol. 6:386
    [Google Scholar]
  86. 86.
    Sun M-X, Huang X-Y, Yang J, Guan Y-F, Yang Z-N. 2013. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod. 26:283–91
    [Google Scholar]
  87. 87.
    Sun W, Gao Z, Wang J, Huang Y, Chen Y et al. 2019. Cotton fiber elongation requires the transcription factor GhMYB212 to regulate sucrose transportation into expanding fibers. New Phytol. 222:2864–81
    [Google Scholar]
  88. 88.
    Tao Y, Cheung LS, Li S, Eom J-S, Chen L-Q et al. 2015. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527:7577259–63Describes the crystal structure of the first eukaryotic SWEET transporter in a homomeric trimer.
    [Google Scholar]
  89. 89.
    Tränkner M, Tavakol E, Jákli B 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 163:3414–31
    [Google Scholar]
  90. 90.
    Walerowski P, Gündel A, Yahaya N, Truman W, Sobczak M et al. 2018. Clubroot disease stimulates early steps of phloem differentiation and recruits SWEET sucrose transporters within developing galls. Plant Cell 30:123058–73
    [Google Scholar]
  91. 91.
    Wan H, Wu L, Yang Y, Zhou G, Ruan Y-L 2018. Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends Plant Sci. 23:2163–77
    [Google Scholar]
  92. 92.
    Wang E, Wang J, Zhu X, Hao W, Wang L et al. 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 40:111370–74
    [Google Scholar]
  93. 93.
    Wang H, Yan S, Xin H, Huang W, Zhang H et al. 2019. A subsidiary cell-localized glucose transporter promotes stomatal conductance and photosynthesis. Plant Cell 31:61328–43
    [Google Scholar]
  94. 94.
    Wang J, Yan C, Li Y, Hirata K, Yamamoto M et al. 2014. Crystal structure of a bacterial homologue of SWEET transporters. Cell Res 24:121486–89
    [Google Scholar]
  95. 95.
    Wang J, Yu Y-C, Li Y, Chen L-Q 2022. Hexose transporter SWEET5 confers galactose sensitivity to Arabidopsis pollen germination via a galactokinase. Plant Physiol In press. https://doi.org/10.1093/plphys/kiac068
    [Crossref]
  96. 96.
    Wang L, Yao L, Hao X, Li N, Qian W et al. 2018. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Mol. Biol. 96:6577–92
    [Google Scholar]
  97. 97.
    Wang P, Hsu C-C, Du Y, Zhu P, Zhao C et al. 2020. Mapping proteome-wide targets of protein kinases in plant stress responses. PNAS 117:63270–80
    [Google Scholar]
  98. 98.
    Wang S, Liu S, Wang J, Yokosho K, Zhou B et al. 2020. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl. Sci. Rev. 7:111776–86
    [Google Scholar]
  99. 99.
    Wang S, Yokosho K, Guo R, Whelan J, Ruan Y-L et al. 2019. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol 180:42133–41
    [Google Scholar]
  100. 100.
    Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–303
    [Google Scholar]
  101. 101.
    Weigle AT, Carr M, Shukla D. 2021. Impact of increased membrane realism on conformational sampling of proteins. J. Chem. Theory Comput. 17:85342–57
    [Google Scholar]
  102. 102.
    Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:3123–28
    [Google Scholar]
  103. 103.
    Wu Y, Lee S-K, Yoo Y, Wei J, Kwon S-Y et al. 2018. Rice transcription factor OsDOF11 modulates sugar transport by promoting expression of Sucrose Transporter and SWEET genes. Mol. Plant 11:6833–45
    [Google Scholar]
  104. 104.
    Xu Y, Tao Y, Cheung LS, Fan C, Chen L-Q et al. 2014. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515:7527448–52
    [Google Scholar]
  105. 105.
    Xu Z, Xu X, Gong Q, Li Z, Li Y et al. 2019. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol. Plant 12:111434–46
    [Google Scholar]
  106. 106.
    Xuan YH, Hu YB, Chen L-Q, Sosso D, Ducat DC et al. 2013. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. PNAS 110:39E3685–94
    [Google Scholar]
  107. 107.
    Xue X, Yu Y-C, Wu Y, Xue H, Chen L-Q. 2021. Locally restricted glucose availability in the embryonic hypocotyl determines seed germination under abscisic acid treatment. New Phytol 231:51832–44
    [Google Scholar]
  108. 108.
    Yang B, Sugio A, White FF. 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. PNAS 103:2710503–8
    [Google Scholar]
  109. 109.
    Yang J, Luo D, Yang B, Frommer WB, Eom J-S 2018. SWEET11 and 15 as key players in seed filling in rice. New Phytol 218:2604–15
    [Google Scholar]
  110. 110.
    Yao L, Ding C, Hao X, Zeng J, Yang Y et al. 2020. CsSWEET1a and CsSWEET17 mediate growth and freezing tolerance by promoting sugar transport across the plasma membrane. Plant Cell Physiol 61:91669–82
    [Google Scholar]
  111. 111.
    Yuan M, Chu Z, Li X, Xu C, Wang S 2010. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22:93164–76
    [Google Scholar]
  112. 112.
    Zhang C, Li Y, Wang J, Xue X, Beuchat G, Chen L-Q. 2021. Two evolutionarily duplicated domains individually and post-transcriptionally control SWEET expression for phloem transport. New Phytol 232:41793–807
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-070621-093907
Loading
/content/journals/10.1146/annurev-arplant-070621-093907
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error