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Abstract

Lightness perception is the perception of achromatic surface colors: black,
white, and shades of grey. Lightness has long been a central research topic in
experimental psychology, as perceiving surface color is an important visual
task but also a difficult one due to the deep ambiguity of retinal images. In
this article, I review psychophysical work on lightness perception in complex
scenes over the past 20 years, with an emphasis on work that supports the de-
velopment of computational models. I discuss Bayesian models, equivalent
illumination models, multidimensional scaling, anchoring theory, spatial fil-
tering models, natural scene statistics, and related work in computer vision.
I review open topics in lightness perception that seem ready for progress,
including the relationship between lightness and brightness, and developing
more sophisticated computational models of lightness in complex scenes.
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Lightness: perceived
reflectance

Luminance: a
measure of light
intensity that takes
into account the
sensitivity of human
vision to different
wavelengths

Reflectance: the
proportion of incident
light reflected by a
surface; a synonym is
albedo

INTRODUCTION

Lightness perception is the perception of achromatic surface colors: black, white, and gray reflec-
tive surfaces, which we usually perceive more or less accurately regardless of the amount of light
shining on them or the context in which they appear.1 Lightness has been a central research prob-
lem since the beginning of experimental psychology, for at least two reasons. One is that lightness
is part of the more general problem of perceiving achromatic and chromatic surface colors, which
is fundamental to many important visual judgements, such as recognizing objects and materials.
The second is that lightness has turned out to be a surprisingly difficult phenomenon to under-
stand, largely because of the deep ambiguity of retinal images. One of the key insights of modern
vision research is that images provide much less information about the scenes that they depict than
we might think, and the important role of ambiguity in lightness perception gives this research
area connections to other important topics in vision science, including perception of shape, depth,
luminance, and illumination (Brascamp & Shevell 2021).

One idea that motivates much work on visual perception, although it is not always explicitly
stated, is that vision can be understood as a process of estimating properties of scenes and objects
in the external world. Lightness perception, for example, can be understood as a process of esti-
mating achromatic surface color, where by color we mean some physical property of real surfaces.
More precisely, we can describe lightness as a perceptual estimate of reflectance, which is the pro-
portion of incident light reflected by a surface. Without the idea that a percept is an estimate of
some independently existing property, such as surface color, many common statements become
meaningless: If a percept is not an estimate of something, how can it be accurate, or biased, or il-
lusory? However, the idea that lightness is an estimate of surface color introduces a new problem:
How can the visual system estimate the color of a surface in the external world given the limited
information available at the retina?

A simple example illustrates the problem. When we view a surface, the light intensity (L) at a
point on the retina is the product2 of the illumination on the surface (I) and the surface reflectance
(R): L = IR. If the retina records only the light intensity L, how can we unmultiply this product
and recover the surface reflectance R? Clearly, this is only possible if the visual system exploits
additional information, such as the spatial or temporal context of the point where reflectance is
estimated.

The generalized bas-relief ambiguity gives another, more substantial illustration of why
estimating reflectance from retinal images is a challenging problem (Belhumeur et al. 1999).
Consider an arbitrary 3D scene of matte objects, as well as a 2D image of the scene. Belhumeur
et al. (1999) showed that, if we put the scene through a shear transformation along the line of
sight, then we can always adjust the positions of lights in the scene so that the locations of shadows
in the image are unchanged. If we also adjust surface reflectance to counteract any resulting
changes in image luminance, then even the pixel-by-pixel luminance values in the original image
will be unchanged. Furthermore, this is only a lower bound on image ambiguity; besides shear
transformations, we can adjust the shapes of objects in more or less arbitrary ways, and as long as
we adjust lighting and surface color to counteract the resulting changes in the image, the original
image will be unaffected. Thus, an image may appear to depict objects of particular shapes and

1Of course, there is a profound ontological difference between the subjective appearance of an achromatic
color and the physical properties of the surface being perceived.As a result, it may take some effort to articulate
what makes a percept accurate or inaccurate. I gloss over difficulties such as this when they are not crucial to
the topic at hand.
2For simplicity, I omit constants relating to how units are defined. McCluney (1994) gives a clear treatment
of the sometimes nuanced definitions of units for measuring light.
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Brightness: perceived
luminance

colors while in fact it is an equally good depiction of a wide range of other objects with very
different shapes and colors. Any complete theory of lightness must explain why we see specific
shades of black, white, or gray in an image, instead of the many valid alternatives.

In this article, I review selected psychophysical work from the past 20 years of research on light-
ness perception, with an emphasis on understanding complex scenes with cues to lighting, shape,
and depth.During this time, new theoretical frameworks and experimental methods have emerged
that have led to a renewed emphasis on perception of complex scenes, and a review should be use-
ful for setting future research directions. I mostly discuss research areas that we might consider
to be core topics in lightness, such as perception of matte surfaces under realistic lighting, and
I do not address more exotic phenomena such as transparency. I also emphasize work that takes
steps toward developing computational models of lightness. I do not cover work that is primarily
about brightness, usually defined as perceived luminance, even though lightness and brightness
are closely related; I briefly discuss this relationship in the section titled Open Problems. I take
the approach of covering fewer topics in greater detail, so there are many interesting recent exper-
iments that I do not touch on. Reviews by Adelson (2000), Gilchrist (2006), Brainard & Maloney
(2011), Kingdom (2008, 2011), and Schirillo (2013) are valuable sources of further information.

SOME HISTORICAL CONTEXT

Gilchrist (2006) gives a comprehensive historical review of research on lightness. In this section,
I note a few highlights that provide some context for the recent work discussed below.

The study of lightness began in earnest with the realization that percepts of surface color are
more strongly correlated with surface reflectance,which is a distal property of surfaces themselves,
than with the proximal light stimulus at the retina. This was understood by Ibn al-Haytham [1989
(1083)], and later by von Helmholtz [1924 (1910)] and Hering [1964 (1905)]. Of course, all per-
ception must begin with the proximal stimulus, which depends on both surface reflectance and
lighting, so if we are to perceive reflectance, then we must have some way of factoring out the
effect of lighting. Von Helmholtz suggested that this was accomplished by using an estimate of
illumination (possibly based on mean luminance) in an unconscious cognitive inference that re-
sults in an estimate of surface reflectance, whereas Hering argued that physiological mechanisms
such as lateral inhibition and pupil dilation were mostly sufficient. (Unsurprisingly, this summary
does not exhaust their views; e.g., von Helmholtz also considered physiological factors, and Her-
ing allowed a role for memory.) The work reviewed below shows that this axis is still useful for
describing theories of lightness: from theories of rational inference based on models of the phys-
ical world at one end, through various degrees of approximation and simplification, to theories of
low-level image processing at the other end.

One long-standing approach to lightness has been to thoroughly study simple stimuli, such as
edges and center-surround patterns, with the goal of using the visual system’s response to these
features to understand lightness in more complex scenes. Hess & Pretori [1970 (1894)], for ex-
ample, reported parametric studies of simultaneous contrast effects, and similar studies have been
influential throughout the history of lightness research (e.g., Heinemann 1955, Wallach 1948).
Such effects, along with the discovery of lateral inhibition in visual neurons, suggested that center-
surround contrast models could explain a great deal about lightness (e.g., Cornsweet 1970).

Others argued, however, that the most important lightness phenomena are primarily found in
more complex scenes; thus, another approach has been to examine lightness in scenes of objects,
surfaces, and lights.Katz (1935) described the phenomenology of lightness and lighting in realistic
scenes, and also showed that lightness constancy tends to be stronger in large, complex scenes with
many distinct elements. Furthermore, Koffka (1935) and other gestalt psychologists showed that
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Reductionist: in
theories of vision, the
claim that percepts of
complex scenes can be
explained in terms of
the visual system’s
response to simple
patterns

Anchoring: the
problem of mapping
luminance values to
absolute (not just
relative) lightness
values

factors such as grouping and figure-ground assignment are influential in lightness perception in
ways that seem unlikely to be fully explained by the visual system’s response to simpler stimuli.

In this case, too, both of these tendencies—reductionist and antireductionist—have long
histories and are still found in current work. In this review, I focus on work that examines
lightness in complex, realistic scenes, but I cover work with both tendencies.

CURRENT RESEARCH

Anchoring Theory

Gilchrist and colleagues (Gilchrist 2006, Gilchrist et al. 1999) developed an anchoring theory of
lightness perception that gives rules for dividing an image into regions of uniform illumination,
called frameworks, and assigning a perceived reflectance to each image patch within a framework.
A simplified outline of anchoring theory is as follows. The visual system divides an image into
frameworks using cues to illumination edges, such as fuzzy shadow boundaries and depth dis-
continuities. The highest luminance in each framework is then an anchor that is assigned a local
perceived reflectance of 0.90 (i.e., white). Other patches are assigned local reflectances based on
the ratio of their luminance to the anchoring luminance in their framework; e.g., a luminance that
is half the anchoring luminance is assigned a reflectance of 0.50 × 0.90 = 0.45. Finally, the per-
ceived reflectance of each image patch is a weighted average of this local reflectance and the global
reflectance computed in a global framework that includes the entire image. The weights in this
average depend on how strongly the local framework is perceptually segmented within the global
image; the stronger is the segmentation, the greater is the weight on the local reflectance. This
outline omits some refinements, such as modified rules for large luminance regions and luminance
outliers, but it captures the core of the theory.

Anchoring theory is an ambitious, broad-strokes account that aims at a general understanding
of the most important factors in lightness perception. Its greatest strength is that it provides a
compact and systematic account of how lightness depends on features such as nearby luminances,
shadows, and depth edges that we would expect to provide useful information about surface re-
flectance. The theory makes qualitatively correct predictions for a wide range of scenes, and often
quantitatively correct predictions as well, and it provides a starting point for understanding addi-
tional phenomena such as glow perception (Bonato & Gilchrist 1994; see also the sidebar titled
Glow Perception).

GLOW PERCEPTION

What do we see when an object’s luminance is greater than the luminance that a white object would have in the
same environment? Sometimes the object can appear to emit light—that is, to glow. Bonato & Gilchrist (1994)
suggested that the perceptual lightness continuum extends from black to white, and then beyond white to self-
luminous. Recently, Murray (2020) found that a Bayesian lightness model that incorporates this idea can account
for unusual properties of glow that Bonato & Gilchrist found psychophysically: Small surfaces appear to glow
at lower luminances than do large surfaces, and large glowing surfaces make other surfaces in the environment
appear darker.My colleagues and I have also found that luminance outliers are not the only factor influencing glow
perception. Kim et al. (2016) showed that glow percepts can be toggled on and off by inverting the perceived 3D
shape of a surface. When bright parts of a 3D surface are convex, people see them as a matte, diffusely illuminated
material. When the the left- and right-eye images of a stereo pair are switched, so that the luminance pattern is
practically identical, but the bright regions become concavities where it would be difficult for light to reach, people
perceive the concavities as glowing.
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Normative model:
a model that
implements or is
motivated by an
optimal strategy for
solving a problem

Multidimensional
scaling (MDS):
a method of modeling
the similarity of pairs
of elements by
arranging them in an
n-dimensional space

The main weakness of the theory is that it has no computational implementation. Identifying
lighting boundaries and assigning weights to local and global frameworks are left as tasks for
the modeler. As a result, there are many scenes where the predictions of anchoring theory are
unclear (Zeiner & Maertens 2014), and experiments must be designed around images for which
predictions can be made. The theory does have some quantitative components, and Economou
et al. (2007) point out that it can also be difficult to make predictions from more computational
competing theories. Nevertheless, it would be an important step forward to formulate anchoring
theory computationally—even parts of it, or for a limited stimulus domain. Simple quantitative
theories can make surprising predictions, and it is easier to evaluate the content and success of a
theory when its predictions are completely independent of the modeler’s choices.

For example, Gilchrist (2006) has described anchoring theory as a theory of errors in lightness
perception, as several of the visual behaviours that it documents seem to be arbitrary. For example,
why should perceived lightness be a weighted average of lightness computed in local and global
frameworks? However, Murray (2013, 2020) has shown that several of the rules of anchoring
theory follow from a probabilistic, normative model based on simple assumptions about lighting
and reflectance. If this is correct, then facts about lightness that appear in anchoring theory as
arbitrary rules may in fact result from a deeper process of rational inference guided by natural
scene statistics.

Multidimensional Scaling

Why do we believe that lightness is a fundamental perceptual dimension at all? Lightness and
surface reflectance are only weakly related to simple stimulus properties such as local image lu-
minance. What is the evidence, then, that perceived reflectance, perceived lighting, and similar
terms are appropriate for describing the elements of our perceptual world?

Logvinenko and colleagues (Logvinenko 2015, Logvinenko & Maloney 2006, Logvinenko
et al. 2008) addressed this question in a creative series of studies that used multidimensional scal-
ing (MDS) methods and novel variants to investigate the perceptual dimensions of achromatic
color. An MDS analysis attempts to arrange stimuli in an n-dimensional space, such that stimuli
that people perceive to be similar are close together in the space, and stimuli that they perceive
to be very different are far apart. If we can find such an arrangement, then it may provide some
insight into the perceptual representation of the stimuli. For example, if no such arrangement
can be found in a one-dimensional space, but one can be found in a two-dimensional space, and
if a three-dimensional space does not provide any further improvement in modeling perceived
similarity, then this suggests that similarity judgements are based on two perceptual dimensions.
Furthermore, if surface reflectance increases along one axis of the two-dimensional space, then
this suggests that some perceptual representation of surface reflectance plays an important role in
similarity judgements.

Logvinenko & Maloney (2006) showed observers simple geometric paper patterns
(Figure 1a), and on each trial, observers used a 30-point scale to rate the dissimilarity be-
tween two randomly selected test patches. The patches varied in reflectance and illumination, but
the instructions did not mention these properties; observers were simply asked to rate dissimi-
larity. Logvinenko & Maloney modeled these difference ratings using classic MDS and a novel
maximum-likelihood difference scaling (MLDS) method. Both analyses showed that observers’
dissimilarity ratings could be accounted for by arranging the stimuli in a two-dimensional space,
with dimensions roughly corresponding to reflectance and lighting intensity (Figure 1c). An
alternative outcome could have been, for example, that dissimilarity ratings were predicted by a
one-dimensional continuum corresponding to image luminance. However, this was not found,

www.annualreviews.org • Lightness Perception in Complex Scenes 421



a b c 72
71

73

62
61

63

52
51

53

42
41

43

32
31

33

2221
23

1211 13

Figure 1

(a) Illuminated paper stimulus from Logvinenko & Maloney (2006). (b) The snake illusion (Adelson 2000). All four diamonds are the
same shade of gray, but the two on top appear much lighter. (c) Results of Logvinenko & Maloney’s (2006) scaling analysis. Points
representing 21 stimuli (7 reflectances, 3 lighting intensities) are arranged in a two-dimensional space, such that the distance between
any two points indicates the perceived dissimilarity of the two corresponding stimuli. In the two-digit labels, the first digit represents
reflectance (1 = low, 7 = high), and the second represents lighting intensity (1 = low, 3 = high). Panels a and c adapted with permission
from Logvineko & Maloney (2006), copyright The Association for Research in Vision and Ophthalmology. Panel b adapted with
permission from Adelson (2000), copyright The MIT Press.

and in fact, stimulus pairs that had the same luminance but different reflectances and lighting
intensities elicited some of the highest dissimilarity ratings. Thus, reflectance and illumination
emerged as perceptual dimensions of achromatic color, and luminance did not, even in a task
where observers were not explicitly asked to judge any of these properties—an intriguing finding.
[For a complication to this story, the reader is referred to Madigan & Brainard (2014), who used
methods that were similar, although not identical, to Logvinenko & Maloney’s, and found that a
one-dimensional space was adequate for modeling dissimilarity judgements.]

Logvinenko (2015) extended this work by varying not only reflectance and lighting inten-
sity, but also the slant of test patches relative to the light source. In this case, MDS indicated a
three-dimensional space for achromatic colors, and Logvinenko suggested that the third dimen-
sion represented the appearance of attached shadows at various slants. (Alternatively, did the third
dimension simply represent 3D surface orientation, unrelated to achromatic color? This is proba-
bly not the case, as observers were specifically instructed to rate the dissimilarity of the achromatic
color appearance of the test patches. However, the open-ended rating task, with no possibility of
feedback, does raise a concern that observers in MDS studies may sometimes base their responses
partly on stimulus properties that are not the target of the study.)

Logvinenko et al. (2008) used similar methods to examine perception of lightness and lighting
in the snake illusion (Adelson 2000) (Figure 1b). In this illusion, all of the diamonds have the
same reflectance, but some look much lighter than others. A common explanation is that the fig-
ure appears to have horizontal strips of bright and dark lighting, perhaps due to shadows or filters,
and that we discount these lighting conditions when estimating reflectance. As a result, diamonds
in dimly lit regions appear lighter. But do we really see lighting boundaries in this flat, printed
figure? Logvinenko et al. asked observers to rate the dissimilarity of pairs of diamonds in variants
of the snake illusion, with different simulated lighting conditions and simulated reflectances, and
tests based on the MLDS method (see above) showed that these ratings could be modeled on a
one-dimensional continuum. That is, in these stimuli, simulated lighting and reflectance differ-
ences had qualitatively similar effects on appearance. This is in sharp contrast to Logvinenko &
Maloney’s (2006) findings with real papers and lights (see above), where scaling models produced
a two-dimensional space, and lighting and reflectance could not be traded off against one another.
Logvinenko et al.’s finding complicates the usual explanation of the snake illusion and similar
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Conditional random
field (CRF):
a probabilistic model
in which each element
has direct statistical
dependencies only on
neighboring elements;
statistical
dependencies between
distant elements are
mediated by
dependencies between
neighbors

figures: It is not simply that we see lighting boundaries, tout court, and that this explains the illu-
sion. Instead, lightness mechanisms may be sensitive to pictorial cues to lighting boundaries (such
as X-junctions), yet these cues may have little effect on the actual appearance of lighting condi-
tions. [This echoes Brainard & Maloney’s (2011) observation that the implicit lighting estimates
that guide equivalent illumination models (see below) often differ from explicit judgements of
lighting.] This finding also highlights the fact that MDS and MLDS can be seen as more system-
atic forms of the phenomenological method (Katz 1935), and that they share the strengths and
weaknesses of that method. They can give a clear description of perceptual phenomena that we
should seek to model but may provide little information about how those phenomena are com-
puted by the visual system.

Logvinenko et al.’s (2008) findings with the snake illusion also suggest that we should be cau-
tious about studying lightness using simplified pictures instead of real scenes with real lighting.
This is a point that I return to below (see the section titled Lightness and Brightness).

Bayesian Intrinsic Image Models

The fundamental challenge of lightness perception is ambiguity: Any given image could have been
generated by a wide range of combinations of reflectance, surface orientation, and lighting, and
thus from the image alone it is impossible to infer a unique spatial distribution of reflectance.
This inference requires further information. One possible source of information is knowledge
about which patterns of reflectance, surface orientation, and lighting are most likely to occur in
the limited range of scenes that we typically encounter. This suggests that a Bayesian approach to
lightness may be productive. The idea that knowledge about typical scenes should be useful for
lightness perception is a natural one, and several authors have taken this approach (e.g., Adelson &
Pentland 1996, Land &McCann 1971), but progress in turning this insight into general-purpose,
image-based computational models has been slow. There has been progress with Bayesian models
of color constancy, but these typically exploit regularities in the spectra of illuminants and surfaces,
instead of spatial statistics (e.g., Brainard et al. 2006). Lightness models do not model spectra, so
they must rely on other sources of prior knowledge.

Allred & Brainard (2013) developed a Bayesian model of lightness and lighting perception on
a 5 × 5 grid of gray-scale squares. Observers viewed grid stimuli (Figure 2a) on a high-dynamic-
range display and reported the lightness of the central square by choosing a matching paper patch
from a separate palette (Allred et al. 2012). The driving assumptions of the model were that
(a) the reflectance of each square is independently sampled from a probability distribution on
the unit interval, and (b) illuminance values at neighboring squares are correlated. The authors
fit the model by finding the reflectance and illuminance distributions that maximized the model’s
ability to predict human observers’ lightness matches. The resulting model accounted for several
features of the psychophysical data, some expected from previous studies and some novel. For
example, the model predicted that increasing the luminance of the surrounding region causes the
test patch to appear darker—the well-known simultaneous contrast effect [Hess & Pretori 1976
(1894)]. It also predicted a more subtle effect where increasing the luminance of the test patch has
a greater effect on the patch’s perceived lightness when the initial luminance of the patch is low
than when it is high; the model suggested that this occurs because the test patch itself affects the
observer’s estimate of local lighting conditions.

Murray (2013, 2020) also developed a Bayesian model of lightness and lighting perception,
with different methods and goals. This model described lightness perception on a 16 × 16 grid
(Figure 2b). The model was a conditional random field (CRF), so its statistical assumptions
were formulated as potential functions on small regions (2 × 2 grid squares) of reflectance and
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(a) Grid stimuli from Allred & Brainard (2013). The squares at the centers of the 5 × 5 patterns are all the
same shade of gray but often appear different because of the surrounding context. Observers chose a match
patch from a separate palette to match the perceived lightness of the central square. (b) Grid stimuli from
Murray (2020). Observers reported whether each stimulus appeared lighter at the location of the red or
green dot. In each case, the dots were in regions with the same physical shade of gray. (c) Murray’s model
decomposes a luminance stimulus, such as the variant of the argyle illusion shown, into illumination and
reflectance images. Panel a adapted with permission from Allred & Brainard (2013), copyright The
Asociation for Research in Vision and Ophthalmology. Panels b and c adapted with permission from Murray
(2020), copyright The Asociation for Research in Vision and Ophthalmology.

illuminance, with high potentials assigned to patterns that are less probable. One assumption em-
bedded in these potentials, for example, was that straight luminance edges are more likely than
curved edges to be seen as shadow boundaries (Logvinenko et al. 2005). A belief propagation al-
gorithm leveraged these local assumptions to make globally optimal assignments of reflectance
and illuminance to a stimulus image. Human observers reported the relative lightness of test lo-
cations in grid versions of several well-known and difficult-to-model lightness illusions, such as
the argyle illusion (Figure 2b), and the model made qualitatively correct predictions of observers’
judgements in many of these figures. Its main failure was that it could not account for assimi-
lation effects such as White’s illusion (White 1979), where patches that are surrounded mostly
by high-luminance regions appear lighter than patches surrounded by lower-luminance regions;
these effects are challenging for models based on discounting illumination, as it is unclear why
increasing the luminance of the surround should decrease the estimate of local lighting inten-
sity. The model was, however, also able to account qualitatively for several broad phenomena in
lightness perception, such as the effect of perceived lighting boundaries on lightness, articulation
effects, and glow perception.

These studies suggest that Bayesian approaches to lightness, despite their slow progress to
date, are nevertheless promising. Bayesian models are theoretically well motivated, are easily
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interpretable, and have the potential to account for a wide range of phenomena using assumptions
grounded in natural scene statistics. They may be able to synthesize two broad approaches to
lightness described above (see the section titled Some Historical Context), in that they use
simple, local image properties to explain perception of complex images, but these properties (e.g.,
smoothness, straightness) are chosen because they provide information about critical features of
realistic scenes, such as shadows and reflectance edges. An obvious limitation of the two studies
reviewed in this section is that they modeled coarse checkerboard patterns instead of realistic im-
ages. A further limitation is that, instead of incorporating measurements from naturally occurring
scenes, both studies fitted parametric distributions of reflectance and lighting to make the model
account for behavioral data. In the section titled Open Problems, I suggest that developments in
computational modeling may provide tools for overcoming these limitations.

Equivalent Illumination Models

Perceptual errors can be highly informative for testing theories of vision, as all models of per-
ception must agree when their predictions are correct, but each can fail in its own unique way
[Gilchrist 2006, Tolstoy 2006 (1874)]. Can we develop a theory of lightness that accounts for the
specific pattern of correct and incorrect percepts across a wide range of scenes?

Brainard & Maloney (2011) reviewed equivalent illumination models (EIMs) of surface color
and lightness.These are normative models that describe vision as a fundamentally rational process
of estimating reflectance by attempting to invert the physics of image formation.They do not nec-
essarily predict that lightness percepts are always veridical, however, because they are also paramet-
ric models and assume that the visual system must estimate important parameters of a scene, such
as lighting conditions, to infer lightness. If an observer’s estimates of these parameters are inaccu-
rate, then their lightness percepts will have characteristic biases. Thus, although they have a nor-
mative component, EIMs are descriptive models that aim to account for people’s actual behavior.

Bloj et al. (2004) used an EIM tomodel how lightness changes as a function of the slant of a test
patch in complex scenes that provide many cues to lighting conditions (Figure 3a). In principle,
observers could estimate the lighting conditions in such scenes and use this information, along
with the luminance of a test patch, to infer the test patch reflectance. On each trial, observers
viewed a test patch on a pedestal, rotated to some orientation relative to the light source, and
from a 6 × 6 palette chose the patch that most closely matched the lightness of the test patch

a b

Figure 3

(a) A typical stimulus from Bloj et al. (2004). The grid at the left is the 6 × 6 palette of match patches, and
the pedestal at the lower right supports the test patch. (b) A typical stimulus from Doerschner et al. (2007).
The oblique central square is the test patch. The other objects in the scene provide cues to the lighting
conditions, which consist of a diffuse blue sky and two yellow point light sources that are not in the
observer’s field of view. Panel a adapted with permission from Bloj et al. (2004), copyright The Association
for Research in Vision and Ophthalmology. Panel b adapted with permission from Doerschner et al. (2007),
copyright Elsevier.
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(Figure 3a). Bloj et al. found that observers matched reflectance correctly to some extent, but also
that there were systematic departures from constancy. The strongest pattern of errors was that the
lightness of the test patch decreased when it had a large slant relative to the light source, whereas
if observers had perfect constancy, then lightness would not vary with surface orientation. When
an EIM was fitted to these data, it was able to explain these biases by supposing that observers
estimated the direction of the light source correctly but that they consistently overestimated its
diffuseness.

It is clear why overestimating diffuseness would produce such a bias: As a test patch is slanted
away from a light source, its luminance decreases, and if the lighting is highly collimated (i.e.,
not diffuse), then luminance decreases rapidly as slant increases. An observer who overestimates
diffuseness expects that luminance should not decrease much as slant increases, so they mistakenly
attribute the reduced luminance at high slants to a decrease in surface reflectance. Bloj et al. (2004)
found that the EIM not only accounted for observers’ biases qualitatively in this way, but also
that it gave a good quantitative description over a wide range of slants, e.g., fitting the data better
than a simple mixture model where lightness matches at all slants were a fixed weighted sum of
the matches expected from full constancy (reflectance matching) and no constancy (luminance
matching). Furthermore, the EIM was able to accommodate large individual differences by at-
tributing different diffuseness estimates to different observers. Boyaci et al. (2003) independently
reported similar experiments with similar conclusions, and Morgenstern et al. (2014) examined
some differences between the two studies that may have emerged because Bloj et al. (2004) used
physical stimuli, whereas Boyaci et al. (2003) used computer-generated scenes.

Doerschner et al. (2007) used an EIM to test whether observers could simultaneously discount
two separate point light sources when estimating surface color. They showed that when two light
sources are close together, a normativemodel treats themmuch like a single diffuse light source for
the purpose of discounting illumination, but that when they are farther apart, the normative model
has a qualitatively different pattern of discounting illumination. In their experiment, observers
viewed a test patch at various orientations in a complex scene, illuminated by a uniform blue sky
and two yellow point light sources (Figure 3b). Observers adjusted the chromaticity of the test
patch so that it appeared achromatic. Doerschner et al. found that observers made qualitatively
different patterns of achromatic settings depending on whether the two point lights were close
together or far apart; in both cases, their behavior was similar to the normative model.

According to EIMs, people perceive lightness as if a scene was illuminated by some not neces-
sarily accurate estimate of lighting conditions. The value of such models depends on how far we
can push this “as if.” If idiosyncratic patterns in a wide range of lightness judgements are consistent
with a rational observer who has a particular estimate of lighting conditions, then EIMs provide a
powerful, compact, and interpretable description of lightness perception. The studies reviewed in
this section suggest that EIMs fare well by this criterion. Bloj et al. (2004) and Boyaci et al. (2003)
showed that an EIM accounted for how lightness estimates varied with slant significantly better
than a simple mixture model, and Doerschner et al. (2007) found that, even in complex scenes
with two light sources, lightness matches were just what we would expect from an observer who
makes a reasonable but imperfect estimate of lighting conditions.

A Wholly Empirical Theory

Purves & Lotto (2010) developed a framework in which the visual system uses knowledge from
past experience to interpret retinal images. Corney & Lotto (2007) applied this framework to
lightness perception. In their stimulus set, reflectance images were dead-leaves patterns consisting
of many randomly placed, randomly gray-colored, overlapping circles (Lee et al. 2001). Illumina-
tion images varied slowly and smoothly from pixel to pixel, and luminance images were created by
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multiplying reflectance and illumination images pointwise. Corney & Lotto trained artificial neu-
ral networks to take a luminance image as input and predict the center pixel of the corresponding
reflectance image. After training, the networks had some ability to predict reflectance, as was
expected. Significantly, though, they also exhibited several robust phenomena found in human
lightness perception, including simultaneous contrast, articulation effects, and assimilation ef-
fects. Furthermore, they produced outputs consistent with lightness illusions perceived by human
observers, such as the Vasarely illusion, Mach bands, the Hermann grid, and White’s illusion.

The idea that visual perception exploits statistical regularities in natural images is not new (see
the section titled Bayesian Intrinsic Image Models; see also Barlow 1961, Brunswik & Kamiya
1953, Geisler 2008, Knill & Richards 1996), but Purves, Lotto, and their colleagues’ work is valu-
able in that it shows how some well-known perceptual biases may be adaptive byproducts of the vi-
sual system being tuned to unexpected regularities in natural scenes. It seems unlikely, though, that
such an approach can ever be a wholly empirical theory of vision (as they call it), or even of light-
ness. The visual system uses learned regularities to infer object properties from retinal images—so
far, so good. But which regularities does it use, and how does it use them? Simply knowing the
marginal pointwise distribution of luminance, for example, will not be useful for difficult infer-
ences such as lightness perception. Yet the visual system cannot use arbitrarily complex statistical
properties of natural images either. (Consider the approximately seven-million-dimensional prob-
ability distribution of cone activations in each eye.) Between these two extremes lie countless mod-
els, and a probabilistic theory of vision is arrived at by building and testing such specific, limited
models.Corney&Lotto argue, for example, that “since resolving stimulus ambiguity is a challenge
faced by all visual systems, a corollary of these findings is that human illusions must be experienced
by all visual animals regardless of their particular neural machinery” (p. 1790). However, surely
different animals can (and do) make perceptual inferences using different statistical properties of
images, with different levels of statistical sophistication, resulting in different illusions.

A Spatial Filtering Model

It has long been known that many retinal ganglion cells in mammalian visual systems have anON-
center, OFF-surround response: Each such cell is stimulated by light falling in a small disk-like
region of the retina and inhibited by light in a surrounding ring-like region (Kuffler 1953). The
responses of these cells are qualitatively consistent with some classic lightness and brightness il-
lusions, such as simultaneous contrast effects where a medium-luminance square surrounded by a
low-luminance region appears brighter than an identical square surrounded by a high-luminance
region. There is a long history of spatial filtering models that use such center-surround mech-
anisms to explain how we perceive shades of light and dark (e.g., Cornsweet 1970), but these
are almost always presented as models of brightness (perceived luminance), and not of lightness
(perceived reflectance), when this distinction is made. However, Dakin & Bex (2003) developed a
spatial filtering model of lightness that provides an opportunity to consider how the rich compu-
tational literature on brightness can contribute to modeling lightness as well.

Dakin & Bex’s (2003) model is simple: To predict the lightness perceived in an image, it adjusts
the Fourier spectrum of the image to match the 1/f spectrum that is typical of natural images
(Field 1987). This operation can be described as an adaptive linear filter, or as band-pass contrast
normalization. Dakin & Bex showed that if we band-pass filter an image that has uniform light
and dark regions, then those regions may have the same luminance after filtering, but they still
appear light and dark (Figure 4). This illusion only occurs, however, if there are residual low
spatial frequencies in the filtered image. Dakin & Bex’s model restores the low-spatial-frequency
content that has been mostly filtered out and thereby restores the intensity difference between
bright and dark regions. [There is clearly a tension to be explored between this model, which
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Figure 4

(a) A natural image from Dakin & Bex (2003). (b) The same image, high-pass filtered. The large uniform
regions in the filtered image (e.g., forehead and hair) are physically the same shade of gray, but some appear
lighter than others. Dakin & Bex’s lightness model restores the weakened low-spatial-frequency components
of this image and correctly predicts that the woman’s face appears lighter than her hair. Figure adapted with
permission from Dakin & Bex (2003), copyright The Royal Society, UK.

usually accomplishes filling-in by boosting low spatial frequencies, and Shapiro & Lu’s (2011)
model, which computes brightness by removing low spatial frequencies.] Interestingly, then, the
model produces a filling-in effect without the node-to-node signal propagation found in other
models of filling-in (e.g., Grossberg & Todorovic 1988).

A minor suggestion, which applies to most other filtering models as well, is that the model
would probably be stronger if it was based on local filtering operations, rather than operations
that depend on the whole image. Lightness and brightness depend on context but not usually on
interactions between arbitrarily distant image features. Robinson et al. (2007) illustrate how to
make a global filtering model [specifically, the oriented difference of Gaussians (ODOG) model]
into a local model, and they also show that, with this modification, the model accounts for a wider
range of phenomena.

A more substantial question is to what extent Dakin & Bex’s (2003) model accounts for light-
ness percepts beyond filling-in effects. A simple argument suggests that there is a wide range of
phenomena that it does not account for. The model does not make large adjustments to a typical
natural image that already has a 1/f spectrum, so it seems to predict that, in such images, lightness
is approximately proportional to image luminance. Lightness is not proportional to luminance,
however, in images with strong lighting boundaries: A fixed luminance usually looks much lighter
in a dimly illuminated region than in a bright region. If this argument is correct—it seems plausi-
ble, but it would need to be tested—then Dakin & Bex’s model accounts for filling-in, but it may
not be a strong theory of lightness more generally. (It is not clear whether it was meant to be. The
paper’s title suggests a filtering mechanism only for brightness filling-in, but the main text seems
to aim at a broader theory of lightness and shows, for example, that the model also accounts for
White’s illusion.)

Betz et al. (2015) suggested that this failure to process boundaries correctly is a general
problem with spatial filtering models. In band-pass masking experiments, they showed that
the spatial frequencies that affect several filtering models’ lightness or brightness estimates
are inversely proportional to stimulus size, whereas the spatial frequencies that guide human
observers’ lightness judgements do not vary as strongly with stimulus size. They pointed out
that lightness mechanisms based on edges, whose local spatial frequency content does not vary
much with overall stimulus size, may be able to account for these findings. A related point is that
small adjustments to an image can create or destroy the impression of lighting boundaries
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Lambertian:
a material type that has
the same luminance
from all viewpoints; an
approximate synonym
is matte

(Adelson 1993, Gilchrist 1977), which can have a large effect on perceived lightness but a small
effect on the response of filtering models (Murray 2020).

Betz et al.’s (2015) findings may not be fatal for all spatial filtering models, as such models can
be designed to operate at a fixed scale instead of being scale invariant, and even adding an early
spatial filter based on the contrast sensitivity function can make a model strongly scale dependent
(Chung et al. 2002). Spatial filtering models of brightness can account for an impressively wide
range of phenomena (Blakeslee & McCourt 2012), and it is tempting to think that, with suitable
modifications, they could provide an implementation-level model of lightness phenomena that
are described at a more abstract level by theories such as Bayesian intrinsic image models. There
has been little work on computational models of lightness perception that can be applied to
arbitrary images (unlike brightness perception, where such models are common), and spatial
filtering models provide one paradigm for making progress on this front.

Computer Vision

Reflectance estimation has long been an active topic in computer vision, where it is known as
intrinsic image decomposition or inverse rendering (Barrow & Tenenbaum 1978, Ramamoorthi
& Hanrahan 2001). That literature is mostly outside the scope of this review, but I mention two
developments of interest.

Barron & Malik (2015) developed a Bayesian algorithm (called Shape, Illumination, and Re-
flectance from Shading, or SIRFS) for estimating reflectance, shape, and lighting from single im-
ages, guided by statistical assumptions about natural scenes. They measured priors for reflectance
and shape from a database of 3D representations of natural objects, and priors for illumination
from a set of low-dimensional spherical harmonic representations of natural lighting. SIRFS as-
signed reflectance, shape, and illumination to an image by finding the combination of these prop-
erties that (a) had the greatest prior probability and (b) exactly reproduced the image under a
Lambertian shading model. From a single image, the model was able to make reasonable esti-
mates of the reflectance, shape, and lighting of objects for which the ground truth was known.
Naturally, the model had some limitations. For example, it required the boundaries of target ob-
jects to be traced out and assumed that the surface normals along these boundaries were all in
the image plane. It also assumed that lighting conditions were constant across the object, whereas
human vision is highly tolerant of lighting variations (Ostrovsky et al. 2005, Wilder et al. 2019).
An important contribution of this work was to show the power of 3D scene statistics in addition to
more widely studied 2D image statistics, and also to show that it may be easier to estimate lighting,
reflectance, and shape simultaneously than individually. As discussed below (see the section titled
Computational Tools), it also provides new computational methods for developing more realistic
probabilistic models of human vision.

Yu & Smith (2019) used deep learning to train a convolutional neural network (Inverse-
RenderNet) to solve the same problem addressed by SIRFS, namely estimating reflectance,
shape, and lighting from a single image. They used a few simple priors (e.g., smooth reflectance)
along with some clever heuristics to train the network using web-crawled images for which
the ground truth of reflectance, shape, and lighting were unknown. For example, they used
multiview stereo to find corresponding points in different images of the same scene and penalized
the network for assigning different reflectances to the same physical point in different images.
The trained network produced reflectance and surface normal maps from input images, and a
closed-form calculation based on a Lambertian shading model used these maps to infer global
lighting conditions. Interestingly, the reflectance and normal maps were computed first, without
an explicit lighting estimate, and the lighting estimate was found afterward as a byproduct; this
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is the opposite of the order in many human vision models from von Helmholtz onward (e.g.,
equivalent illumination models), where lighting is estimated first and plays an essential role in
inferring reflectance. (This network was a black box, however, so it may also have computed an
implicit lighting estimate on the way to computing reflectance.) During training, the network
was penalized for making reflectance, shape, and lighting estimates that did not account for
the input image exactly, but this was a graded penalty and not a hard constraint. Rutherford &
Brainard (2002) found that human observers often make reflectance and lighting estimates that
are not jointly consistent with the observed image luminance; it would be interesting to know if
the estimates from InverseRenderNet show a similar pattern of inconsistencies.

Until recently, it was common to convey the mystery of human vision by saying that no
presently existing machine can emulate it. That is still true, but the gap is narrowing, and com-
puter vision algorithms can provide novel, testable hypotheses for understanding biological vi-
sion (Yamins et al. 2014). It would be useful to know, for example, whether SIRFS or Inverse-
RenderNet show characteristics of human lightness perception, such as contrast, assimilation, and
articulation effects, that were not deliberately built into them, as this would suggest that these
properties emerge robustly in systems that exploit natural scene statistics. More generally, com-
puter vision models are often evaluated using summary statistics of performance on standard data
sets, but evaluating their behavior parametrically along important stimulus dimensions, as is com-
mon in psychological experiments, would be more revealing when judging them as starting points
for models of human vision.

Neither SIRFS nor InverseRenderNet seems likely to be able to explain several phenomena
that have motivated recent work on human lightness perception.They both assume smooth, glob-
ally consistent lighting, so they probably cannot explain figures like the snake illusion that seem to
rely on lighting boundaries, unless they accomplish this indirectly by assigning different surface
orientations to perceived lighting regions. They also use a local Lambertian shading model, so
they do not address specularities, interreflections, cast shadows, transparency, or material prop-
erties. There is nothing in their approaches, however, that would prevent future revisions from
addressing these phenomena.

OPEN PROBLEMS

Lightness and Brightness

When we see two equal-reflectance gray patches, one in light and one in shadow, we can usu-
ally see that they are approximately the same shade of grey. This is lightness constancy. At the
same time, we also recognize that there is a separate bright–dark continuum on which the patch
in shadow appears darker than the one in light. This is brightness. Lightness is usually defined
as perceived reflectance and brightness as perceived luminance (Arend 1993). These definitions
can leave the impression that lightness and brightness are simply independent, largely unrelated
perceptual dimensions, like hue and depth, for example, and that we can judge either of them at
will. In fact, their relationship is more nuanced than this (Blakeslee et al. 2008), and there is still
much that we do not understand about it. This is partly because the literatures on lightness and
brightness have often proceeded independently, with little interaction. In this section, I suggest
some avenues for investigation.

First, Logvinenko and colleagues’ (Logvinenko 2015, Logvinenko & Maloney 2006,
Logvinenko et al. 2008) scaling studies (reviewed above) did not reveal a role for perceived
luminance in the appearance of achromatic surfaces. This would be surprising if brightness
were a fundamental perceptual dimension. Does this mean that brightness is a weak and easily
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disregarded feature of realistic scenes, or instead, did observers perceive brightness but recognize
that it was not an intrinsic property of the test patches that they were asked to judge? Lighting
intensity, however, which we might also consider not to be an intrinsic surface property, did
emerge as a dimension of achromatic color, so we are still left with the question of why some
perceptual dimensions affect judgements of surface appearance and others do not.

Second, seeing a raw luminance distribution, for example whenmaking a shaded drawing, is no-
toriously difficult (Perdreau & Cavanagh 2011). Furthermore, current brightness models produce
outputs that bear little resemblance to simple image luminance. For example, ODOG does not
respond to mean luminance, and its output is based on normalized, orientation-selective, band-
pass channels (Blakeslee & McCourt 1999). If this is correct, then should we think of brightness
as perceived luminance at all? If not, then what is it, and why does the visual system compute it? Is
it a byproduct of early neural computations, with little adaptive value, or is it, in some sense that
would need to be made more precise, one step on the way to lightness?

Third, how are lightness and brightness related in real and virtual scenes? There have been
few studies that directly compared lightness and brightness in the same scene (e.g., Arend &
Spehar 1993a,b; Blakeslee & McCourt 2012), and even fewer that did this using real objects and
lights (e.g., Blakeslee et al. 2008, Jacobsen & Gilchrist 1988). Computer-generated images have
obvious advantages for stimulus control, but if they are not completely realistic, then they probe
lightness in an unusual type of pictorial space, rendered on pixellated, glowing surfaces. It is
an open question how closely this mimics lightness in more realistic scenes. Some studies have
found that real and virtual stimuli produce similar results (Blakeslee et al. 2008, Radonjic et al.
2016), but others have found discrepancies (Morgenstern et al. 2014, Patel et al. 2018), and until
we understand the relevant stimulus factors, equivalence between specific real and virtual stimuli
should always be an empirical conclusion, not an assumption. How much of our understanding
of lightness and brightness has been shaped by the fact that some studies have used real objects
and lights, whereas others (including most recent studies of brightness) have used virtual stimuli?
How do lightness and brightness typically differ between real and virtual environments?

I do not have answers to these questions. I raise them to point out some ways in which the
relationship between lightness and brightness is not well understood and to suggest that there is
room for important new work on this fundamental issue.

Computational Tools

Research on computer vision and artificial intelligence has made remarkable progress on com-
putational tools that are well suited to modeling human vision, and lightness in particular. Two
examples of this areMarkov randomfields (Koller&Friedman 2009) and artificial neural networks
(Goodfellow et al. 2016), which are powerful frameworks that have matured to a point where they
can be used effectively by nonexperts. Flexible methods for learning complex statistical distribu-
tions that can be used as priors have also emerged (Kobyzev et al. 2020, Roth & Black 2005).
The idea that human vision overcomes ambiguity by exploiting regularities in natural scenes is
well established, but psychological models that build on this insight are often highly simplified
and frequently do not do justice to the rich statistical structure of natural scenes. A notable fea-
ture of Barron & Malik’s (2015) solution to estimating reflectance, shape, and lighting (reviewed
above) is how familiar its approach is in broad outline (see Adelson & Pentland 1996) and yet how
novel it is in making adroit use of computational tools to leverage natural scene statistics in this
problem.When Fourier methods were adopted by vision researchers, they gave a new perspective
on familiar problems that led to an explosion of research and fundamental advances (DeValois &
DeValois 1988, Graham 1989). New computational modeling tools have similar potential, as they
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make it possible to go beyond simplified problems, to develop and test more sophisticated models
of realistic scenes and tasks.

A ModelFest Proposal

There has been little work on comparing the wide range of theories of lightness on a common
set of stimuli. For the most part, each investigator has tested their own model on their preferred
stimuli, and as a result, it is often hard to be certain about the strengths and weaknesses of various
theories. Model testing is most enlightening when we can show not only that a particular model
explains a phenomenon, but also that other plausible models do not. [“It is not enough to succeed;
others must fail” (Murdoch 1973, p. 98).] Use of standard test sets has been highly productive
in other research areas, such as ModelFest for spatial vision (Carney et al. 1999) and ImageNet
for machine learning (Deng et al. 2009), and research on lightness (and brightness) would benefit
from such a project as well.

CONCLUSION

Several elements of potentially strong, computational theories of lightness have emerged during
the time covered by this review. We have a partial understanding of the influence of lighting and
depth boundaries on lightness (Gilchrist et al. 1999). We have some insight into the perceptual
dimensions of achromatic color that should be modeled (Logvinenko 2015). We have some
measurements of the statistics of reflectance, shape, and lighting in natural scenes (Adams et al.
2016, Barron & Malik 2015, Purves & Lotto 2010). We have computational tools that can turn
hypotheses about the natural scene statistics that guide lightness perception into algorithms for
inference (Goodfellow et al. 2016, Koller & Friedman 2009). We have studies that have taken
steps in modeling lightness and lighting in simple stimuli (Allred & Brainard 2013, Murray
2020). A promising direction for future research is to integrate these elements into broader
computational models of lightness that can be applied to arbitrary images. Clearly, there are
many possible approaches to this goal, and it is unlikely to be reached in a single leap. There has
been encouraging progress, however, in incorporating insights from psychophysical experiments
into increasingly quantitative and computational models of lightness, and elements are available
to support new advances in this direction.

SUMMARY POINTS

1. Human vision discounts complex lighting conditions when estimating surface
reflectance.

2. Achromatic surface color is multidimensional.

3. Lightness mechanisms exploit statistical regularities in lighting and reflectance.

4. There has been substantial progress on quantitative and computational models of
lightness.

5. New computational methods provide promising tools for modeling lightness.

FUTURE ISSUES

1. There has been substantial progress on quantitative and computational models of light-
ness. New computational methods provide promising tools for further advances.

432 Murray



2. The relationship between lightness and brightness is a fundamental issue in which there
is room for important new work.

3. The idea that lightness perception is guided by natural scene statistics is long-standing.
Recent work on measuring and modeling properties of natural scenes makes it possible
to exploit this approach more fully.
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